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Estimating the distribution of the market
invariants

The classical approach to estimation discussed in the second part of the book
does not account for estimation risk. To tackle this issue, in this chapter we
introduce the Bayesian approach to parameter estimation.
The outcome of the Bayesian estimation process is the posterior distribu-

tion of the market parameters. This distribution explicitly acknowledges that
an estimate cannot be a single number. Furthermore the posterior distribution
includes within a sound statistical framework both the investor’s experience,
or prior knowledge, and the information from the market.
In Section 7.1 we introduce the Bayesian approach in general, showing how

to blend the investor’s prior and the market information to obtain the poste-
rior distribution. Furthermore, we show how the Bayesian framework includes
the classical approach to estimation in the form of "classical-equivalent" esti-
mators. Finally, we discuss how to summarize the main features of a generic
posterior distribution by means of its location-dispersion ellipsoid.
As in the classical approach in Chapter 4, we then proceed to discuss the

estimation of the parameters of the market invariants that are most relevant
to allocation problems, namely location, dispersion, and factor loadings.
In Section 7.2 we compute the posterior distribution of expected value

and covariance matrix of the market invariants under the conjugate normal-
inverse-Wishart hypothesis. Then we compute the classical-equivalent estima-
tors of the above parameters, exploring their self-adjusting behavior. Finally
we compute the joint and the marginal location-dispersion ellipsoids of ex-
pected values and covariance matrix provided by their posterior distribution.
In Section 7.3 we consider multivariate factor models. First we compute

the posterior distribution of the factor loadings and of the perturbation co-
variance under the conjugate normal-inverse-Wishart hypothesis. Then we
compute the classical-equivalent estimators of the respective parameters, ex-
ploring their self-adjusting behavior. Finally we compute the joint and the
marginal location-dispersion ellipsoids of the posterior distribution of factor
loadings and perturbation covariance.
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364 7 Estimating the distribution of the market invariants

In Section 7.4 we discuss how to quantify the investor’s prior knowledge
of the market in practice. Indeed, in typical situations the investor does not
input directly the prior market parameters: instead, he computes them under
suitable assumptions from what he considers an ideal allocation.

7.1 Bayesian estimation

We recall from Chapter 4 that a classical estimator is a function that processes
current information iT and outputs an S-dimensional vector bθ, see (4.9). In-
formation consists as in (4.8) of a time series of T past observations of the
market invariants:

iT ≡ {x1, . . . ,xT } . (7.1)

The output bθ is a number which is supposed to be close to the true, unknown
parameter θt. We can summarize the classical approach as follows:

classical estimation: iT 7→ bθ (7.2)

The Bayesian estimation process differs from the classical one in terms of both
"input" and "output".

7.1.1 Bayesian posterior distribution

In the first place, in a Bayesian context an estimator does not yield a numberbθ. Instead, it yields a random variable θ, which takes values in a given range
Θ. The distribution of θ is called the posterior distribution, which can be
represented for instance in terms of its probability density function fpo (θ).
The true, unknown parameter θt is assumed to be hidden most likely in the
neighborhood of those values where the posterior distribution is more peaked,
but the possibility that θt might lie in some other region of the range Θ is
also acknowledged, see Figure 7.2.
Secondly, in a Bayesian context an estimator does not depend only on

backward-looking historical information iT . Indeed, the investor/statistician
typically has some prior knowledge of the unknown value θt based on his
experience eC , where C denotes the level of confidence in his experience. This
experience is explicitly taken into account in the Bayesian estimation process.
Therefore we can summarize the Bayesian approach as follows:

Bayesian estimation: iT , eC 7→ fpo (θ) (7.3)

The Bayesian approach to estimation can be interpreted intuitively as
follows, see Figure 7.1.
On the one hand, the purely classical estimator based on historical in-

formation iT gives rise to a distribution of the market parameters θ that is
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Fig. 7.1. Bayesian approach to parameter estimation

peaked around the classical estimate bθ: the larger the number of observations
T in the time series, the higher the concentration of the historical distribution
around the classical estimate.
On the other hand, the investor equates his experience eC to a number C

of pseudo-observations, that only he sees, located in a "prior" value θ0. These
observations give rise to a distribution of the market parameters θ which is
called the prior distribution, whose probability density function we denote as
fpr (θ). The larger the number of these pseudo-observations, the higher the
investor’s confidence in his own experience and thus the more concentrated
the prior distribution around θ0.
The Bayesian posterior provides a theoretically sound way to blend the

above two distributions into a third distribution, i.e. a spectrum of values and
respective probabilities for the parameters θ. In particular, when the confi-
dence C in the investor’s experience is large the posterior becomes peaked
around the prior value θ0. On the other hand, when the number of observa-
tions T in the time series is large the posterior becomes peaked around the
classical estimate bθ:

θ0 (C →∞)
%

fpo (θ)
& bθ (T →∞).

(7.4)
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366 7 Estimating the distribution of the market invariants

7.1.2 Summarizing the posterior distribution

The main properties of the posterior distribution are summarized in its loca-
tion and dispersion parameters, see Figure 7.2.

ellipsoid

Θ

posterior 
density

�
ceθ� ,

q
ce Sθθ
E

location-dispersion

( )pof� θ

Fig. 7.2. Bayesian posterior distribution and uncertainty set

Location

The location parameter of an S-variate posterior distribution fpo (θ) is an
S-dimensional vector bθ, see Section 2.4. Since the posterior distribution is
determined by the information iT , in addition to the investor’s experience eC ,
the location parameter is a number that depends on information. This is the
definition (7.2) of a classical estimator. Therefore a location parameter of the
posterior distribution defines a classical-equivalent estimator .
A standard choice for the location parameter of a distribution is its ex-

pected value (2.54). Therefore, we introduce the following classical-equivalent
estimator of the parameter θ:

bθce [iT , eC ] ≡ EiT ,eC {θ} (7.5)

≡
Z
Θ

θfpo (θ; iT , eC) dθ.

As it turns out, this classical-equivalent estimator minimizes the estimation
error defined by a quadratic loss function as in (4.19). Furthermore, under
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7.1 Bayesian estimation 367

fairly general conditions, this classical-equivalent estimator is admissible, see
Berger (1985).
Another standard choice for the location parameter of a distribution is its

mode (2.52). Therefore, we introduce the following classical-equivalent esti-
mator of the parameter θ:

bθce [iT , eC ] ≡ ModiT ,eC {θ} (7.6)

≡ argmax
θ∈Θ

fpo (θ; iT , eC) .

