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Optimizing allocations

The classical approach to allocation optimization discussed in the second part
of the book assumes that the distribution of the market is known. The sample-
based allocation, discussed in the previous chapter, is a two-step process: first
the market distribution is estimated and then the estimate is inputted in
the classical allocation optimization problem. Since this process leverages the
estimation error, portfolio managers, traders and professional investors in a
broader sense mistrust these two-step "optimal" approaches and prefer to
resort to ad-hoc recipes, or trust their prior knowledge/experience.
In this chapter we discuss allocation strategies that account for estimation

risk within the allocation decision process. These strategies must be optimal
according to the evaluation criteria introduced in the previous chapter: in
other words, the overall opportunity cost of these strategies must be as low
as possible.
The main reasons why estimation risk plays such an important role in

financial applications is the extreme sensitivity of the optimal allocation func-
tion to the unknown parameters that determine the distribution of the mar-
ket. In Section 9.1 we use the Bayesian approach to estimation to limit this
sensitivity. We present Bayesian allocations in terms of the predictive distri-
bution of the market, as well as the classical-equivalent Bayesian allocation,
which relies on Bayes-Stein shrinkage estimators of the market parameters.
The Bayesian approach provides a mechanism that mixes the positive features
of the prior allocation and the sample-based allocation: the estimate of the
market is shrunk towards the investor’s prior in a self-adjusting way and the
overall opportunity cost is reduced.
In Section 9.2 we present the Black-Litterman approach to control the

extreme sensitivity of the optimal allocation function to the unknown market
parameters. Like the Bayesian approach, the Black-Litterman methodology
makes use of Bayes’ rule. In this case the market is directly shrunk towards the
investor’s prior views, rather than indirectly through the market parameters.
We present the theory in a general context, performing the computations
explicitly in the case of normally distributed markets. Then we apply those
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418 9 Optimizing allocations

results to the mean-variance framework. Finally we propose a methodology
to assess and tweak the investor’s prior views.
In Section 9.3 we present Michaud’s resampling technique. The rationale

behind this approach consists in limiting the extreme sensitivity of the opti-
mal allocation function to the market parameters by averaging several sample-
based allocations in different scenarios. After presenting the resampled allo-
cation in both the mean-variance and in a more general setting, we discuss
the advantages and the limitations of this technique.
In Section 9.4 we discuss robust allocation decisions. Rather than trying

to limit the sensitivity of the optimal allocation function, the robust approach
aims at determining the "best" allocation in the presence of estimation risk,
according to the evaluation criteria discussed in Chapter 8. In other words,
robust allocations minimize the opportunity cost over a reasonable set of po-
tential markets. The conceptually intuitive robust approach is hard to imple-
ment in the general case. Therefore, we resort to the two-step mean-variance
framework: under suitable assumptions for the investment constraints the op-
timal allocations solve a second-order cone programming problem: as a result,
the optimal allocations can be efficiently determined numerically.
In Section 9.5 we blend the optimality properties of the robust approach

with the smoothness and self-adjusting nature of the Bayesian approach. In-
deed, the robust approach presents only two disadvantages: the possible mar-
kets considered in the robust optimization are defined quite arbitrarily and the
investor’s prior views are not taken into account. By means of the Bayesian
posterior we can select naturally a notable set of markets and smoothly blend
the investor’s experience with the information from the market. We present
first the robust Bayesian method in a general context, showing how this ap-
proach includes the previous allocation strategies as limit cases. Then we apply
the general theory to the two-step mean-variance framework, discussing the
self-adjusting mechanism of robust Bayesian allocations strategies.

9.1 Bayesian allocation

Consider the optimal allocation function (8.30), which for each value of the
market parameters θ maximizes the investor’s satisfaction given his invest-
ment constraints:

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} . (9.1)

Since the true value θt of the market parameters is not known, the truly opti-
mal allocation cannot be implemented. Furthermore, as discussed in Chapter
8, the allocation function (9.1) is extremely sensitive to the input parameters
θ: a slightly wrong input can give rise to a very large opportunity cost.
In this section we use the Bayesian approach to parameter estimation to

define allocation decisions whose opportunity cost is not as large.
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9.1 Bayesian allocation 419

9.1.1 Utility maximization

Expected utility has been historically the first and most prominent approach
to model the investor’s preferences. Therefore Bayesian theory was first ap-
plied to allocation problems in the context of expected utility maximization,
see Zellner and Chetty (1965), and Bawa, Brown, and Klein (1979).
We recall from Section 5.4 that in the expected utility framework the

investor’s index of satisfaction is modeled by the certainty-equivalent ensuing
from an increasing utility function u:

S (α) ≡ u−1 (E {u (Ψα )}) . (9.2)

In this expression the investor’s objective Ψ , namely absolute wealth, relative
wealth, net profits, or other specifications, is a linear function of the allocation
and the market vector: Ψ ≡ α0M. The market vector M is a simple affine
function of the market prices at the investment horizon: its distribution can
be represented in terms of a probability density function fθ (m) which is fully
determined by a set of market parameters θ.
Due to (5.99), in this context the optimal allocation function (9.1) can be

expressed equivalently as follows:

α (θ) ≡ argmax
α∈Cθ

©
E
©
u
¡
Ψθ
α

¢ªª
(9.3)

= argmax
α∈Cθ

½Z
u (α0m) fθ (m) dm

¾
.

Consider an investor with exponential utility function. His expected utility
reads:

E
©
u
¡
Ψθ
α

¢ª
= −E

n
e−

1
ζα

0M
o

(9.4)

= −
Z

e−
1
ζα

0mfθ (m) dm ≡ −φθ
µ
i

ζ
α

¶
,

where φθ denotes the characteristic function of the market vector. Assume that
the market is normally distributed. From (2.157) the characteristic function
reads:

φξ,Φ (x) = eiξ
0x− 1

2x
0Φx. (9.5)

Then the allocation optimization (9.3) becomes:

α (ξ,Φ) ≡ argmax
α∈Cξ ,Φ

n
−e− 1

ζ (ξ
0α− 1

2ζα
0Φα)

o
. (9.6)

This problem is clearly equivalent to the maximization of the certainty equiv-
alent (8.4).

The optimal allocation function (9.3) is extremely sensitive to the unknown
market parameters θ.
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420 9 Optimizing allocations

On the other hand, in the Bayesian framework the unknown parameters θ
are a random variable whose possible outcomes are described by the posterior
probability density function fpo (θ). Assume that the investment constraints
in the allocation function (9.3) do not depend on the unknown parameters θ.
In order to smoothen the sensitivity of the allocation function to the parame-
ters it is quite natural to consider the weighted average of the argument of the
optimization (9.3) over all the possible outcomes of the market parameters:

α ≡ argmax
α∈C

½Z
E
©
u
¡
Ψθ
α

¢ª
fpo (θ) dθ

¾
. (9.7)

The posterior distribution of the parameters depends on both the informa-
tion on the market iT and the investor’s experience eC , see (7.15). Consider
the predictive distribution of the market, which is defined in terms of the
posterior distribution of the parameters as follows:

fprd (m; iT , eC) ≡
Z

fθ (m) fpo (θ; iT , eC) dθ. (9.8)

This expression is indeed a probability density function, i.e. it satisfies (2.5)
and (2.6). Like the posterior distribution of the parameters, also the predictive
distribution of the market depends on both information and experience: it
describes the statistical features of the market vectorM, keeping into account
that the value of θ is not known with certainty, i.e., accounting for estimation
risk.
Using the definition of the predictive density in the average allocation

(9.7) and exchanging the order of integration it is immediate to check that
the average allocation can be written as follows:

αB [iT , eC ] = argmax
α∈C

½Z
u (α0m) fprd (m; iT , eC) dm

¾
(9.9)

≡ argmax
α∈C

©
E
©
u
¡
Ψ iT ,eC
α

¢ªª
.

This is the Bayesian allocation decision, which maximizes the expected utility
of the investor’ objective, where the expectation is computed according to the
predictive distribution of the market. In other words, the Bayesian allocation
decision is the standard Von Neumann-Morgenstern optimal allocation where
instead of the unknown market distribution we use its predictive distribution.
Since the predictive distribution accounts for estimation risk and includes

the investor’s experience, so does the Bayesian allocation decision.

Assume that in our example (9.5) the covariance Φ is known, and that the
posterior distribution of the expected value is normal:

ξ ∼ N
µ
ξ1 [iT , eC ] ,

Φ

T1

¶
. (9.10)
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9.1 Bayesian allocation 421

When Φ is known, this specification is consistent with the posterior (7.32).
We show in Appendix www.9.7 that the predictive distribution of the

normal market (9.5) with the normal posterior for the parameters (9.10) is
also normal:

φprd (x; iT , eC) = eix
0ξ1[iT ,eC ]− 1

2x
0 1+T1

T1
Φx. (9.11)

Therefore, from (9.4) the Bayesian allocation decision reads:

αB ≡ argmax
α∈C

½
−e−

1
ζ

³
α 0ξ1− 1+T1

2ζT1
α 0Φα

´¾
. (9.12)

Allocation decisions based on the predictive distribution continue to find
applications in finance, see for instance Jorion (1986). See also Pastor (2000)
and Pastor and Stambaugh (2002) for applications based on explicit factor
models.

9.1.2 Classical-equivalent maximization

Consider the more general case where the investment constraints in the op-
timal allocation function (9.1) depend on the unknown parameters θ, or the
investor’s satisfaction cannot be modeled by the certainty-equivalent. Then
the Bayesian allocation (9.9) is not a viable option.
To generalize the Bayesian approach to this context, instead of averaging

the distribution of the market by means of the predictive distribution (9.8)
we average the distribution of the market parameters that feed the optimal
allocation function. In other words, we replace the true unknown market para-
meters in (9.1) with a classical-equivalent estimator bθce, such as the expected
value of the posterior distribution (7.5) or the mode of the posterior distri-
bution (7.6). This way we obtain the classical-equivalent Bayesian allocation
decision:

αce [iT , eC ] ≡ α
³bθce [iT , eC ]´ (9.13)

≡ argmax
α∈Cbθ ce[iT ,eC ]

n
Sbθce[iT ,eC ] (α)

o
.

This allocation decision depends through the classical-equivalent estimate on
both the market information available iT and the investor’s experience eC .

Consider the leading example (8.18), where we assumed that the mar-
ket consists of equity-like securities for which the linear returns are market
invariants:

Lt ≡ diag (Pt−τ )
−1Pt − 1. (9.14)

We assume as in (8.19) that the linear returns are normally distributed:
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422 9 Optimizing allocations

Lt|µ,Σ ∼ N(µ,Σ) . (9.15)

This is the multivariate normal Bayesian model (7.16).
The available information on the market is represented by the time series

of the past linear returns, see (8.41). As in (7.19) this information can be
summarized by the sample mean of the observed linear returns (8.79), their
sample covariance (8.80) and the length of the time series:

iT ≡
nbµ, bΣ;To . (9.16)

As in (7.27) the investor’s experience is summarized by the following parame-
ters:

eC ≡ {µ0,Σ0;T0, ν0} . (9.17)

As in (7.20)-(7.21) the investor’s experience is modeled as a normal-inverse-
Wishart distribution:

µ|Σ ∼ N
µ
µ0,
Σ

T0

¶
, Σ−1 ∼W

µ
ν0,
Σ−10
ν0

¶
. (9.18)

The classical-equivalent estimators of µ and Σ are (7.35) and (7.38), which
we report here:

bµce (iT , eC) = T0µ0 + T bµ
T0 + T

, (9.19)

bΣce (iT , eC) = 1

ν0 + T +N + 1

h
ν0Σ0 + T bΣ . (9.20)

+
(µ0 − bµ) (µ0 − bµ)0

1
T +

1
T0

#
.

In our leading example the optimal allocation function is (8.32). Substi-
tuting the classical-equivalent estimators into the functional expression of the
optimal allocation function we obtain the classical-equivalent Bayesian allo-
cation:

αce ≡ [diag (pT )]−1 bΣ−1ce
Ã
ζbµce + wT − ζ10 bΣ−1ce bµce

10 bΣ−1ce 1 1

!
. (9.21)

9.1.3 Evaluation

To evaluate the classical-equivalent Bayesian allocation we proceed as in Chap-
ter 8, computing the distribution of the opportunity cost as the underlying
market parameters θ vary in a suitable stress test range Θ, which in this case
is naturally defined as the domain of the posterior distribution.
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9.1 Bayesian allocation 423

Therefore, for each value θ of the market parameters in the domain Θ of
the posterior distribution we compute the optimal allocation function α (θ) as
defined in (9.1). Then we compute as in (8.31) the optimal level of satisfaction
if θ are the underlying market parameters, namely S (θ).

In our leading example the optimal allocation function is (8.32) and the
respective optimal level of satisfaction is (8.33).

Next, for each value θ of the market parameters in the stress test set Θ
we randomize as in (8.48) the information from the market iT , generating a
distribution of information scenarios IθT that depends on the assumption θ on
the market parameters. This way the classical-equivalent estimator becomes
a random variable: bθce [iT , eC ] 7→ bθce £IθT , eC¤ . (9.22)

We stress that the distribution of this random variable is determined by the
underlying assumption θ on market parameters.

In our example, we replace iT , i.e. the specific observations of the past
linear returns, with a set Iµ,ΣT of T independent and identically distributed
variables (9.15). This way the sample mean and the sample covariance become
random variables distributed according to (8.85) and (8.86) respectively. As
a result, the classical-equivalent estimators (9.19) and (9.20) become random
variables, whose distribution can be simulated by a large number J of Monte
Carlo scenarios as in (8.88):

jbµµ,Σce , j
bΣµ,Σce , j = 1, . . . , J . (9.23)

Notice that this distribution depends on the assumption (µ,Σ) on the market
parameters.

In turn, the classical-equivalent Bayesian allocation decision (9.13) yields
a random variable whose distribution depends on the underlying market pa-
rameters:

αce
£
IθT , eC

¤
≡ α

³bθce £IθT , eC¤´ . (9.24)

In our example we substitute (9.23) in (9.21), obtaining J allocations
jα

µ,Σ
ce .

Next we compute as in (8.23) the satisfaction Sθ
¡
αce

£
IθT , eC

¤¢
ensuing

from each scenario of the classical-equivalent Bayesian allocation decision
(9.24) under the assumption θ for the market parameters, which, we recall,
is a random variable. Similarly, from (8.26) and expressions such as (8.35)
we compute the cost of the classical-equivalent Bayesian allocation decision
violating the constraints C+θ

¡
αce

£
IθT , eC

¤¢
in each scenario, which is also a

random variable.
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In our example we proceed as in (8.90)-(8.91).

satisfaction

opportunity cost

Θ

Θ

Θ

( ),T CI e  
θ

θ ceαS

( ),T CI e  
+ θ
θ ceαC

( )OC ,T CI e  
θ

θ ceα prior

cost of constraints violation

( )S θ

Fig. 9.1. Bayesian classical-equivalent allocation: evaluation

Then we compute the opportunity cost (8.53) of the classical-equivalent
Bayesian allocation under the assumption θ for the market parameters, which
is the difference between the satisfaction from the unattainable optimal allo-
cation and the satisfaction from the classical-equivalent Bayesian allocation,
plus the cost of the classical-equivalent Bayesian allocation violating the con-
straints:

OCθ
¡
αce

£
IθT , eC

¤¢
≡ S (θ)− Sθ

¡
αce

£
IθT , eC

¤¢
(9.25)

+C+θ
¡
αce

£
IθT , eC

¤¢
.

Finally, as in (8.57) we let the market parameters θ vary in the stress test
range Θ, analyzing the opportunity cost of the classical-equivalent Bayesian
allocation as a function of the underlying market parameters:

θ 7→ OCθ
¡
αce

£
IθT , eC

¤¢
. (9.26)

If the distribution of the opportunity cost (9.26) is tightly peaked around
a positive value very close to zero for all the markets θ in the stress test range
Θ, in particular it is close to zero in all the scenarios in correspondence of
the true, yet unknown, value θt. In this case the classical-equivalent Bayesian
allocation decision is guaranteed to perform well and is close to optimal.
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9.1 Bayesian allocation 425

In our example we proceed as in (8.94)-(8.97), see Figure 9.1 and compare
with Figure 8.4. Refer to symmys.com for more details on these plots.

9.1.4 Discussion

As discussed in Section 7.1.2, due to (7.4) the classical-equivalent estima-
tor is a shrinkage estimator of the market parameters. Indeed it is a Bayes-
Stein shrinkage estimator, where the shrinkage target is represented by the
investor’s prior experience θ0. When the information available in the market
is much larger than the investor’s confidence in his experience, i.e. T À C,
the classical-equivalent estimator converges to the sample estimate bθ. On the
other hand, when the investor’s confidence in his experience is much larger
than the information from the market, i.e. C À T , the classical-equivalent
estimator shrinks to the prior θ0.
Therefore, when T À C, the classical-equivalent Bayesian allocation (9.13)

tends to the sample-based allocation (8.81). On the other hand, when C À T ,
the classical-equivalent Bayesian allocation tends to the prior allocation (8.64)
which is fully determined by the prior parameters inputted by the investor
and completely disregards the information from the market.
In the general case, the classical-equivalent Bayesian allocation is a blend

of the sample-based allocation and the allocation determined by the prior. In
other words, the classical-equivalent Bayesian allocation strategy can be inter-
preted as a "shrinkage" of the sample-based allocation towards the investor’s
prior/experience, where the amount of shrinkage is adjusted naturally by the
relation between the amount information T and the confidence level C.
We recall from (8.53) that the opportunity cost of an allocation decision

can be interpreted as the loss of an estimator. The same way as shrinkage
estimators are a little more biased but less inefficient than sample estimators
and thus display a lower error, so classical-equivalent Bayesian allocations
generate opportunity costs that are less scattered than in the case of the
sample-based strategy, at least for those values of the market parameters
close to the prior assumption.

We see this in Figure 9.1, which refers to the classical-equivalent Bayesian
allocation (9.21). Compare this figure with the evaluation of the prior alloca-
tion in Figure 8.3 and with the evaluation of the sample-based allocation in
Figure 8.4.
The market parameters vary as in (8.58)-(8.59), i.e. the market is deter-

mined by the overall level of correlation. We plot the distribution of the prior
overall correlation as implied by (9.18), which we compute by means of sim-
ulations.
Since the Bayesian estimate includes the investor’s experience, the

classical-equivalent Bayesian allocation automatically yields better results
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426 9 Optimizing allocations

when the stress test (9.26) is run in the neighborhood of the prior assumptions
on the market parameters, although coincidentally the cost of constraints vi-
olation is larger in the same region.

9.2 Black-Litterman allocation

Consider the optimal allocation function (8.30), which for each value of the
market parameters θ maximizes the investor’s satisfaction given his invest-
ment constraints:

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} . (9.27)

Since the true value θt of the market parameters is not known, the truly opti-
mal allocation cannot be implemented. Furthermore, as discussed in Chapter
8, the allocation function (9.66) is extremely sensitive to the input parameters
θ: a slightly wrong input can give rise to a very large opportunity cost.

Like the Bayesian approach, the approach to asset allocation of Black
and Litterman (1990) applies Bayes’ rule to limit the sensitivity of the op-
timal allocation function to the input parameters. Nevertheless, the Black-
Litterman framework differs from the classical-equivalent approach in that in
the classical-equivalent approach the estimates of the market parameters are
shrunk toward the investor’s prior, whereas in the Black-Litterman approach
it is the market distribution that is shrunk toward the investor’s prior1.

We present first the theory for the general case, where the market is de-
scribed by a generic distribution and the investor can express views on any
function of the market. Then we detail the computations that lead to the
Black-Litterman allocation decision for the case where the investor expresses
views on linear combinations of a normally distributed market.

9.2.1 General definition

Consider a market represented by the multivariate random variable X. This
could be the set of market invariants, or directly the set of market prices at
the investment horizon, or any other variable that directly or indirectly fully
determines the market.

Assume that it is possible to determine the distribution of this random
variable, as represented for instance by the probability density function fX,
by means of a reliable model/estimation technique. We call this the ”official”
distribution of the market. For instance, we could estimate this distribution
by one of the techniques discussed in Chapter 4, or by means of general equi-
librium arguments.
1 The interpretation in terms of shrinkage of market parameters is also possible,

see He and Litterman (2002).
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Consider for example the case where the market X is represented by the
daily return on the S&P 500 index, and suppose that X is normally distrib-
uted:

X ∼ N
¡
µ, σ2

¢
. (9.28)

We represent this distribution on the horizontal axis in Figure 9.2.

The distribution fX is affected by estimation risk. To smoothen the effect of
estimation risk, the statistician asks the investor’s opinion on the market. The
opinion is the investor’s view on the outcome of the market X. The investor’s
opinion is not a one-shot statement: the investor must be an expert, must
have built a track-record and will be asked an opinion on a regular basis.
When asked by the statistician, the investor assesses that the outcome of

the market is V, a random variable that, possibly depending on the market
scenario, is larger or smaller than the value X predicted by the "official"
model. In other words, when the variable X assumes a specific value x, the
investor believes that the real outcome differs from x by a random amount.
Therefore, the view V is a perturbation of the "official" outcome, and as such
it is expressed as a conditional distribution V|x. The choice of the model for
this conditional distribution, as represented for instance by the probability
density function fV|x, reflects the statistician’s confidence in the investor.

low confidencehigh confidence

view

market

≡V v
view
≡V v

Xmarket X

before view
after view

Fig. 9.2. Black-Litterman approach to market estimation

For example, the investor’s opinion on the return of the S&P 500 index
could be modeled as a normal perturbation to the "official" distribution:
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V |x ∼ N
¡
x, φ2

¢
. (9.29)

If the statistician considers the investor unreliable, i.e. if he assumes that
the investor’s view will significantly depart from the "official" distribution
(9.28) on a regular basis, he will choose a large value for the conditional stan-
dard deviation φ of the view. Viceversa, if the statistician trusts the investor
he will model the view with a low value of φ.
In Figure 9.2 we see that when the confidence is high, the investor’s state-

ment is very close to the "official" distribution (a tight clouds of points).
Viceversa, when the confidence is low, the cloud is very scattered.