This classical-equivalent estimator (7.6) based on the mode is equal to the
classical-equivalent estimator (7.5) based on the expected value when the pos-
terior is normally distributed, see (2.158). Furthermore, it yields the point of
highest concentration of probability in the domain Θ even when the moments
of the posterior distribution are not defined, see Figure 7.2.
A classical-equivalent estimator is an instance of the shrinkage estimators

discussed in Section 4.4. For this reason they are called Bayes-Stein shrinkage
estimators. In the Bayesian context the shrinkage target is represented by
the investor’s prior experience and the extent of the shrinkage is driven by
the relation between the amount of information, i.e. the length T of the time
series, and the investor’s confidence C in his experience, see Figure 7.1.
In particular, because of (7.4), when the investor’s confidence C in his

experience is high, the posterior distribution becomes extremely concentrated
around the prior θ0. Therefore the classical-equivalent estimator also shrinks
to the point θ0. Similarly, when the length T of the time series is large, the
posterior distribution becomes extremely concentrated around the historical
estimate bθ. Therefore the classical-equivalent estimator also converges to the
historical estimate bθ.
Dispersion

A dispersion parameter of the S-variate posterior distribution fpo (θ) is a
symmetric and positive S × S matrix Sθ . Since the posterior is determined
by the information iT and by investor’s experience eC , so is the dispersion
parameter.
A standard choice for the dispersion parameter of a distribution is repre-

sented by the covariance matrix (2.67), which in this context reads:

Sθ [iT , eC ] ≡ CoviT ,eC {θ} (7.7)

≡
Z
Θ

(θ − E {θ}) (θ − E {θ})0 fpo (θ; iT , eC) dθ.

Alternatively, we can consider the modal dispersion (2.65), which in this con-
text reads:
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368 7 Estimating the distribution of the market invariants

Sθ [iT , eC ] ≡ MDisiT ,eC {θ} (7.8)

≡ −
Ã
∂2 ln fpo (θ; iT , eC)

∂θ∂θ0

¯̄̄̄
θ=Mod{θ}

!−1
.

The modal dispersion is equal to the covariance matrix when the posterior
is normally distributed:

θ ∼ N
³bθce,Sθ´ , (7.9)

see (2.159). Furthermore, it provides a measure of the dispersion of the pa-
rameter θ in the range Θ even when the moments of the posterior are not
defined.

Location-dispersion ellipsoid

Together with the classical-equivalent S-dimensional vector bθce, the S × S
dispersion matrix Sθ defines the location-dispersion ellipsoid with radius pro-
portional to q of the estimate of the market parameters θ:

Eqbθce,Sθ ≡
½
θ such that

³
θ − bθce´0 S−1θ ³

θ − bθce´ ≤ q2
¾
, (7.10)

see Figure 7.2. Refer to Section 2.4.3 for a thorough discussion of the location-
dispersion ellipsoid in a general context.
The location-dispersion ellipsoid defines naturally a self-adjusting uncer-

tainty region for θ. Indeed, we show in Appendix www.7.1 that in the specific
case (7.9) where the posterior is normally distributed the following result
holds for the probability that the parameters lie within the boundaries of the
ellipsoid:

P
n
θ ∈ Eqbθce,Sθ

o
= Fχ2S

¡
q2
¢
, (7.11)

where Fχ2S is the cumulative distribution function of the chi-square distribu-
tion with S degrees of freedom, which is a special case of the gamma cumu-
lative distribution function (1.111). More in general, the least upper bound
(2.90) of the Chebyshev inequality applies:

P
n
θ /∈ Eqbθce,Sθ

o
≤ S

q2
. (7.12)

Furthermore, because of (7.4), when the investor’s confidence C in his ex-
perience is large, the posterior distribution becomes extremely concentrated
around the prior θ0. Therefore the dispersion parameter Sθ becomes small
and the uncertainty ellipsoid (7.10) shrinks to the point θ0, no matter the ra-
dius factor q. Similarly, when the number of observations T in the time series
of the market invariants is large, the posterior distribution becomes extremely
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7.1 Bayesian estimation 369

concentrated around the historical estimate bθ. Therefore the dispersion pa-
rameter Sθ becomes small and the uncertainty ellipsoid (7.10) shrinks to the
point bθ, no matter the radius factor q.
The self-adjusting uncertainty region represented by the location-dispersion

ellipsoid (7.10) of the posterior distribution of the parameter θ plays an im-
portant role in robust Bayesian allocation decisions.

7.1.3 Computing the posterior distribution

To compute explicitly the posterior distribution we denote the probability
density function of the market invariants by the conditional notation f (x|θ).
In so doing we are implicitly considering the parameters θ as a random vari-
able, where the true, unknown value θt is the specific instance of this random
variable that is chosen by Nature.
Since the market invariants are independent and identically distributed the

joint probability density function of the available information (7.1) assuming
known the value of the parameters θ is the product of the probability density
functions of the invariants:

fIT |θ (iT |θ) = f (x1|θ) · · · f (xT |θ) , (7.13)

see also (4.5).
The investor has some prior knowledge of the parameters, which reflects his

experience eC and is modeled by the prior density fpr (θ). From the relation
between the conditional and the joint probability density functions (2.40) we
obtain the expression for the joint distribution of the observations and the
market parameters:

fIT ,θ (iT ,θ) = fIT |θ (iT |θ) fpr (θ) . (7.14)

The posterior probability density function is simply the density of the pa-
rameters conditional on current information. It follows from the joint density
of the observations and the parameters by applying Bayes’ rule (2.43), which
in this context reads:

fpo (θ; iT , eC) ≡ f (θ|iT ) =
fIT ,θ (iT ,θ)R

Θ
fIT ,θ (iT ,θ) dθ

. (7.15)

By construction, the Bayes posterior distribution smoothly blends the infor-
mation from the market iT with the investor’s experience eC , which is modeled
by the prior density.
Although the Bayesian approach is conceptually simple, it involves multi-

ple integrations. Therefore, the choices of distributions that allow us to obtain
analytical results is quite limited. Parametric models for the investor’s prior
and the market invariants that give rise to tractable posterior distributions of
the market parameters are called conjugate distributions.
We present in Sections 7.2 and 7.3 notable conjugate models that allow us

to model the markets. If analytical results are not available, one has to resort
to numerical simulations, see Geweke (1999).
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370 7 Estimating the distribution of the market invariants

7.2 Location and dispersion parameters

We present here the Bayesian estimators of the location and the dispersion
parameters of the market invariants under the normal hypothesis:

Xt|µ,Σ ∼ N(µ,Σ) . (7.16)

In this setting, the location parameter is the expected value µ and the scatter
parameter is the covariance matrix Σ. This specification is rich and flexible
enough to suitably model real problems, yet the otherwise analytically in-
tractable computations of Bayesian analysis can be worked out completely,
see also Aitchison and Dunsmore (1975).