More in general, the investor’s opinion might regard a specific area of
expertise of the market. In other words, instead of regarding directly the
market X, the view refers to a generic multivariate function g (X) on the
market. Therefore the conditional model for the view becomes of the form
V|x ≡ V|g (x) and is represented for instance by the respective conditional
probability density function fV|g(x).
Once the model has been set up, the statistician will ask the investor’s

opinion. The investor will produce a specific number v, namely his prediction
on V.
At this point the statistician processes the above inputs and computes

the distribution of the market conditioned on the investor’s opinion X|v. The
representation of this distribution in terms of its probability density function
follows from Bayes’ rule (2.43), which in this context reads:

fX|v (x|v) =
fV|g(x) (v|x) fX (x)R
fV|g(x) (v|x) fX (x) dx

. (9.30)

In our example the distribution of the market conditioned on the investor’s
view is normal:

X|v ∼ N
³eµ ¡v, φ2¢ , eσ2 ¡φ2¢´ . (9.31)

This is a specific instance of the result (9.44), which we discuss below in a
more general context. The parameters (eµ, eσ) depend on the view v and the
confidence in the view φ2.
We see in Figure 9.2 that when the confidence is high the view has a large

impact on the new distribution, which shrinks substantially towards the in-
vestor’s statement. Indeed, when the cloud representing the joint distribution
is tight, knowledge of one coordinate (the view) almost completely determines
the other (the market). When the confidence is low, the market distribution
is almost unaffected by the investor’s statement.

To summarize, in order to include the investor’s view in the "official"
market model, we proceed as follows: we start from the "official" distribution
of the market fX; then we determine the investor’s area of expertise, i.e. a
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function g of the market; then we specify a model fV|g(x) for the conditional
distribution of the investor’s view given the market; then we record the in-
vestor’s input, i.e. the specific value v of his view; finally we compute the
conditional distribution (9.30) of the market given the investor’s view.
At this point we can define the Black-Litterman allocation decision as the

optimal allocation function (9.27) computed using the market (9.30) deter-
mined by the view:

αBL [v] ≡ argmax
α∈Cv

{Sv (α)} . (9.32)

Unlike in the other allocation strategies discussed in this chapter, the depen-
dence of the Black-Litterman allocation on the contingent realization of the
information iT is not explicit.

Suppose that the market consists of the S&P500, whose return is X, and
a risk-free security with null return. Assume that the investor has a budget
wT . Then an allocation is fully determined by the relative weight ω ≡ α/wT

of the investment α in the risky security.
Assume that the investor’s objective is final wealth, that his index of sat-

isfaction is the expected value, and that he is bound by the no-short sale
constraint. Then the Black-Litterman allocation reads:

ωBL [v] ≡ argmax
0≤ω≤1

{ωeµ} , (9.33)

where eµ is the expected value in (9.31).
9.2.2 Practicable definition: linear expertise on normal markets

Black and Litterman (1990) compute and discuss the analytical solution to
(9.30) in a specific, yet quite general, case, see also Black and Litterman
(1992).
First of all, the "official" model for the N -dimensional market vector X is

assumed normal1:
X ∼ N(µ,Σ) . (9.34)

To illustrate, we consider an institution that adopts the RiskMetrics model
to optimize the allocation of an international fund that invests in the following
six stock indices: Italy, Spain, Switzerland, Canada, US and Germany. In this
case the market are the daily compounded returns:

C ∼ N(µ,Σ) . (9.35)

Notice that this corresponds to the standard distributional assumption in
Black and Scholes (1973).

1 In the original paper the market is represented by the linear returns on a set of
securities and the parameters (µ,Σ) satisfy a general equilibrium model.
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The expected value of the daily returns is assumed zero:

µ ≡ (0, 0, 0, 0, 0, 0)0 . (9.36)

The covariance matrix of the daily returns on the above asset classes is esti-
mated by exponential smoothing of the observed daily returns and is made
publicly available by RiskMetrics. The matrix in our example was estimated
in August 1999. Its decomposition in terms of standard deviations and corre-
lations reads respectively:p

diag (Σ) ≡ 0.01× (1.34, 1.52, 1.53, 1.55, 1.82, 1.97)0 (9.37)

and (we report only the non-trivial elements)

Cor {C} =


· 54% 62% 25% 41% 59%
· · 69% 29% 36% 83%
· · · 15% 46% 65%
· · · · 47% 39%
· · · · · 38%
· · · · · ·

 . (9.38)

Second, the investor’s area of expertise is a linear function of the market:

g (x) ≡ Px, (9.39)

where P is the "pick" matrix: each of its K rows is an N -dimensional vector
that corresponds to one view and selects the linear combination of the market
involved in that view.
The specification (9.39) is very flexible, in that the investor does not nec-

essarily need to express views on all the market variables. Furthermore, views
do not necessarily need to be expressed in absolute terms for each market
variable considered, as any linear combination of the market constitutes a
potential view.

A fund manager might assess absolute views on three markets: the Spanish,
the Canadian and the German index. Therefore, the "pick" matrix reads:

P ≡

0 1 0 0 0 00 0 0 1 0 0
0 0 0 0 0 1

 . (9.40)

Notice from (9.38) that the Spanish and the German markets are highly cor-
related (83%) and that the Canadian index is relatively independent of the
other markets.

Third, the conditional distribution of the investor’s views given the out-
come of the market is assumed normal:
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V|Px ∼ N(Px,Ω) , (9.41)

where the symmetric and positive matrix Ω denotes the statistician’s confi-
dence in the investor’s opinion.
A particularly convenient choice for the uncertainty matrix is

Ω ≡
µ
1

c
− 1
¶
PΣP0, (9.42)

where c is a positive scalar. This corresponds to an "empirical Bayesian" ap-
proach: the statistician gives relatively speaking more leeway to the investor’s
assessment on those combinations that are more volatile according to the of-
ficial market model (9.34). The scalar c tweaks the absolute confidence in the
investor’s skills, see Figure 9.2. The case c→ 0 gives rise to an infinitely dis-
perse distribution of the views: this means that the investor’s views have no
impact, i.e. the investor is not trusted. The case c → 1 gives rise to an infi-
nitely peaked distribution of the views: this means that the investor is trusted
completely over the official market model. The case c ≡ 1/2 corresponds to the
situation where the investor is trusted as much as the official market model.

In our example we define Ω as in (9.42), where we set c ≡ 1/2.

Fourth, the investor is asked his opinion on his area of expertise. This will
turn into a specific value v of the views V.

The fund manager assesses that the Spanish index will remain unvaried,
the Canadian stock index will score a negative return of 2% and the German
index will experience a positive change of 2%. Therefore the views read:

v ≡ 0.01× (0,−2, 2)0 . (9.43)

By means of Bayes’ rule (9.30) it is possible to compute the distribution of
the market conditioned on the investor’s views. We show in Appendix www.9.3
that the Black-Litterman distribution is normal:

X|v ∼ N(µBL,ΣBL) , (9.44)

where the expected values read:

µBL (v,Ω) ≡ µ+ΣP0
¡
PΣP0 +Ω

¢−1
(v−Pµ) ; (9.45)

and the covariance matrix reads:

ΣBL (Ω) ≡ Σ−ΣP0
¡
PΣP0 +Ω

¢−1
PΣ. (9.46)

Notice that the expression of the covariance is not affected by the value of the
views v. This is a peculiarity of the normal setting.
The expression of the Black-Litterman market distribution can be used to

determine the optimal asset allocation that includes the investor’s views.
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In our example we consider an investor who has an initial budget wT , and
who is subject to the full-investment and the no-short-sale constraints:

C : α0pT = wT , α ≥ 0. (9.47)

Furthermore, we assume that the investor’s objective is final wealth:

Ψα ≡ α0PT+τ . (9.48)

In order to determine the optimal allocation we consider the two-step
mean-variance framework. First we compute the efficient frontier(6.74), which
in this context reads:

α (v) ≡ argmax
α

α0 E {PT+τ} (9.49)

subject to

α0pT = wT

α ≥ 0
α0Cov {PT+τ}α = v.

To compute the market inputs, namely E {PT+τ} and Cov {PT+τ}, we need
the characteristic function (2.157) of the Black-Litterman distribution (9.44)
of the compounded returns:

φC (ω) = eiµ
0
BLω− 1

2ω
0ΣBLω . (9.50)

Dropping "BL" from the notation, from (3.95) the expected values of the
prices read:

E
n
P
(n)
T+τ

o
= P

(n)
T φC

³
−iδ(n)

´
(9.51)

= P
(n)
T e(µn+

Σnn
2 ).

Similarly, from (3.96) we obtain the covariance matrix of the market:

Cov
n
P
(m)
T+τ , P

(n)
T+τ

o
= P

(m)
T P

(n)
T φC

³
−iδ(m) − iδ(n)

´
−E

n
P
(m)
T+τ

o
E
n
P
(n)
T+τ

o
(9.52)

= P
(m)
T P

(n)
T e(µm+µn)e

1
2 (Σmm+Σnn)

¡
eΣmn − 1

¢
.