7.2.1 Computing the posterior distribution

The Bayesian estimate of the unknown parameters is represented by the joint
posterior distribution of µ and Σ. In order to compute this distribution we
need to collect the information available and to model the investor’s experi-
ence, i.e. his prior distribution.

Information from the market

The information on the market is contained in the time series (7.1) of the past
realizations of the market invariants.
Since we are interested in the estimation of the location parameter µ and

of the scatter parameter Σ, it turns out sufficient to summarize the historical
information on the market into the sample estimator of location (4.98), i.e.
the sample mean:

bµ ≡ 1

T

TX
t=1

xt, (7.17)

and the sample estimator of dispersion (4.99), i.e. the sample covariance:

bΣ ≡ 1

T

TX
t=1

(xt − bµ) (xt − bµ)0 . (7.18)

Along with the number of observations T in the sample, this is all the infor-
mation we need from the market. Therefore we can represent this information
equivalently as follows:

iT ≡
nbµ, bΣ;To . (7.19)
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7.2 Location and dispersion parameters 371

Prior knowledge

We model the investor’s prior as a normal-inverse-Wishart (NIW) distribu-
tion. In other words, it is convenient to factor the joint distribution of µ and
Σ into the conditional distribution of µ given Σ and the marginal distribution
of Σ.
We model the conditional prior on µ given Σ as a normal distribution

with the following parameters:

µ|Σ ∼ N
µ
µ0,
Σ

T0

¶
, (7.20)

where µ0 is an N -dimensional vector and T0 is a positive scalar.
We model the marginal prior on Σ as an inverse-Wishart distribution. In

other words, it is easier to model the distribution of the inverse of Σ, which
we assume Wishart-distributed with the following parameters:

Σ−1 ∼W
µ
ν0,
Σ−10
ν0

¶
, (7.21)

where Σ0 is an N × N symmetric and positive matrix and ν0 is a positive
scalar. For a graphical interpretation of the prior (7.20) and (7.21) in the case
N ≡ 1 refer to Figure 7.1.
To analyze the role played by the parameters that appear in the above

distributions, we first compute the unconditional (marginal) prior on µ. As
we show in Appendix www.7.5, this is a multivariate Student t distribution:

µ ∼ St
µ
ν0,µ0,

Σ0
T0

¶
. (7.22)

From this expression we see that the parameter µ0 in (7.20) reflects the in-
vestor’s view on the parameter µ. Indeed, from (2.190) we obtain:

E {µ} = µ0. (7.23)

On the other hand the parameter T0 in (7.20) reflects his confidence in that
view. Indeed, from (2.191) we obtain:

Cov {µ} = ν0
ν0 − 2

Σ0
T0
. (7.24)

Therefore a large T0 corresponds to little uncertainty about the view on µ.
The parameter Σ0 in (7.21) reflects the investor’s view on the dispersion

parameter Σ. Indeed, from (2.227) we see that the prior expectation reads:

E
©
Σ−1

ª
= Σ−10 . (7.25)

On the other hand, the parameter ν0 in (7.21) describes the investor’s confi-
dence in this view. Indeed, from (2.229) we obtain:
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372 7 Estimating the distribution of the market invariants

Cov
©
vec

£
Σ−1

¤ª
=
1

ν0
(IN2 +KNN )

¡
Σ−10 ⊗Σ−10

¢
, (7.26)

where vec is the operator (A.104) that stacks the columns of Σ−1 into a
vector, I is the identity matrix, K is the commutation matrix (A.108) and ⊗
is the Kronecker product (A.96). Therefore a large value ν0 corresponds to
little uncertainty about the view on Σ−1 and thus about the view on Σ.
To summarize, the investor’s experience and his confidence are described

by the following prior parameters:

eC ≡ {µ0,Σ0;T0, ν0} . (7.27)

To determine the specific values of these parameters in financial applications
we can use the techniques discussed in Section 7.4.

Posterior distribution

Given the above assumptions on the market, i.e. (7.16), and on the investor’s
experience, i.e. (7.20) and (7.21), it is possible to carry out the integration in
(7.15) explicitly and compute the posterior distribution of the market para-
meters.
As we show in Appendix www.7.2, the posterior is, like the prior, a normal-

inverse-Wishart (NIW) distribution. Indeed, recall (7.17) and (7.18), and de-
fine the following additional parameters:

T1 [iT , eC ] ≡ T0 + T (7.28)

µ1 [iT , eC ] ≡
1

T1
[T0µ0 + T bµ] (7.29)

ν1 [iT , eC ] ≡ ν0 + T (7.30)

Σ1 [iT , eC ] ≡
1

ν1

"
ν0Σ0 + T bΣ+ (µ0 − bµ) (µ0 − bµ)01

T +
1
T0

#
. (7.31)

Then the posterior distribution of the location parameter conditioned on the
dispersion parameter is normal:

µ|Σ ∼ N
µ
µ1,
Σ

T1

¶
; (7.32)

and the posterior distribution of the dispersion parameter is inverse-Wishart:

Σ−1 ∼W
µ
ν1,
Σ−11
ν1

¶
. (7.33)

Also, since both prior and posterior distributions are normal-inverse-Wishart,
from (7.22) we immediately derive the unconditional posterior distribution of
the location parameter:

µ ∼ St
µ
ν1,µ1,

Σ1
T1

¶
. (7.34)
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7.2.2 Summarizing the posterior distribution

We can summarize the main features of the posterior distribution of µ and Σ
by means of its location-dispersion ellipsoid, as discussed in Section 7.1.2.
We have two options: we can consider the two separate location-dispersion

ellipsoids of the marginal posterior distributions of µ and Σ respectively, or
we can consider the single location-dispersion ellipsoid of the joint posterior
distribution of µ and Σ. Since both approaches find applications in allocation
problems, we present both cases.