Formulas (9.51) and (9.52) yield the inputs of the mean-variance opti-
mization as functions of the Black-Litterman parameters (9.45) and (9.46).
Substituting these expressions in (9.49) we obtain for any level of variance v
the respective efficient allocation that includes the investor’s views, see Figure
9.4. In a second stage the investor chooses the efficient portfolio that best suits
his profile, as in Figure 6.23.
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9.2.3 Evaluation

The Black-Litterman approach can, but does not need to, rely on the contin-
gent historical information iT available when the investment decision is made.
Indeed, this approach blends two models for the market, namely the investor’s
and the official models: these models can be based on historical information,
or they can rely on prior information, or other rationales, such as general equi-
librium arguments, etc. Therefore we cannot apply the approach discussed in
Section 8.1 to the evaluation of the Black-Litterman allocation.
On the other hand, the expected value µBL tilted by the views v according

to the Black-Litterman formula (9.45) might be in strong contrast with the
value µ that appears in the official market model (9.34). In this section we
discuss a technique to measure this difference and tweak the most extreme
views accordingly, see also Fusai and Meucci (2003). Notice that we only need
to consider the tilted expected values, since the explicit value of the views v
does not enter the expression for the covariance matrix (9.46).
First we recall the definition (1.35) of z-score, widely used by practitioners:

the distance of a suspicious value x of the random variableX from the accepted
expected value µ divided by the standard deviation σ of X. In a multivariate
environment the z-score becomes the Mahalanobis distance (2.61).
Under the normal hypothesis (9.34) for the official market model, the

square Mahalanobis distance of the market X from its expected value µ
through the metric induced by its covariance Σ is distributed as a chi-square
with N degrees of freedom:

M2 ≡ (X− µ)0Σ−1 (X− µ) ∼ χ2N , (9.53)

see Appendix www.7.1.
In our context the "suspicious" value is the Black-Litterman vector of

expected values µBL. If we consider µBL as a realization of the random vari-
able X, we can compute the respective realization of the square Mahalanobis
distance accordingly:

m2
v ≡ (µBL (v)− µ)

0Σ−1 (µBL (v)− µ) . (9.54)

Intuitively, if the square distance m2
v is small, the views are not too far from

the market model and the consistence of the Black-Litterman expectations
with the market model is high. In turn, the realization m2

v of the random
variable M2 can be considered small if M2 is likely to be larger than m2

v.
Therefore, we define the index of consistence C (v) of the Black-Litterman

expectations with the market model as the probability that the random vari-
able M2 is larger than the realization m2

v:

C (v) ≡ P
¡
M2 ≥ m2

v

¢
= 1− FGaN,1

¡
m2
v

¢
. (9.55)

In this expression FGaN,1 represents the cumulative density function of the chi-
square distribution with N degrees of freedom, which is a special case of the
gamma cumulative density function (1.111).
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In the extreme case where the realizationm2
v is zero, i.e. when µBL coincide

with the model value µ, the random variable M2 is certainly larger than the
realized value and thus the consistence of the Black-Litterman expectations
with the market model is total, i.e. one. As the realized valuem2

v increases, i.e.
as µBL drifts apart from the model value µ, the random variableM

2 becomes
less and less likely to be larger than the observed value and the consistence of
the Black-Litterman expectations with the market model decreases.
We remark that the consistence C of the Black-Litterman expectations

with the market model plays a dual role with the statistician’s confidence c
in the investor that appears in (9.42). Indeed, when the confidence c in the
investor is zero, the views are ignored and the Black-Litterman distribution
becomes the market distribution. Therefore the Mahalanobis distance of the
Black-Litterman model from the official market model becomes null and the
consistence C (v) of the Black-Litterman expectations with the market model
is total. As the confidence c in the investor increases, so does the Mahalanobis
distance of the Black-Litterman model from the official market model and
thus the consistence C of the Black-Litterman expectations with the market
decreases.
When the overall consistence (9.55) is below an agreed threshold, often

a slight shift in only one of the views suffices to boost the consistence level.
Therefore, another natural problem is how to detect the "boldest" views, and
how to fix them accordingly. To solve this problem, we compute the sensitivity
of the consistence index to the views. From the chain rule of calculus, this
sensitivity reads:

∂C (v)

∂v
=

dC

dm2

∂m2

∂µBL

∂µBL
∂v

(9.56)

= −2fGaN ;1

¡
m2
v

¢ ¡
PΣP0 +Ω

¢−1
P (µBL − µ) .

In this expression fGaN ;1 is the probability density function of the chi-square
distribution with N degrees of freedom, which is a special case of the gamma
probability density function (1.110).
In order to tweak the views, the investor simply needs to compute (9.56)

and find the entry with the largest absolute value. If that entry is positive
(negative), the respective view must be increased (decreased) slightly.

To illustrate, we apply this recipe to our example. We start with the views
(9.43), which we report here:

v ≡ 0.01× (0,−2, 2)0 . (9.57)

The consistence index (9.55) and the consistence sensitivities (9.56) read re-
spectively:

C = 93.8%,
∂C

∂v
= (8.1, 5.6,−9.0)0 . (9.58)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



9.2 Black-Litterman allocation 435

0.92

0.94

0.96

0.98

1

0

0.5

1

1.5

2

-2

-1

0

1

2

Mahalanobis
distance (rhs)

views 
consistence (lhs)

Canada

Germany

progressive adjustments
vi

ew
s

Fig. 9.3. Black-Litterman approach: views assessment

The consistence index is relatively insensitive to the second view on Canada,
although it is of the same magnitude as the third view on Germany, namely 200
basis points. On the other hand the first view on Spain, which is apparently
innocuous, has a larger effect on the consistence index: this is not unexpected,
since the second view refers to a relatively independent market, whereas the
first and third views state contrasting opinions on highly correlated markets,
see (9.38).
Suppose that a consistence of at least 95% is required. To reach this level

one should fine-tune, and actually decrease, the third view on the German
index. It turns out that a 20 basis point shift, that changes (9.57) as follows

v = 0.01× (0,−2, 1.8)0 , (9.59)

brings the overall consistence above the desired level:

C = 95.4%. (9.60)

In Figure 9.3 we see the effect on the consistence index of progressively
reducing the boldness of the views: in the lower plot we display different
views on the performance of Canada and Germany starting from the initial
views +2% and -2% respectively; in the upper plot of the figure we report the
progressively increasing consistence index (9.55) corresponding to less and
less extreme views, along with the respective progressively decreasing square
Mahalanobis distance (9.54) between the Black-Litterman expectations and
the market expectations.
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9.2.4 Discussion

The Black-Litterman approach might at first seem a little cumbersome. Why
model the views as random variables conditioned on the market, when we
could model them as deterministic functions of the market? In other words,
instead of (9.41) we could more easily define the views as a function of the
marketV ≡ PX, and take the investor’s input as a specific value v on which to
condition the distribution of the market. This amounts to computing directly
the conditional distribution of the market X|PX ≡ v.
As we show in Appendix www.9.4 the conditional distribution of the mar-

ket is normal:
X|PX ≡ v ∼ N(µC ,ΣC) , (9.61)

where the conditional expected values read:

µC ≡ µ+ΣP0
¡
PΣP0

¢−1
(v−Pµ) ; (9.62)

and the conditional covariance matrix reads:

ΣC ≡ Σ−ΣP0
¡
PΣP0

¢−1
PΣ. (9.63)

It is immediate to check that, as expected, this distribution is degenerate
on the views:

PX|PX ≡ v ∼ N(v,0) . (9.64)

Indeed, by definition of conditional distribution, the views PX = v are sup-
posed to take place with certainty. This is the reason why the direct con-
ditional approach to modeling the views is not appropriate: the conditional
approach yields a too "spiky" distribution. Therefore, since the allocation op-
timization process is very sensitive to the input parameters, when the optimal
allocations are computed directly according to the conditional model, the re-
sulting portfolios are extremely different from those computed according to
the "official" market model and often give rise to corner solutions, see Figure
9.4.
Instead, the Black-Litterman distribution (9.44) blends smoothly the "of-

ficial" market model (9.34) with the investor’s blunt opinion, represented by
the conditional distribution (9.61).
Indeed, the conditional distribution represents an extreme case of the

Black-Litterman distribution, namely the case where the scatter matrix Ω
is null, i.e. the statistician’s confidence in the investor’s views is total. On the
other hand, the "official" market model represents the opposite extreme case
of the the Black-Litterman distribution, namely the case where the scatter
matrix Ω is infinite, i.e. the statistician’s confidence in the investor is null:

X ∼ N(µ,Σ) (Ω→∞)
%

X ∼ N(µBL,ΣBL)
&
X ∼ N(µC ,ΣC) (Ω→ 0).

(9.65)
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Fig. 9.4. Black-Litterman approach: sensitivity to the input parameters

For the intermediate cases, as the confidence in the investor’s views de-
creases, the Black-Litterman distribution smoothly shifts away from the con-
ditional model towards the "official" market model. This mechanism lessens
the effect of the input parameters on the final allocations.

In Figure 9.4 we plot the efficient portfolios in terms of their relative
weights computed according to the Black-Litterman distribution as in (9.49).
We consider the general Black-Litterman distribution, as well as its limit cases,
namely the "official" market model (9.34) and the distribution conditioned on
the investor’s views (9.61). Notice that the conditional distribution gives rise
to corner solutions, i.e. highly concentrated portfolios.

9.3 Resampled allocation

Consider the optimal allocation function (8.30), which for each value of the
market parameters θ maximizes the investor’s satisfaction given his invest-
ment constraints:

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} . (9.66)

Since the true value θt of the market parameters is not known, the truly opti-
mal allocation cannot be implemented. Furthermore, as discussed in Chapter
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8, the optimal allocation function is extremely sensitive to the input para-
meters θ: a slightly wrong input can give rise to a very large opportunity
cost.

Unlike the Bayesian and the Black-Litterman approaches, where the above
problem is tackled by smoothing the estimate of the input parameters before
the optimization in (9.66), the resampling technique averages the outputs of
a set of optimizations.

We present first the original resampled frontier of Michaud (1998), U.S.
Patent No. 6,003,018, which refers to the mean-variance setting, see also
Scherer (2002). Then we discuss its extension to generic markets and pref-
erences.

9.3.1 Practicable definition: the mean-variance setting

We recall that the mean-variance approach is a two-step simplification of
an allocation problem: the investor first determines a set of mean-variance
efficient allocations and then selects among those allocations the one that
better suits him.

The assumptions of the original resampling recipe are the following: first,
the investor’s objective admits the mean-variance formulations in terms of lin-
ear returns and relative weights, see Section 6.3.4; second, the market consists
of equity-like securities for which the linear returns are market invariants, see
Section 3.1.1; third, the investment horizon and the estimation interval coin-
cide, see Section 6.5.4; fourth, the investment constraints are such that the
dual formulation is correct, see Section 6.5.3; fifth, the constraints do not
depend on unknown market parameters.

Under the above assumptions the mean-variance problem can be written
as in (6.147), which in the dual formulation (6.146) reads:

w(i) = argmin
w∈C

w′µ≥e(i)

w′Σw, i = 1, . . . , I. (9.67)

In this expression µ and Σ are the expected values and the covariances of
the linear returns of the securities relative to the investment horizon; the set{
e(1), . . . , e(I)

}
is a significative grid of target expected values; and C is the

set of investment constraints.
To determine the efficient portfolio weights (9.67) the resampling recipe

follows these steps.
Step 1. Estimate the inputs 0µ̂ and 0Σ̂ of the mean-variance framework

from the analysis of the observed time series iT of the past linear returns:

iT ≡ {l1, . . . , lT } . (9.68)

This can be done for instance, but not necessarily, by means of the sample
estimators (8.79) and (8.80).

Step 2a. Consider the time series iT as the realization of a set of market
invariants, i.e. independent and identically distributed returns:
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IT ≡ {L1,L2, . . . ,LT } . (9.69)

Step 2b. Make assumptions on the distribution generating the returns
(9.69), for instance assuming normality, and set the estimated parameters as
the true parameters that determine the distribution of the returns:

Lt ∼ N
³
0bµ, 0 bΣ´ . (9.70)

Step 2c. Resample a large number Q of Monte Carlo scenarios of realiza-
tions of (9.69) from the distribution (9.70):

qiT ≡ {ql1, . . . , qlT } , q = 1, . . . , Q. (9.71)

Step 3. Estimate the inputs qbµ and q
bΣ of the mean-variance framework

from the resampled time series (9.71) as in Step 1.
Step 4a. Compute the global minimum-variance portfolio from each of the

resampled inputs:

qwMV = argmin
w∈C

w0q bΣw, q = 1, . . . , Q. (9.72)

Step 4b. Compute the respective estimated expected value in each scenario:

qe ≡ qw
0
MV qbµ, q = 1, . . . , Q. (9.73)

Step 4c. Compute the maximum estimated expected value in each scenario:

qe ≡ max
n
qbµ0δ(1), . . . , qbµ0δ(N)o , q = 1, . . . , Q, (9.74)

where δ is the canonical basis (A.15).
Step 4d. For each scenario q determine a grid

©
qe
(1), . . . , qe

(I)
ª
of equally-

spaced target expected values as follows:

qe
(1) ≡ qe

...

qe
(i) ≡ qe+

qe−q e
I − 1 (i− 1) (9.75)

...

qe
(I) ≡ qe.