Marginal posterior distribution of the expected value µ

As far as µ is concerned, its marginal posterior distribution is the Student t
distribution (7.34).
First we compute the classical-equivalent estimator of µ, i.e. a parameter

of location of the marginal posterior distribution of µ. Choosing either the
expected value (7.5) or the mode (7.6) as location parameter, we obtain from
(2.190) the following classical-equivalent estimator:

bµce [iT , eC ] = T0µ0 + T bµ
T0 + T

. (7.35)

It is easy to check that, as the number of observations T increases, this
classical-equivalent estimator shrinks towards the sample mean bµ. On the
other hand, as the investor’s confidence T0 in his experience regarding µ in-
creases, the classical-equivalent estimator (7.35) shrinks toward the investor’s
view µ0. Notice the symmetric role that the confidence level T0 and the num-
ber of observations T play in (7.35): the confidence level T0 can be interpreted
as the number of "pseudo-observations" that would be necessary in a classical
setting to support the investor’s confidence about his view µ0.
Now we turn to the dispersion parameter for µ. Choosing the covariance

(7.7) as scatter parameter we obtain from (2.191) the following result:

Sµ [iT , eC ] =
1

T1

ν1
ν1 − 2

Σ1, (7.36)

where the explicit dependence on information and experience is given in (7.28)-
(7.31). It can be proved that choosing the modal dispersion (7.8) as scatter
parameter the result is simply rescaled by a number close to one.
The location and dispersion parameters (7.35) and (7.36) respectively de-

fine the location-dispersion uncertainty ellipsoid (7.10) for µ with radius pro-
portional to q:

Eqbµce,Sµ ≡
©
µ such that (µ− bµce)0 S−1µ (µ− bµce) ≤ q2

ª
. (7.37)

From (7.36) and the definitions (7.28)-(7.31) we observe that when either
the number of observations T or the confidence in the views T0 tends to
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infinity, the Bayesian setting becomes the classical setting. Indeed, in this
case the uncertainty ellipsoid (7.37) shrinks to the single point bµce, no matter
the radius factor q. In other words, the marginal posterior distribution of µ
becomes infinitely peaked around its classical-equivalent estimator.

Marginal posterior distribution of the covariance Σ

As far as Σ is concerned, its marginal posterior distribution is the inverse-
Wishart distribution (7.33).
First we compute the classical-equivalent estimator of Σ, i.e. a parameter

of location of the marginal posterior distribution of Σ. Choosing the mode
(7.6) as location parameter, we show in Appendix www.7.4 that the ensuing
classical-equivalent estimator reads:

bΣce [iT , eC ] = 1

ν0 + T +N + 1

h
ν0Σ0 + T bΣ (7.38)

+
(µ0 − bµ) (µ0 − bµ)0

1
T +

1
T0

#
.

It can be proved that choosing the expected value (7.5) as location parameter
the result is simply rescaled by a number close to one.
It is easy to check that, as the number of observations T increases, the

classical-equivalent estimator (7.38) shrinks towards the sample covariancebΣ. On the other hand, as the investor’s confidence ν0 in his experience re-
garding Σ increases, the classical-equivalent estimator (7.38) shrinks toward
the investor’s view Σ0. Notice the symmetric role that the confidence level ν0
and the number of observations T play in (7.38): the confidence level ν0 can be
interpreted as the number of "pseudo-observations" that would be necessary
in a classical setting to support the investor’s confidence about his view Σ0.
Now we turn to the dispersion parameter for Σ. Since Σ is symmetric,

we disregard the redundant elements above the diagonal. In other words we
only consider the vector vech [Σ], where vech is the operator that stacks the
columns of a matrix skipping the redundant entries above the diagonal. Choos-
ing the modal dispersion (7.8) as scatter parameter, we show in Appendix
www.7.4 that the dispersion of vech [Σ] reads:

SΣ [iT , eC ] =
2ν21

(ν1 +N + 1)3
¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
, (7.39)

where DN is the duplication matrix (A.113); ⊗ is the Kronecker product
(A.95); and the explicit dependence on information and experience is given in
(7.28)-(7.31). It can be proved that choosing the covariance matrix (7.7) as
scatter parameter for vech [Σ], the result is simply rescaled by a number close
to one.
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The location and dispersion parameters (7.38) and (7.39) respectively de-
fine the location-dispersion uncertainty ellipsoid (7.10) for Σ with radius pro-
portional to q:

EqbΣce,SΣ ≡
½
Σ : vech

h
Σ− bΣcei0 S−1Σ vech

h
Σ− bΣcei ≤ q2

¾
. (7.40)

Notice that the matrices Σ in this ellipsoid are always symmetric, because
the vech operator only spans the non-redundant elements of a matrix. When
the radius factor q is small enough, the matrices Σ in this ellipsoid are also
positive, because positivity is a continuous property and bΣce is positive.

� ceΣ

11Σ
12Σ

22Σ

2
11 22 12 0Σ Σ − Σ =

� ,
q
ce SΣΣ

E

� ,
q
ce SΣΣ

E

positivity boundary

Fig. 7.3. Bayesian location-dispersion ellipsoid for covariance estimation

Consider the case of N ≡ 2 market invariants. In this case Σ is a 2 × 2
matrix:

Σ ≡
µ
Σ11 Σ12
Σ21 Σ22

¶
. (7.41)

The symmetry of Σ implies Σ12 ≡ Σ21. Therefore a matrix is completely
determined by the following three entries:

vech [Σ] = (Σ11, Σ12, Σ22)
0 . (7.42)

A symmetric matrix is positive if and only if its eigenvalues are positive.
In the 2×2 case, denoting as λ1 and λ2 the two eigenvalues, these are positive
if and only if the following inequalities are satisfied:
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λ1λ2 > 0, λ1 + λ2 > 0. (7.43)

On the other hand, the product of the eigenvalues is the determinant of Σ
and the sum of the eigenvalues is the trace of Σ, which are both invariants,
see Appendix A.4. Therefore the positivity condition is equivalent to the two
conditions below:

|Σ| ≡ Σ11Σ22 −Σ2
12 ≥ 0 (7.44)

tr (Σ) ≡ Σ11 +Σ22 ≥ 0, (7.45)

where the first expression follows from (A.41).
In Figure 7.3 we see that when the radius factor q is small enough, every

point of the ellipsoid (7.40) satisfies (7.44)-(7.45). When the radius factor
becomes q, a large enough scalar, the positivity condition is violated.