Step 4e. Solve the mean-variance dual problem (9.67) for all the Monte
Carlo scenarios q = 1, . . . , Q and all the target expected values i = 1, . . . , I:

qw
(i) = argmin

w∈C
w0

q bµ≥qe(i)
w0q bΣw. (9.76)
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Step 5. Define the resampled efficient frontier as the average of the above
allocations, possibly rejecting some outliers:

w(i)rs ≡
1

Q

QX
q=1

qw
(i), i = 1, . . . , I, (9.77)

where "rs" stands for "resampled".
Step 6. Compute the efficient allocations from the respective relative

weights:
α(i)rs ≡ wT diag (pT )

−1w(i)rs , i = 1, . . . , I, (9.78)

where wT is the initial budget.
Following the steps 1-6 we obtain a set of allocations, namely (9.78), from

which the investor can choose according to his preferences.

9.3.2 General definition

It is not difficult to generalize the rationale behind the resampled frontier to
a more general setting, which does not necessarily rely on the two-step mean-
variance approach. We modify the steps 1-6 that led to the resampled frontier
respectively as follows.
Step 0. Instead of the expected values and the covariances of the linear

returns, in general the market at the investment horizon is determined by a
set of parameters θ, which steer the parametric distribution of the market
invariants Xθ

t , see (8.17).
Step 1. Using one of the techniques discussed in Chapter 4, estimate the

parameters 0bθ ≡ bθ [iT ] from the available time series of the market invariants:
iT ≡ {x1, . . . ,xT } . (9.79)

We stress that the market invariants are not necessarily the linear returns: de-
pending on the market, they could be for instance changes in yield to maturity,
or other quantities, see Section 3.1.
Step 2. Generate a large number of Monte Carlo realizations of the time

series qiT of the market invariants, assuming that the distribution underlying
the market invariants in Step 0 is determined by the estimated values. In other
words, generate a large number Q of Monte Carlo realizations:

qiT ≡ {qx1, . . . , qxT } , q = 1, . . . , Q, (9.80)

from the following set of random variables:

I0
bθ

T ≡
n
X0

bθ
1 , . . . ,X0

bθ
T

o
. (9.81)

Step 3. In each scenario q estimate as in Step 1 the parameters qbθ ≡ bθ [qiT ]
from the resampled time series (9.80).
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Step 4. Instead of determining the efficient frontier, in general the investor
maximizes his primary index of satisfaction given his constraints, which de-
pend on the market parameters, see (9.66). Therefore replace the optimization
(9.76) with the following expression:

qα ≡ argmax
α∈C

q bθ
n
S
q
bθ (α)

o
, (9.82)

for all the Monte Carlo scenarios q = 1, . . . , Q.
Step 5. Determine the resampled allocation by averaging the Monte Carlo

optimal allocations:

αrs ≡
1

Q

QX
q=1

qα. (9.83)

We stress that the resampled allocation is a decision αrs [iT ], which de-
pends on the available information (9.79) through the following chain, which
summarizes the whole resampling technique:

iT
estimate7→ 0

bθ resample7→ qiT
estimate7→ q

bθ optimize7→ qα
average7→ αrs. (9.84)

We can further simplify the generic definition of the resampled allocation
by avoiding the above sequential steps 1-5. Indeed the q-th scenario of the
resampled allocation (9.82) is the optimal allocation function α (θ) defined
in (9.66) applied to the estimate from the q-th scenario of the Monte-Carlo-
generated time series:

qα = α
³bθ [qiT ]´ . (9.85)

Furthermore, the q-th scenario of the time series qiT is a realization of the

random variable I
bθ [iT ]
T , see (9.81). Therefore the average of the Monte Carlo

scenarios (9.83) is the expectation of the allocations induced by the random

variable I
bθ[iT ]
T . In other words, the general definition of the resampled alloca-

tion can be summarized as follows:

αrs [iT ] ≡ E
n
α
³bθ hIbθ [iT ]T

i´o
, (9.86)

where "rs" stands for "resampled". This is indeed an allocation decision, which
processes the currently available information, see (8.38).
In all the cases of practical interest, the resampled allocation cannot be

computed in analytical closed form from the definition (9.86). Therefore, to
implement the resampling technique we need to follow all the steps in (9.84).

Consider a random vector u distributed as follows:

u ∼ N
µbµ [iT ] , 1

T
bΣ [iT ]¶ , (9.87)
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where bµ [iT ] and bΣ [iT ] are the sample mean and covariance of the linear re-
turns (8.79) and (8.80) respectively. Now consider the positive and symmetric
random matrix V distributed as follows:

TV−1 ∼W
³
T − 1, bΣ [iT ]´ . (9.88)

Furthermore, assume that w and V are independent. From (8.85) and (8.86)
we obtain the distribution of the sample estimators applied to the time series
distributed according to the estimated parameters:

bµ hI bµ[iT ],bΣ[iT ]T

i
d
= u, bΣ hI bµ[iT ],bΣ[iT ]T

i
d
= V−1. (9.89)

In our leading example the optimal allocation function is (8.32):

α (µ,Σ) = [diag (pT )]
−1Σ−1

µ
ζµ+

wT − ζ10Σ−1µ
10Σ−11

1

¶
. (9.90)

Therefore the allocations induced by the random variable I bµ[iT ],bΣ[iT ]T read:

α
³bµ hI bµ[iT ],bΣ[iT ]T

i
, bΣ hI bµ[iT ],bΣ[iT ]T

i´
d
= ζ [diag (pT )]

−1Vu (9.91)

+
wT − ζ10Vu

10V1
[diag (pT )]

−1V1.

In turn the resampled allocation, which is the expected value of the above
allocations, reads:

αrs [iT ] ≡ E
n
α
³bµ hI bµ[iT ],bΣ[iT ]T

i
, bΣ hI bµ[iT ],bΣ[iT ]T

i´o
(9.92)

= [diag (pT )]
−1
µ
ζ E

½
Vbµ− 10Vbµ

10V1
V1

¾
+wT E

½
V1

10V1

¾¶
,

see Appendix www.9.1.
The expectations in (9.92) are not known in analytical form. Therefore we

generate a large number Q of Monte Carlo scenarios from (9.88):

qV
iT , q = 1, . . . , Q, (9.93)

where we emphasized that the distribution that generates the Monte Carlo
scenarios is determined by the available time series of market invariants iT .
Then we compute the resampled allocation (9.92) as follows:

αrs [iT ] ≡ [diag (pT )]−1
Ã
ζ

Q

QX
q=1

qV
iT bµ (9.94)

− ζ

Q

QX
q=1

10qViT bµ
10qViT 1

qV1+
wT

Q

QX
q=1

qV
iT 1

10qViT 1

!
.
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9.3 Resampled allocation 443

Notice that the resampled allocation depends on the available time series of
market invariants iT , because this determines the Monte Carlo simulations
(9.93) through (9.87) and (9.88).
In Figure 9.5 we display the resampled allocation αrs [iT ] along with the

sample-based allocation that αs [iT ] in the plane of the coordinates that de-
termine the investor’s satisfaction and constraints, see (8.25) and (8.36):

v ≡ α0 diag (pT )Σdiag (pT )α (9.95)

e ≡ α0 diag (pT ) (1+ µ) . (9.96)

In the specific case plotted in the figure the resampling process generates
an allocation with less opportunity cost than the sample-based allocation.
Furthermore the resampled allocation satisfies the constraints, as opposed
to the sample-based allocation, compare with Figure 8.6 and the respective
discussion. Nonetheless, we remark that there is no guarantee that this will
always be the case, see the discussion below in Section 9.3.4.

optimal

e

v

constraints satisfied

budget 
boundary

VaR constraint 
boundary

sample-
based

resampled

Fig. 9.5. Resampled allocation: comparison with sample-based allocation

9.3.3 Evaluation

To evaluate the sample-based allocation decision we should proceed in prin-
ciple as in Chapter 8.
First we should consider a setΘ of market parameters that is broad enough

to most likely include the true, unknown value θt.
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444 9 Optimizing allocations

For each value θ of the market parameters in the stress test set Θ we
should compute the optimal allocation function, see α (θ) (9.66). Then we
should compute as in (8.31) the optimal level of satisfaction if θ are the
underlying market parameters, namely S (θ).
Next, we should randomize as in (8.48) the information from the market

iT , generating a distribution of information scenarios that depends on the
assumption θ on the market parameters:

IθT ≡
©
Xθ
1 , . . . ,X

θ
T

ª
. (9.97)

Then we should compute the resampled allocation (9.86) from the ran-
domized information, obtaining the random variable αrs

£
IθT
¤
.

Next we should compute as in (8.23) the satisfaction Sθ
¡
αrs

£
IθT
¤¢
ensuing

from each scenario of the resampled allocation decision under the assumption
θ for the market parameters, which, we recall, is a random variable. Similarly,
from (8.26) and expressions such as (8.35) we should compute the cost of the
resampled allocation decision violating the constraints C+θ

¡
αrs

£
IθT
¤¢
in each

scenario, which is also a random variable.
Then we should compute the opportunity cost (8.53) of the resampled

allocation under the assumption θ for the market parameters, namely the
random variable defined as the difference between the optimal unattainable
level of satisfaction and the satisfaction from the resampled allocation, plus
the cost of the resampled allocation violating the constraints:

OCθ
¡
αrs

£
IθT
¤¢
≡ S (θ)− Sθ

¡
αrs

£
IθT
¤¢
+ C+θ

¡
αrs

£
IθT
¤¢
. (9.98)

Finally, as in (8.57) we should compute the opportunity cost of the resam-
pled allocation as a function of the underlying market parameters:

θ 7→ OCθ
¡
αrs

£
IθT
¤¢
, θ ∈ Θ. (9.99)

The resampled allocation would be suitable if the opportunity cost turns
out tightly distributed around a value close to zero for all the market para-
meters θ in the stress test range Θ.
Unfortunately, the above evaluation cannot be done. Indeed, in practice,

the randomization (9.97) is performed by generating a large number J of
Monte Carlo realizations of the time series of the market invariants:

θ
stress test7→ jiT ≡

©
jx1, . . . ,

jxT
ª
, j = 1, . . . , J . (9.100)

In turn, in each scenario j the resampled allocation is obtained by imple-
menting a second Monte Carlo simulation as in (9.84). In other words, the
distribution of the opportunity cost as a function of the assumptions on the
underlying parameters (9.99) is obtained trough the following chain of steps:

θ
stress test7→ jiT

estimate7→ j
0
bθ resample7→ j

qiT
estimate7→ j

q
bθ (9.101)

optimize7→ j
qα

average7→ jαrs
evaluate7→ OCθ

¡
jαrs

¢
.
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To implement this chain we need to solve an optimization problem for each
Monte Carlo scenario q stemming from another Monte Carlo scenario j: the
computational burden of this operation is prohibitive.