From (7.39) and the definitions (7.28)-(7.31) we observe that when either
the number of observations T or the confidence in the views ν0 tends to
infinity, the Bayesian setting becomes the classical setting. Indeed in this case
the uncertainty ellipsoid (7.40) shrinks to the single point bΣce, no matter
the radius factor q. In other words, the marginal posterior distribution of Σ
becomes infinitely peaked around its classical-equivalent estimator.

Joint posterior distribution of µ and Σ

We now turn to the analysis of the joint posterior distribution of

θ ≡
µ

µ
vech [Ω]

¶
, (7.46)

where Ω ≡ Σ−1. Indeed, it is much easier to parameterize the joint distribu-
tion of µ and Σ in terms of the inverse of Σ.
In Appendix www.7.3 we compute the mode (7.6) of the posterior distri-

bution of θ, which reads:

bθce [iT , eC ] ≡ µ µ1
ν1−N
ν1

vech
£
Σ−11

¤¶ , (7.47)

where the explicit dependence on information and experience is given in (7.28)-
(7.31).
In Appendix www.7.3 we also compute the modal dispersion (7.8) of the

posterior distribution of θ, which reads:

Sθ [iT , eC ] =

µ
Sµ 0N2×(N(N+1)/2)2

0(N(N+1)/2)2×N2 SΩ

¶
. (7.48)

In this expression:
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Sµ [iT , eC ] ≡
1

T1

ν1
ν1 −N

Σ1 (7.49)

SΩ [iT , eC ] ≡
2

ν1

ν1 −N

ν1
[D0

N (Σ1 ⊗Σ1)DN ]
−1 , (7.50)

where DN is the duplication matrix (A.113); ⊗ is the Kronecker product
(A.95); and the explicit dependence on information and experience is given in
(7.28)-(7.31).
The location and dispersion parameters (7.47) and (7.48) define the joint

location-dispersion uncertainty ellipsoid (7.10) with radius factor q. It is
straightforward to check that all the comments regarding the self-adjusting
nature of the location-dispersion ellipsoids (7.37) and (7.40) also apply to the
joint location-dispersion ellipsoid.

7.3 Explicit factors

We present here the Bayesian estimators of factor loadings and perturbation
dispersion in a factor model under the normal hypothesis for the market. In
other words, we consider an affine explicit factor model:

Xt = Bf t +Ut, (7.51)

where the factors ft are known and the perturbations, conditioned on the
factors, are normally distributed:

Xt|ft,B,Σ ∼ N(Bf t,Σ) . (7.52)

In this setting, the parameters to be determined are the factor loadings B
and the dispersion matrix Σ. This specification is rich and flexible enough
to suitably model real problems, yet the otherwise analytically intractable
computations of Bayesian analysis can be worked out completely, see also
Press (1982).

7.3.1 Computing the posterior distribution

The Bayesian estimate of the unknown parameters is represented by the joint
posterior distribution of B and Σ. In order to compute this distribution we
need to collect the available information from the market and to model the
investor’s experience, i.e. his prior distribution.

Information from the market

The information on the market is contained in the time series of the past joint
realizations of the market invariants and the factors:
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378 7 Estimating the distribution of the market invariants

iT ≡ {x1, f1,x2, f2, . . . ,xT , fT } . (7.53)

Since we are interested in the estimation of the factor loadings B and
the scatter parameter Σ, it turns out sufficient to summarize the historical
information on the market into the ordinary least squares estimator (4.126)
of the factor loadings, which we report here:

bB ≡ bΣXF
bΣ−1F , (7.54)

where bΣXF ≡
1

T

TX
t=1

xtf
0
t , bΣF ≡

1

T

TX
t=1

ftf
0
t ; (7.55)

and the sample covariance of the residuals (4.128), which we report here:

bΣ ≡ 1

T

TX
t=1

³
xt − bBft´³xt − bBft´0 . (7.56)

Along with the number of observations T in the sample, this is all the infor-
mation we need from the market. Therefore we can represent the information
on the market equivalently in terms of the following parameters:

iT ≡
nbB, bΣ;To . (7.57)

Prior knowledge

We model the investor’s prior as a normal-inverse-Wishart (NIW) distribu-
tion. In other words, it is convenient to factor the joint distribution of B and
Σ into the conditional distribution of B givenΣ and the marginal distribution
of Σ.
We model the conditional prior on B given Σ as a matrix-valued normal

distribution (2.181) with the following parameters:

B|Σ ∼ N
µ
B0,
Σ

T0
,Σ−1F,0

¶
, (7.58)

where B0 is an N×K matrix, ΣF,0 is a K×K symmetric and positive matrix
and T0 is a positive scalar.
We model the marginal prior on Σ as an inverse-Wishart distribution. In

other words, it is easier to model the distribution of the inverse of Σ, which
we assume Wishart-distributed with the following parameters:

Σ−1 ∼W
µ
ν0,
Σ−10
ν0

¶
, (7.59)

where Σ0 is an N ×N positive definite matrix and ν0 is a positive scalar.
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To analyze the role played by the parameters that appear in the above
expressions, we compute the unconditional (marginal) prior on B. We show
in Appendix www.7.8 that this distribution is a matrix-valued Student t dis-
tribution (2.198) with the following parameters:

B ∼ St
Ã
ν0 +K −N,B0,

ν0
ν0 +K −N

Σ0,
Σ−1F,0
T0

!
. (7.60)

From this expression we see that the parameter B0 in (7.58) reflects the in-
vestor’s view on the parameter B. Indeed, from (2.203) we obtain:

E {B} = B0. (7.61)

On the other hand from (2.206) the parameter Σ−1F,0 in (7.58) yields the co-
variance structure between the m-th and n-th row of B, i.e. the sensitivities
of the m-th and n-th market invariant to the factors:

Cov
©
B(m),B(n)