9.3.4 Discussion

The resampling technique is very innovative. It displays several advantages
but also a few drawbacks, see also Markowitz and Usmen (2003) and Ceria
and Stubbs (2004).

In the first place, intuitively the expectation in the definition (9.86) of
the resampled allocation decision reduces the sensitivity to the market pa-
rameters, and thus it gives rise to a less disperse opportunity cost than the
sample-based allocation decision. Nonetheless, the proof of this statement for
generic markets and preferences is not obvious.

Furthermore, the expectation in the definition (9.86) of the resampled al-
location can give rise to resampled allocations that violate the investment
constraints, not only in the case where the constraints depend on the un-
known market parameters. For instance, consider the constraint (8.15) of not
investing in more than M of the N securities in the market: each allocation
qα in the average (9.83) satisfies this constraint, but the ensuing resampled
allocation does not.

Finally, it is very hard to stress test the performance of this technique due
to the excessive computational burden, see (9.101) and comments thereafter.

9.4 Robust allocation

So far the pursuit of optimal allocation strategies has focused on fixing the
excessive sensitivity to the input parameters of the optimal allocation func-
tion. The robust approach aims directly at determining the best allocation,
according to the evaluation criteria discussed in Chapter 8.

First we formalize the intuitive definition of robust allocation decisions for
general markets and preferences. Then, in order to compute the solution of a
robust allocation problem in practice, we resort to the two-step mean-variance
framework.

9.4.1 General definition

Consider the opportunity cost of a generic allocation α that satisfies the
investment constraints, which is defined in (8.37) as the difference between
the maximum possible satisfaction and the actual satisfaction provided by
the given allocation:

OCθ (α) ≡ S (θ) − Sθ (α) . (9.102)

According to the discussion in Section 8.1, since the true value of the
market parameters θ is not known, an allocation is optimal if it gives rise

" "
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446 9 Optimizing allocations

to a minimal opportunity cost for all the values of the market parameters
in an uncertainty range Θ that is broad enough to most likely include the
true, unknown value θt of the market parameters. This way in particular the
opportunity cost is guaranteed to be low in correspondence of the unknown
value θt.

tθ

Θ

θ

�( )O C θ α

( )O C θ α Θ

�( )O C θ α

O C

Fig. 9.6. Opportunity cost as function of the market parameters

The robust approach aims precisely at determining an allocation α such
that the opportunity cost is uniformly minimal for all the values θ in the
uncertainty range Θ. To make sure that the opportunity cost is uniformly
low for all the values θ in Θ we take a conservative approach and monitor its
maximum over the range Θ, see Figure 9.6. Furthermore, we require that the
allocation α satisfies the constraints for all the values θ in the given range Θ,
a condition which we denote as follows:

α ∈ CΘ ≡ {α ∈ Cθ for all θ ∈ Θ} . (9.103)

In other words, we consider the allocation such that the maximum opportunity
cost (9.102) on the given range is the lowest possible:

αΘ ≡ argmin
α∈CΘ

½
max
θ∈Θ

©
S (θ)− Sθ (α)

ª¾
. (9.104)

Notice that this allocation in general does not give rise the least possible
opportunity cost in correspondence of the true parameters θt, although the
damage is guaranteed to be contained, see Figure 9.6.
The allocation (9.104) and its quality depend on the choice for the un-

certainty range Θ of the market parameters, see Figure 9.7. The smaller the
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tθ

Θ

θ

Θ

( )O C θ α
Θ

( )O C θ α Θ

O C

( )( )O C t
θ α θ

Fig. 9.7. Quality of robust allocation as function of the uncertainty range

range Θ, the lower the maximum value of the opportunity cost generated by
αΘ and thus the higher the quality of αΘ. Indeed, in the limit case where
the evaluation set is the single true value θt the ensuing allocation (9.104)
becomes the truly optimal solution (8.39), which gives rise to a null opportu-
nity cost. As we expand the evaluation set Θ, the opportunity cost of the best
allocation (9.104), although it is uniformly the least among all the possible
allocations, increases.
To summarize, we built a recipe to pursue the best allocation by account-

ing for estimation risk: first, determine an uncertainty range Θ of market
parameters that contains the true parameter θt, and yet it is as small as
possible; then solve the optimization (9.104).

Consider our leading example where satisfaction is determined by the
certainty-equivalent of an exponential utility function and the investor has
a full-investment budget constraint and a value at risk constraint. Assume
that we determined a suitable range Θ for µ and Σ. The allocation recipe
(9.104) reads in this context:

αΘ ≡ argmin
α

½
max
µ,Σ∈Θ

©
CE(µ,Σ)−CEµ,Σ (α)

ª¾
(9.105)

subject to
½
α0pT = wT

Varµ,Σ (α) ≤ γwT , for all µ,Σ ∈ Θ,

where the explicit expression of the certainty equivalent and the VaR are
provided in (8.25), (8.28) and (8.33).
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In order to be confident that the range Θ contains θt and yet it is as small
as possible we need to collect information from the market. Just like a generic
estimator (8.78) associates with the available information iT a value bθ that
suitably represents a quantity of interest, so we can use the available infor-
mation to determine a suitable range of values, which we call the uncertainty
set , or the robustness set :

iT 7→ bΘ [iT ] . (9.106)

There exists a variety of methods to perform this operation, which generalize
the theory of point estimation discussed in Chapter 4. We discuss in Section
9.5 one of these methods, which relies on the Bayesian approach to parameter
estimation.

For instance, consider a market where the linear returns of the N securities
are independent and normally distributed:

Lt ∼ N
³
µ
t

,Σ
t
´
, (9.107)

where µ
t

and Σ
t

are the true expected values and covariance matrix respec-
tively.
Assume that the covariance Σ

t

is known. We have to determine a suitable
uncertainty set bΘµ for µ such that we can be confident that the true parameter
µ
t

lies within its boundaries. Consider the sample estimator bµ [iT ] defined in
(8.79), and define the uncertainty set bΘ as follows:

bΘµ [iT ] ≡ (µ such that Ma2 ³µ, bµ [iT ] ,Σt
´
≤

Qχ2N
(p)

T

)
, (9.108)

whereMa is the Mahalanobis distance (2.61) of µ from bµ induced by the met-
ric Σ

t

; Qχ2N
(p) is the quantile of the chi-square distribution with N degrees

of freedom (1.109) for a confidence level p ∈ (0, 1); and T is the number of
observations in the time series of the returns that we use to estimate bµ.
The set (9.108) is an ellipsoid centered in bµ, with shape determined by Σt

and with radius proportional to 1/
√
T , see (A.73) and comments thereafter.

As we show in Appendix www.9.2 the following result holds for the probability
that the range (9.108) captures the true expected values:

P
n
µ
t ∈ bΘµ [iT ]o = p. (9.109)

In other words, with a confidence p that we can set arbitrarily, the true pa-
rameter µ

t

lies within the set (9.108): as we require a higher confidence, the
quantile in (9.108) increases, and so does the size of the ellipsoid. As intu-
ition suggests, for a given confidence p, the more information is available, i.e.
the larger the number of observations T in the time series of the returns, the
smaller the uncertainty ellipsoid.
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By letting the evaluation range in the optimization problem (9.104) be
determined by currently available information as in (9.106), we obtain the
definition of the robust allocation decision:

αr [iT ] ≡ argmin
α∈CcΘ[iT ]

(
max

θ∈ bΘ[iT ]
©
S (θ)− Sθ (α)

ª)
. (9.110)

This is indeed a decision, which processes the currently available information,
see (8.38).
The smaller the uncertainty set bΘ in (9.110), the less conservative the

investor from the point of view of estimation risk. Indeed, in the limit where
the robustness set consists of only one point, namely the point estimate bθ,
the robust allocation decision becomes the sample-based allocation decision
(8.81). Nevertheless, we stress that if the uncertainty set is very likely to
include the true unknown parameters, the smaller the uncertainty set, the
better the quality of the robust allocation, see Figure 9.7.

In Appendix www.9.5 we show that using the uncertainty set (9.108) in
(9.105) the ensuing robust allocation decision solves the following problem:

αr ≡ argmin
α

maxµ∈ bΘµ

µ0Tµ+ wT
A 1

0
³
Σ

t
´−1

µ

−α0 diag (pT )µ+ 1
2ζ

°°Λ1/2E0α°°2

 , (9.111)

subject to: 
α0pT = wT√
2τ
°°Λ1/2E0α°° ≤ bµ0 diag (pT )α+ γwT

+
°°Λ1/2E0α°°2 − √QN (p)/T

kΛ1/2E0αk .
(9.112)

In this expression

A ≡ 10
³
Σ

t
´−1

1

τ ≡ erf−1 (2c− 1) (9.113)

T ≡ ζ

2

³
Σ

t
´−1µ

I− 1

A
110

³
Σ

t
´−1¶

;

and Λ and E are the eigenvalues and the eigenvectors respectively of the
following spectral decomposition:

diag (pT )Σ
t

diag (pT ) ≡ EΛ1/2Λ1/2E0. (9.114)

The maximization for a given α in (9.111) is satisfied by the tangency
condition of ellipsoidal contours in the variable µ with a fixed ellipsoid: this
problem does not admit analytical solutions, as it is a modification of the
spectral equation, see (A.68). Therefore, the second optimization, namely the
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minimization in (9.111) cannot be performed. Furthermore, the VaR con-
straint in (9.112) is not a conic constraint. Therefore the solution of the robust
allocation is not numerically tractable, see Section 6.2.

9.4.2 Practicable definition: the mean-variance setting

Although the rationale behind the robust allocation decision is conceptually
simple, solving the min-max optimization (9.110) is close to impossible even
under simple assumptions on preferences, markets and constraints, as we have
seen in the example (9.111)-(9.112).
Therefore robust allocation is tackled in practice within the two-step mean-

variance framework. This is not surprising, since we resorted to the mean-
variance approximation even in the classical setting that disregards estima-
tion risk. When the robust allocation problem is set in the mean-variance
framework we can apply recent results on robust optimization, see El Ghaoui
and Lebret (1997) and Ben-Tal and Nemirovski (1995), see also Ben-Tal and
Nemirovski (2001).
We recall from Section 6.3 that the mean-variance approach is a two-step

simplification of a generic allocation problem: the investor first determines
a set of mean-variance efficient allocations and then he selects among those
allocations the one that better suits him.
We assume that the investment constraints C do not depend on the un-

known market parameters and are such that the inequality version (6.144)
of the mean-variance problem applies, see Section 6.5.3. In this setting the
mean-variance problem can be written as follows:

α(i) = argmax
α

α0µ (9.115)

subject to
½
α ∈ C
α0Σα ≤ v(i).

In this expression µ and Σ are the expected value and the covariance matrix
respectively of the market vectorM:

µ ≡ E {M} , Σ ≡ Cov {M} ; (9.116)

the market vector M in turn is the affine transformation of the prices at the
investment horizon PT+τ which together with the allocation vector α deter-
mines the investor’s objective Ψ ≡ α0M, see (5.10); the set

©
v(1), . . . , v(I)

ª
is

a significative grid of target variances of the investor’s objective.
According to (9.110), the robust version of the mean-variance problem

(9.115) reads:
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α
(i)
r = argmax

α

(
min
µ∈ bΘµ

{α0µ}
)

(9.117)

subject to

(
α ∈ C
max
Σ∈ bΘΣ {α

0Σα} ≤ v(i),

where bΘµ and bΘΣ are uncertainty sets for the market parameters (9.116) that
are estimated from the available information iT . Depending on the specifica-
tion of these uncertainty sets, the resulting robust problem assumes different
forms.

• Known covariances, elliptical set for expected values

A possible specification for the uncertainty sets assumes an ellipsoidal
shape for the uncertainty on the parameter µ and no uncertainty for Σ:

bΘµ ≡ ©µ such that Ma2 (µ,m,T) ≤ q2
ª

(9.118)bΘΣ ≡ bΣ. (9.119)

In this expression bΣ is a point estimate of Σ;m is an N -dimensional vector; T
is an N ×N symmetric and positive matrix; Ma is the Mahalanobis distance
(2.61) of µ from m induced by the metric T; and

q2 ≡ Qχ2N
(p) (9.120)

is the quantile of the chi-square distribution with N degrees of freedom (1.109)
for a confidence level p ∈ (0, 1).
Ceria and Stubbs (2004) consider the following specification in (9.118):

m ≡ bµ [iT ] , T exogenous, (9.121)

where bµ is a sample-based estimator of the true parameter.
De Santis and Foresi (2002) blend a market model with the investor’s

views by specifying the parameters in (9.118) in terms of the Black-Litterman
posterior distribution (9.44):

m ≡ µBL, T ≡ ΣBL. (9.122)

The uncertainty set (9.118) is an ellipsoid centered inm whose shape is de-
termined by T, see (A.73) and comments thereafter. The rationale behind the
assumption (9.118) is that the uncertainty about µ is approximately normally
distributed:

µ ∼ N(m,T) , (9.123)

see also (9.108). In Appendix www.7.1 we show that in this case the following
result holds for the probability that the range captures the true expected
values:
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P
n
µ ∈ bΘµo = p. (9.124)

If the investor considers small ellipsoids by setting p close to zero, he is little
worried about missing the true expected values in the optimization (9.117).
In other words, he is very aggressive as far as estimation risk is concerned.
On the other hand, if the the investor sets p close to one, he is very cautious
from the point of view of estimation risk.
As we discuss in Section 9.4.3, if the investment constraints C are suf-

ficiently regular, the optimization (9.117) simplifies to a second-order cone
programming problem and thus the robust frontier can be computed numeri-
cally.

• Box set for expected values, elliptical set for covariances

An alternative specification of the uncertainty sets in the robust optimiza-
tion (9.117) is adopted by Goldfarb and Iyengar (2003). The uncertainty set
for the expected values is of the box-form:bΘµ ≡ ©µ such that µ ≤ µ ≤ µª . (9.125)

The uncertainty set for the covariance matrix follows from a K-factor model
such as (3.119), where factors and perturbations are uncorrelated. In other
words, the uncertainty set for the covariance matrix is specified as follows:bΘΣ ≡ ©BGB0 + diag (d)ª . (9.126)

In this expression d ≤ d ≤d; the covariance G of the factors is assumed
known, and each row b(n) of the N × K matrix of the factor loadings B
belongs to an ellipsoid such as (A.73):

b(n) ∈ En, n = 1, . . . , N . (9.127)

As it turns out, when the investment constraints C are sufficiently regular,
this specification also gives rise to a second-order cone programming problem.
Therefore the robust frontier can computed numerically, see Section 6.2.

• Box set for expected values, box set for covariances

A third possible specification of the uncertainty sets in (9.117) is provided
by Halldorsson and Tutuncu (2003), who assume box-sets for all the parame-
ters: bΘµ ≡ ©µ such that µ ≤ µ ≤ µª (9.128)bΘΣ ≡ ©Σ º 0 such that Σ ≤ Σ ≤ Σª , (9.129)

where the notation Σ º 0 stands for symmetric and positive matrices. Under
further assumptions on the investment constraints C, the ensuing robust mean-
variance problem can be cast in the form of a saddle-point search and solved
numerically with an interior-point algorithm.
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9.4.3 Discussion

As we show in Appendix www.9.6, the robust mean-variance problem (9.117)
under the specifications (9.118)-(9.119) for the robustness sets can be written
equivalently as follows:

α
(i)
r = argmax

α

n
α0m− q

√
α0Tα

o
(9.130)

subject to
½
α ∈ C
α0 bΣα ≤ v(i).

If the investment constraints C are regular enough, this problem can be cast in
the form of a second-order cone programming problem (6.55), see Appendix
www.9.6. Therefore the robust frontier can computed numerically.
The robust efficient frontier (9.130) represents a two-parameter family of

allocations, i.e. a surface, determined by the target variance v, which repre-
sents market risk, and the size of the uncertainty ellipsoid, which is directly
related to q and represents aversion to estimation risk, see (9.124) and com-
ments thereafter.

risk-reward profile

portfolio relative composition

market risk
estimation risk

market risk aversion
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Fig. 9.8. Robust efficient allocations: fixed aversion to estimation risk

We can parameterize the robust surface (9.130) equivalently in terms of
a market risk Lagrange multiplier γm ≥ 0 and an estimation risk multiplier
γe ≡ q as follows:
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αr (γm, γe) = argmax
α∈C

{
α′m − γm

√
α′Σ̂α − γe

√
α′Tα

}
. (9.131)

This way we obtain the following interpretation of the two-parameter ro-
bust frontier: investors balance the trade off between the expected value of
their objective, represented by the term α′m, and risk. Risk appears in two
forms: market risk, represented by the market volatility

√
α′Σ̂α, and estima-

tion risk, represented by the estimation uncertainty
√

α′Tα.
Larger values of the multiplier γm give rise to allocations that suit investors

who are more averse to market risk: therefore we can interpret γm as a market
risk aversion parameter. Similarly, larger values of the multiplier γe give rise to
allocations that suit investors who are more averse to estimation risk: therefore
we can interpret γe as an estimation risk aversion parameter.

In Figure 9.8 we compute the robust efficient frontier for a market ofN ≡ 7
securities, under the standard constraints of no short-selling, namely α ≥ 0,
and of full investment of the initial budget wT , namely α′pT = wT

The top plot displays the expected value m′αr of the robust efficient sur-
face (9.131) as a function of the aversion to market risk γm and of the aversion
to estimation risk γe.

The bottom plot displays the robust allocations αr (γm, γe) in terms of the
relative portfolio weights for a given level of estimation risk, i.e. for a fixed
value γe: these are the allocations that correspond to the ”slice” of the robust
surface in the top portion of the figure.

Similarly, in the top plot in Figure 9.9 we display the expected value m′αr

of the robust efficient surface as a function of the aversion to market risk γm

and of the aversion estimation risk γe.
The bottom plot displays the robust allocations αr (γm, γe) in terms of

the relative portfolio weights for a given level of market risk, i.e. for a fixed
value γm: these are the allocations that correspond to the ”slice” of the robust
surface in the top portion of the figure.

9.5 Robust Bayesian allocation

Robust allocation decision are optimal over a whole range of market para-
meters, because by construction they minimize the opportunity cost over the
given range. Nevertheless, in the classical approach, the choice of the robust-
ness range is quite arbitrary.

Using the Bayesian approach to estimation we can naturally identify a
suitable robustness range for the market parameters: robust Bayesian alloca-
tion decisions account for estimation risk over a range of market parameters
that includes both the available information and the investor’s experience
according to a self-adjusting mechanism.

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



9.5 Robust Bayesian allocation 455

risk-reward profile

portfolio relative composition

market risk
estimation risk

estimation risk aversion

ex
pe

ct
ed

 v
al

ue

1

0

Fig. 9.9. Robust efficient allocations: fixed aversion to market risk

9.5.1 General definition

The robust allocation decision (9.110) minimizes the opportunity cost due to
estimation risk uniformly over the uncertainty set bΘ for market parameters.
The choice of the uncertainty set is crucial for the success of the respective
allocation strategy: on the one hand bΘ should be as small as possible, in
order to keep the maximum possible opportunity cost low; on the other handbΘ should be as large as possible, in order to most likely include the true
unknown parameters.
The Bayesian framework defines uncertainty sets in a natural way. Indeed,

in the Bayesian framework the unknown market parameters θ are random
variables. The likelihood that the parameters assume given values is described
by the posterior probability density function fpo (θ), which is determined by
the available information iT and by the investor’s experience eC , see Figure
7.1. The region where the posterior distribution displays a higher concentra-
tion deserves more attention than the tails of the distribution: this region is
a natural choice for the uncertainty set bΘ.
From the discussion in Section 7.1.2, the region where the posterior distrib-

ution displays a higher concentration is represented by the location-dispersion
ellipsoid of the market parameters (7.10), see Figure 7.2:

bΘq [iT , eC ] ≡
½
θ :

³
θ − bθce´0 S−1θ ³

θ − bθce´ ≤ q2
¾
. (9.132)
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In this expression S is the dimension of the vector θ; bθce is a classical-
equivalent estimator of the market parameters, such as the expected value
(7.5) or the mode (7.6); and Sθ is a scatter matrix for the market parameters,
such as the covariance matrix (7.7) or the modal dispersion (7.8).
Using the Bayesian location-dispersion ellipsoid (9.132) as the uncertainty

set for the robust allocation decision (9.110) we obtain the robust Bayesian
allocation decision:

αrB [iT , eC ] ≡ argmin
α∈CcΘq[iT ,eC ]

(
max

θ∈ bΘq[iT ,eC ]
©
S (θ)− Sθ (α)

ª)
. (9.133)