ª
=
1

T0

ν0
ν0 −N +K − 2 [Σ0]mnΣ

−1
F,0. (7.62)

This also shows that the parameter T0 in (7.58) reflects the investor’s con-
fidence on his view on B, as a large T0 corresponds to small variances and
covariances in the prior on the factor loadings.
The parameter Σ0 in (7.59) reflects the investor’s view on the dispersion

parameter Σ. Indeed, from (2.227) the prior expectation reads:

E
©
Σ−1

ª
= Σ−10 . (7.63)

On the other hand, the parameter ν0 in (7.59) describes the investor’s confi-
dence in this view. Indeed, from (2.229) we obtain:

Cov
©
vec

£
Σ−1

¤ª
=
1

ν0
(IN2 +KNN )

¡
Σ−10 ⊗Σ−10

¢
, (7.64)

where vec is the operator (A.104) that stacks the columns of Σ−1 into a
vector, I is the identity matrix, K is the commutation matrix (A.108) and ⊗
is the Kronecker product (A.96). Therefore a large value ν0 corresponds to
little uncertainty about the view on Σ−1 and thus about the view on Σ.
To summarize, the investor’s experience and his confidence are described

by the following prior parameters:

eC ≡ {B0,Σ0,ΣF,0;T0, ν0} . (7.65)

To determine the values of these parameters in financial applications we can
use the techniques discussed in Section 7.4.
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Posterior distribution

Given the above assumptions it is possible to carry out the integration in
(7.15) explicitly.
As we show in Appendix www.7.6, the posterior distribution of B and Σ

is, like the prior, a normal-inverse-Wishart (NIW) distribution. Indeed, recall
(7.54)-(7.56) and define the following additional parameters:

T1 [iT , eC ] ≡ T0 + T (7.66)

ΣF,1 [iT , eC ] ≡
T0ΣF,0 + T bΣF

T0 + T
(7.67)

B1 [iT , eC ] ≡
³
T0B0ΣF,0 + T bBbΣF

´³
T0ΣF,0 + T bΣF

´−1
(7.68)

ν1 [iT , eC ] ≡ T + ν0 (7.69)

Σ1 [iT , eC ] ≡
1

ν1

h
T bΣ+ ν0Σ0 + T0B0ΣF,0B

0
0 (7.70)

+ T bBbΣF
bB0 − T1B1ΣF,1B

0
1

i
.

Then the dispersion parameter is inverse-Wishart-distributed:

Σ−1 ∼W
µ
ν1,
Σ−11
ν1

¶
. (7.71)

On the other hand the distribution of the factor loadings conditioned on the
dispersion parameter is a matrix-valued normal distribution (2.181) with the
following parameters:

B|Σ ∼ N
µ
B1,
Σ

T1
,Σ−1F,1

¶
. (7.72)

Also, since prior and posterior are both normal-inverse-Wishart distributions,
from (7.60) we immediately derive the unconditional distribution of the factor
loadings, which is a matrix-valued Student t distribution:

B ∼ St
Ã
ν1 +K −N,B1,

ν1
ν1 +K −N

Σ1,
Σ−1F,1
T1

!
. (7.73)

7.3.2 Summarizing the posterior distribution

We can summarize the main features of the posterior distribution of B and
Σ by means of its location-dispersion ellipsoid, as discussed in Section 7.1.2.
We have two options: we can consider the two separate location-dispersion

ellipsoids of the marginal posterior distributions of B and Σ respectively, or
we can consider the single location-dispersion ellipsoid of the joint distribution
of B and Σ. Since both approaches find applications in allocation problems,
we present both cases.
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Marginal posterior distribution of the factor loadings B

As far as B is concerned, its marginal posterior distribution is the matrix-
valued Student t distribution (7.73).
First we compute the classical-equivalent estimator of B, i.e. a parame-

ter of location of the marginal posterior distribution of B. Choosing the ex-
pected value (7.5) as location parameter, we obtain from (2.203) the following
classical-equivalent estimator of the factor loadings:

bBce [iT , eC ] = ³T0B0ΣF,0 + T bBbΣF

´³
T0ΣF,0 + T bΣF

´−1
. (7.74)

It is easy to check that, as the number of observations T increases, this
classical-equivalent estimator shrinks towards the OLS estimator bB. On the
other hand, as the investor’s confidence T0 in his experience regarding B in-
creases, the classical-equivalent estimator (7.74) shrinks toward the investor’s
view B0. Notice the symmetric role that the confidence level T0 and the num-
ber of observations T play in (7.74): the confidence level T0 can be interpreted
as the number of "pseudo-observations" that would be necessary in a classical
setting to support the investor’s confidence about his view B0.
Now we turn to the dispersion parameter for B. Choosing the covariance

(7.7) as scatter parameter we obtain from (2.204) the following result:

SB [iT , eC ] =
1

T1

ν1
ν1 +K −N − 2Σ

−1
F,1 ⊗Σ1, (7.75)

where ⊗ is the Kronecker product (A.95) and where the explicit dependence
on information and experience is given in (7.66)-(7.70).
The location and dispersion parameters (7.74) and (7.75) respectively de-

fine the location-dispersion uncertainty ellipsoid (7.10) for B with radius pro-
portional to q:

EqbBce,SB
≡
½
B : vec

h
B− bBcei0 S−1B vec

h
B− bBcei ≤ q2

¾
, (7.76)

where vec is the operator (A.104) that stacks the columns of a matrix into a
vector.
From (7.75) and the definitions (7.66)-(7.70) we observe that when either

the number of observations T or the confidence in the views T0 tends to
infinity, the Bayesian setting becomes the classical setting. Indeed, in this
case the uncertainty ellipsoid (7.76) shrinks to the single point bBce, no matter
the radius factor q. In other words, the marginal posterior distribution of B
becomes infinitely peaked around its classical-equivalent estimator.

Marginal posterior distribution of the perturbation covariance Σ

As far as Σ is concerned, its marginal posterior distribution is the inverse-
Wishart distribution (7.71).
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First we compute the classical-equivalent estimator of Σ, i.e. a parameter
of location of the marginal posterior distribution of Σ. Choosing the mode
(7.6) as location parameter, we show in Appendix www.7.4 that the ensuing
classical-equivalent estimator reads:

bΣce [iT , eC ] = 1

ν0 + T +N + 1

h
T bΣ+ ν0Σ0 + T0B0ΣF,0B

0
0 (7.77)

+ T bBbΣF
bB0 − T1B1ΣF,1B

0
1

i
.

It is easy to check that, as the number of observations T increases, the
classical-equivalent estimator (7.77) shrinks towards the sample covariancebΣ. On the other hand, as the investor’s confidence ν0 in his experience re-
garding Σ increases, the classical-equivalent estimator (7.77) shrinks toward
the investor’s view Σ0. Notice the symmetric role that the confidence level ν0
and the number of observations T play in (7.77): the confidence level ν0 can be
interpreted as the number of "pseudo-observations" that would be necessary
in a classical setting to support the investor’s confidence about his view Σ0.
Now we turn to the dispersion parameter for Σ. Since Σ is symmetric,

we disregard the redundant elements above the diagonal. In other words we
only consider the vector vech [Σ], where vech is the operator that stacks the
columns of a matrix skipping the redundant entries above the diagonal. Choos-
ing the modal dispersion (7.8) as scatter parameter, we show in Appendix
www.7.4 that the dispersion of vech [Σ] reads:

SΣ [iT , eC ] =
2ν21

(ν1 +N + 1)3
¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
, (7.78)

where DN is the duplication matrix (A.113); ⊗ is the Kronecker product
(A.95); and the explicit dependence on information and experience is given in
(7.66)-(7.70).
The location and dispersion parameters (7.77) and (7.78) define the

location-dispersion uncertainty ellipsoid (7.10) for Σ of radius proportional
to q:

EqbΣce,SΣ ≡
½
Σ : vech

h
Σ− bΣcei0 S−1Σ vech

h
Σ− bΣcei ≤ q2

¾
. (7.79)

Notice that the matrices Σ in this ellipsoid are always symmetric, because
the vech operator only spans the non-redundant elements of a matrix. When
the radius factor q is small enough, the matrices Σ in this ellipsoid are also
positive, because positivity is a continuous property and bΣce is positive, see
Figure 7.3.
From (7.78) and the definitions (7.66)-(7.70) we observe that when either

the number of observations T or the confidence in the views ν0 tends to
infinity, the Bayesian setting becomes the classical setting. Indeed in this case
the uncertainty ellipsoid (7.79) shrinks to the single point bΣce, no matter
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the radius factor q. In other words, the marginal posterior distribution of Σ
becomes infinitely peaked around its classical-equivalent estimator.

Joint posterior distribution of B and Σ

We now turn to the analysis of the joint posterior distribution of

θ ≡
µ
vec [B]
vech [Ω]

¶
, (7.80)

where Ω ≡ Σ−1. Indeed, it is much easier to parameterize the joint distribu-
tion of B and Σ in terms of the inverse of Σ.
In Appendix www.7.7 we compute the mode (7.6) of the posterior distri-

bution of θ, which reads:

bθce [iT , eC ] ≡ µ B1
ν1+K−N−1

ν1
vech

£
Σ−11

¤¶ , (7.81)

where the explicit dependence on information and experience is given in (7.66)-
(7.70).
In Appendix www.7.7 we also compute the modal dispersion (7.8) of the

posterior distribution of θ, which reads:

Sθ [iT , eC ] =

µ
SB 0(NK)2×(N(N+1)/2)2

0(N(N+1)/2)2×(NK)2 SΩ

¶
. (7.82)

In this expression:

SB [iT , eC ] ≡
1

T1

ν1
ν1 +K −N − 1KNK

³
Σ1 ⊗Σ−1F,1

´
KKN (7.83)

SΩ [iT , eC ] ≡
2

ν1

ν1 +K −N − 1
ν1

[D0
N (Σ1 ⊗Σ1)DN ]

−1 , (7.84)

whereKNK is the commutation matrix (A.108);DN is the duplication matrix
(A.113); ⊗ is the Kronecker product (A.95); and the explicit dependence on
information and experience is given in (7.66)-(7.70).
The location and dispersion parameters (7.81) and (7.82) respectively de-

fine the joint location-dispersion uncertainty ellipsoid (7.10) with radius factor
q. It is straightforward to check that all the comments regarding the self-
adjusting nature of the location-dispersion ellipsoids (7.76) and (7.79) also
apply to the joint location-dispersion ellipsoid.

7.4 Determining the prior

In Section 7.1 we discussed how the Bayesian approach to parameter esti-
mation relies on the investor’s prior knowledge of the market parameters θ,
which is modeled in terms of the prior probability density function fpr (θ).
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384 7 Estimating the distribution of the market invariants

The parametric expression of the prior density is typically determined by
a location parameter θ0, which corresponds to the "peak" of the prior beliefs,
and a set of scalars that define the level of dispersion of the prior density, i.e.
the confidence in the prior beliefs.
The confidence in the investor’s beliefs is usually left as a free parameter

that can be tweaked on a case-by-base basis. Therefore specifying the prior
corresponds to determining the value of the location parameter θ0.

For example, assume that the market consists of equity-like securities.
Therefore, the linear returns are market invariants:

Lt ≡ diag (Pt−τ )
−1Pt − 1, (7.85)

see Section 3.1.1. Assume that the linear returns are normally distributed:

Lt|µ,Σ ∼ N(µ,Σ) . (7.86)

This is the multivariate normal Bayesian model (7.16), where the prior is
determined by the following parameters:

θ0 ≡ (µ0,Σ0) , (7.87)

see (7.23) and (7.25).

In this section we present some techniques to quantify the investor’s ex-
perience, i.e. to define the prior parameters θ0 that determine the prior and
thus the whole Bayesian estimation process.
These techniques rely on the unconstrained allocation function, which is

the unconstrained optimal allocation (6.33) considered as a function of the
parameters θ that determine the distribution of the underlying market invari-
ants:

θ 7→ α (θ) ≡ argmax
α

{Sθ (α)} . (7.88)

To illustrate, we consider the leading example in Section 6.1.
From (7.86) the prices at the investment horizon are normally distributed:

Pµ,ΣT+τ ∼ N(ξ,Φ) , (7.89)

where the parameters ξ and Φ follow from (7.85) and read:

ξ ≡ diag (pT ) (1+ µ) , Φ ≡ diag (pT )Σdiag (pT ) . (7.90)

The lower-case notation pT in the above expressions stresses that the current
prices are realized random variables, i.e. they are known.
The index of satisfaction is the certainty-equivalent (6.21), which after

substituting (7.90) reads:
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CEµ,Σ (α) = α0 diag (pT ) (1+ µ)−
1

2ζ
α0 diag (pT )Σdiag (pT )α. (7.91)

Maximizing this expression, from the first-order conditions we obtain the al-
location function:

(µ,Σ) 7→ α (µ,Σ) = ζ diag (pT )
−1Σ−1 (1+ µ) . (7.92)

7.4.1 Allocation-implied parameters

Here we present in a more general context the approach proposed by Sharpe
(1974) and Black and Litterman (1990), see also Grinold (1996) and He and
Litterman (2002).
Typically, investors have a vague, qualitative idea of a suitable value for

the prior parameters θ0. Nonetheless, they usually have a very precise idea of
what should be considered a suitable portfolio composition α0, which we call
the prior allocation.
By inverting the allocation function (7.88), we can set the prior parameters

θ0 as the parameters implied by the prior allocation α0:

θ0 ≡ θ (α0) . (7.93)

In other words, if the market parameters were θ0, the optimal allocation would
be α0: therefore θ0 is a prior parameter specification consistent with the prior
allocation α0.
In general, the dimension of the market parameters, namely the number S

of entries in the vector θ, is larger than the dimension of the market, namely
the number N of entries in the vector α: therefore the function (7.88) cannot
be inverted. This problem can be overcome by pinning down some of the
parameters by means of some alternative technique.

In our leading example the N -variate allocation function (7.92) is deter-
mined by the S ≡ N (N + 3) /2 free parameters in (µ,Σ). Fixing a value Σ
for the covariance, for instance by means of a shrinkage estimate (4.160), we
obtain the following inverse function:

µ (α) =
1

ζ
Σdiag (pT )α− 1. (7.94)

This function yields the implied expected returns of an allocation. Thus we
can set the prior (7.87) as follows:

µ0 ≡ µ (α0) , Σ0≡Σ. (7.95)
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More in general, we can impose a set of constraints C on the allocation
function (7.88). Indeed, imposing constraints on portfolios leads to better
out-of-sample results, see Frost and Savarino (1988). This way the allocation
function results defined as follows:

θ 7→ α (θ) ≡ argmax
α∈C

{Sθ (α)} . (7.96)

As in (7.93), the implied prior parameters θ0 are obtained by first inverting
this function, possibly fixing some of the parameters with different techniques,
and then evaluating the inverse function in the prior allocation α0.

For instance we can assume a budget constraint:

C1 : α0pT = wT . (7.97)

Also, we can impose that specific portfolios, i.e. linear combinations of secu-
rities, should not exceed given thresholds:

C2 : g ≤Gα ≤ g, (7.98)

where the K × N matrix G determines the specific portfolios and the K-
dimensional vectors g and g determine the upper and lower thresholds re-
spectively.
In Appendix www.7.9 we show that by adding the constraints C1 and C2

in our leading example the inverse function (7.94) is replaced by the following
expression:

α 7→ µ (α) + [diag (pT )]
−1G0 ¡γ − γ¢ . (7.99)

In this expression µ (α) are the expected returns implied by the constraint
(7.97), defined implicitly as follows:

µ (α)− 1
0Σ
−1
µ (α)

10Σ
−1
1

1 =
1

ζ

µ
Σdiag (pT )α−

wT

10Σ
−1
1
1

¶
; (7.100)

and
¡
γ,γ

¢
are the Lagrange multipliers relative to the inequality constraints

(7.98) which satisfy the Kuhn-Tucker conditions:

γ,γ ≥ 0 (7.101)
NX
n=1

γ
k
Gkngn =

NX
n=1

γkGkngn = 0, k = 1, . . . ,K. (7.102)

This is the result of Grinold and Easton (1998), see also Grinold and Kahn
(1999).
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7.4.2 Likelihood maximization

A different approach to quantify the investor’s experience consists in defin-
ing the prior parameters θ0 as a constrained classical maximum likelihood
estimate, where the constraint is imposed in terms of the allocation function,
see Jagannathan and Ma (2003) for the specific case which we outline in the
example below.
Consider the standard maximum likelihood estimator of the market in-

variants (4.66), which in the Bayesian notation (7.13) of this chapter reads:

bθ ≡ argmax
θ∈Θ

fIT |θ (iT |θ) (7.103)

= argmax
θ∈Θ

(
TX
t=1

ln f (xt|θ)
)
,

where the terms xt represent the observed time series of the market invariants.
Now consider a set C of investment constraints, see Frost and Savarino

(1988). By means of the allocation function α (θ) defined in (7.88) we se-
lect a subset in the domain Θ of possible values for the parameter market
parameters: eΘ ≡ {θ ∈ Θ such that α (θ) ∈ C} . (7.104)

In our example (7.91), consider an investor who has no risk propensity,
i.e. such that ζ → 0 in his exponential utility function. Assume there exists a
budget constraint and a no-short-sale constraint:

C1 : α0pT = wT , (7.105)

C2 : α ≥ 0. (7.106)

In Appendix www.7.9 we show that the constrained allocation function gives
rise to the following constraints for the covariance matrix:

eΘ ≡ ©Σ such that Σ º 0,Σ−11 ≥ 0ª , (7.107)

where the notation "º 0" stands for "symmetric and positive".

The prior parameters θ0 can be defined as the maximum likelihood esti-
mate (7.103) of the market parameters constrained to the subset (7.104). In
other words, the prior parameters are defined as follows:

θ0 ≡ argmax
θ∈ eΘ fIT |θ (iT |θ) (7.108)

= argmax
θ∈ eΘ

(
TX
t=1

ln f (xt|θ)
)
.
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From the log-likelihood under the normal hypothesis (7.86) in terms of the
inverse of the covariance Ω ≡ Σ−1 and the constraints (7.107) we obtain:

Ω0 = argmax
Ωº0
Ω1≥0

(
T

2

TX
t=1

ln |Ω|− T

2

TX
t=1

tr
hbΣΩi) , (7.109)

where bΣ is the sample covariance (7.18). In turn, this expression defines the
prior Σ0 ≡ Ω−10 in (7.87).
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