This decision minimizes the maximum possible opportunity cost of an allo-
cation that satisfies the investment constraints for all the markets within the
location-dispersion ellipsoid.
The robust Bayesian allocation decision is indeed a decision, as it processes

the currently available information iT as in (8.38) through the ellipsoid
(9.132). Furthermore, the robust Bayesian allocation decision also processes
the investor’s experience eC within a sound statistical framework. Finally, the
robust Bayesian allocation decision also depends on the radius factor q. From
(7.11) and (7.12) we can interpret q as the investor’s aversion to estimation
risk: the smaller q, the smaller the ellipsoid, the higher the chances that the
true value of the market parameters are not included within the boundaries
of the uncertainty set.
The interplay among the available information iT , the investor’s experience

eC and the investor’s aversion to estimation risk q shapes the uncertainty set
(9.132) and thus the robust Bayesian allocation decision (9.133) in a self-
adjusting way.
Due to (7.4), when the confidence C in the investor’s experience eC is very

large compared to the amount of information T from the market, the posterior
distribution becomes extremely peaked around the prior θ0. Therefore, no
matter the aversion to estimation risk q, the robustness set (9.132) shrinks to
the point θ0, see the discussion in Section 7.1.2. In other words, the robust
Bayesian allocation decision (9.133) becomes:

αp ≡ argmax
α∈Cθ 0

{Sθ0 (α)} . (9.134)

This is a prior allocation decision, see (8.64).
Similarly, due to (7.4), when the amount T of information on the market

iT is very large compared to the confidence C in the investor’s experience
eC , the posterior distribution becomes extremely peaked around its classical-
equivalent estimator, which is determined by the sample iT . Therefore, no
matter the aversion to estimation risk q, the robustness set (9.132) shrinks to
a point, namely the sample estimate bθ [iT ], see the discussion in Section 7.1.2.
In other words the robust Bayesian allocation decision (9.133) becomes:
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αs [iT ] ≡ argmax
α∈Cbθ [iT ]

n
Sbθ[iT ] (α)

o
. (9.135)

This is the sample-based allocation decision, see (8.81).
When the aversion to estimation risk q in the definition of the robustness

set (9.132) tends to zero, the radius of the ellipsoid shrinks to zero and thus
the ellipsoid degenerates to a point, its center, which is the classical-equivalent
estimator bθce. Therefore the robust Bayesian allocation decision (9.133) be-
comes:

αce [iT , eC ] ≡ argmax
α∈Cbθ ce[iT ,eC ]

n
Sbθce[iT ,eC ] (α)

o
. (9.136)

This is the classical-equivalent Bayesian allocation decision, see (9.13).
For all the intermediate cases, the robust Bayesian allocation decision

smoothly blends the information from the market with the investor’s ex-
perience, at the same time accounting for estimation risk, within a sound,
self-adjusting statistical framework.

9.5.2 Practicable definition: the mean-variance setting

The conceptually simple robust Bayesian allocation decision (9.133) cannot
be computed in practice even under simple assumptions on preferences, mar-
kets and constraints. Therefore, it must be implemented within the two-step
mean-variance framework, where the investor first determines a set of efficient
allocations and then selects among those allocations the one that best suits
him.
We assume that the investment constraints C do not depend on the un-

known market parameters and are such that the inequality version (6.144) of
the mean-variance problem applies. Furthermore, it is convenient to set up
the mean-variance problem in terms of relative weights and linear returns, see
Section 6.3.4.
With these settings the mean-variance problem can be written as follows:

w(i) = argmax
w

w0µ (9.137)

subject to
½
w ∈ C
w0Σw ≤ v(i),

where µ and Σ represent the expected values and the covariances of the linear
returns on the securities relative to the investment horizon:

µ ≡ E {LT+τ,τ} , Σ ≡ Cov {LT+τ,τ} ; (9.138)

and the set
©
v(1), . . . , v(I)

ª
is a significative grid of target variances of the

return on the portfolio.
According to (9.133), the robust Bayesian version of the mean-variance

problem (9.137) reads:
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w
(i)
rB = argmax

w

(
min
µ∈ bΘµ

{w0µ}
)

(9.139)

subject to

(
w ∈ C
max
Σ∈ bΘΣ {w

0Σw} ≤ v(i),

where bΘµ and bΘΣ are location-dispersion ellipsoids for µ and Σ respectively,
defined in terms of the Bayesian posterior distribution of these parameters.
In order to specify the posterior distribution of µ andΣ we make a few fur-

ther assumptions, see also Meucci (2005): first, the market consists of equity-
like securities for which the linear returns are market invariants, see Section
3.1.1; second, the investment horizon and the estimation interval coincide, see
Section 6.5.4; third, the linear returns are normally distributed:

Lt,τ |µ,Σ ∼ N(µ,Σ) . (9.140)

Furthermore, we model the investor’s prior experience as a normal-inverse-
Wishart distribution:

µ|Σ ∼ N
µ
µ0,
Σ

T0

¶
, Σ−1 ∼W

µ
ν0,
Σ−10
ν0

¶
. (9.141)

We recall from Section 7.2 that (µ0,Σ0) represents the investor’s experience
on the parameters. On the other hand, (T0, ν0) represents the respective con-
fidence. Therefore the investor’s experience is summarized in:

eC ≡ {µ0,Σ0;T0, ν0} . (9.142)

Under the above hypotheses it is possible to compute the posterior dis-
tribution of µ and Σ analytically, see Section 7.2. The information from the
market is summarized by the sample mean and the sample covariance of the
past realizations of the linear returns, namely

bµ ≡ 1

T

TX
t=1

lt,τ , bΣ ≡ 1

T

TX
t=1

(lt,τ − bµ) (lt,τ − bµ) , (9.143)

plus the length of the time-series:

iT ≡
nbµ, bΣ;To . (9.144)

The posterior distribution, like the prior distribution (9.141), is also normal-
inverse-Wishart, where the respective parameters read:

T1 [iT , eC ] ≡ T0 + T (9.145)

µ1 [iT , eC ] ≡
1

T1
[T0µ0 + T bµ] (9.146)

ν1 [iT , eC ] ≡ ν0 + T (9.147)

Σ1 [iT , eC ] ≡
1

ν1

"
ν0Σ0 + T bΣ+ (µ0 − bµ) (µ0 − bµ)01

T +
1
T0

#
. (9.148)
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The uncertainty set for µ is the location-dispersion ellipsoid (7.37) of the
marginal posterior distribution of µ:

bΘµ ≡ ©µ : (µ− bµce)0 S−1µ (µ− bµce) ≤ q2µ
ª
. (9.149)

In this expression qµ is the radius factor that represents aversion to estimation
risk for µ; bµce is the classical-equivalent estimator of µ, which from (7.35)
reads explicitly: bµce [iT , eC ] = µ1; (9.150)

and Sµ is the scatter matrix for µ, which from (7.36) reads explicitly:

Sµ [iT , eC ] =
1

T1

ν1
ν1 − 2

Σ1. (9.151)

The uncertainty set for Σ is the location-dispersion ellipsoid (7.40) of the
marginal posterior distribution of Σ:

bΘΣ ≡ ½Σ : vech hΣ− bΣcei0 S−1Σ vech
h
Σ− bΣcei ≤ q2Σ

¾
. (9.152)

In this expression vech is the operator that stacks the columns of a matrix
skipping the redundant entries above the diagonal; qΣ is the radius factor that
represents aversion to estimation risk for Σ; bΣce is the classical-equivalent
estimator of Σ, which from (7.38) reads explicitly:

bΣce [iT , eC ] = ν1
ν1 +N + 1

Σ1; (9.153)

and SΣ is the scatter matrix for vech [Σ]. From (7.39) the scatter matrix reads
explicitly as follows:

SΣ [iT , eC ] =
2ν21

(ν1 +N + 1)3
¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
, (9.154)

where DN is the duplication matrix (A.113) and ⊗ is the Kronecker product
(A.95).

9.5.3 Discussion

In Appendix www.9.8 we show that the robust Bayesian mean-variance prob-
lem (9.139) with the robustness uncertainty sets specified as in (9.149) and
(9.152) simplifies as follows:

w
(i)
rB = argmax

w

n
w0µ1 − γµ

p
w0Σ1w

o
(9.155)

subject to
½
w ∈ C
w0Σ1w ≤ γ

(i)
Σ ,
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where:

γµ ≡

s
q2µ
T1

ν1
ν1 − 2

(9.156)

γ
(i)
Σ ≡

v(i)

ν1
ν1+N+1

+
q

2ν21q
2
Σ

(ν1+N+1)
3

. (9.157)

This maximization is in the same form as the robust allocation decision
(9.130). Like that problem, under regularity assumption for the constraints C
also this maximization can be can be cast in the form of a second-order cone
programming problem (6.55). Therefore the robust Bayesian frontier (9.155)
can computed numerically.
The original robust Bayesian mean-variance problem (9.139) with the ro-

bustness uncertainty sets (9.149) and (9.152) is parametrized by the aversion
to estimation risk for the expected values, represented by qµ , the aversion to
estimation risk for the covariances, represented by qΣ, and the exposure to
market risk, represented by v(i). Therefore, in principle, the robust Bayesian
mean-variance efficient frontier should constitute a three-dimensional surface
in the N -dimensional space of the allocations.
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Fig. 9.10. Robust Bayesian mean-variance efficient allocations

Nevertheless, the efficient allocations (9.155) can be parametrized equiva-
lently in terms of one single positive multiplier λ as follows:

robust Bayesian frontier
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wrB (λ) = argmax
w∈C

n
w0µ1 − λ

p
w0Σ1w

o
. (9.158)

The multiplier λ is determined by the scalars (9.156) and (9.157). It is easy to
check that the value of λ is directly related to the aversion to estimation risk
(qµ , qΣ) and inversely related to the exposure to market risk v(i). Accordingly,
the term under the square root in (9.158) represents both estimation and
market risk and the coefficient λ represents aversion to both types of risk.
In other words, the a-priori three-dimensional robust Bayesian efficient

frontier collapses to a line. Hence the robust Bayesian mean-variance efficient
frontier is conceptually similar to, and just as parsimonious as, the classical
mean-variance efficient frontier (9.137). Nevertheless, in the classical setting
the coefficient of risk aversion only refers to market risk, whereas in the robust
Bayesian setting the coefficient of risk aversion blends aversion to both market
risk and estimation risk.
From (9.145)-(9.148) the expected values µ1 and the covariance matrix Σ1

in (9.158) are self-adjusting mixtures of the classical estimators
³bµ, bΣ´ and of

the prior parameters (µ0,Σ0). In particular, when the number of observations
T is large with respect to the confidence levels T0 and ν0 in the investor’s prior,
the expected values µ1 tend to the sample mean bµ and the covariance matrix
Σ1 tends to the sample covariance bΣ. Therefore we obtain a sample-based
efficient frontier:

ws (λ) = argmax
w∈C

n
w0bµ− λ

p
w0 bΣwo . (9.159)

Similarly, when the confidence levels T0 and ν0 in the investor’s prior are large
with respect to the number of observations T , the expected values µ1 tend to
the prior µ0 and the covariance matrix Σ1 tends to the prior Σ0. Therefore
we obtain a prior efficient frontier that disregards any information from the
market:

wp (λ) = argmax
w∈C

n
w0µ0 − λ

p
w0Σ0w

o
. (9.160)

Consider a market of N ≡ 6 stocks from the utilities sector of the S&P
500. We estimate the sample mean and covariance from a database of weekly
returns. We specify the prior with an equilibrium argument, as in (8.58)-(8.59),
where we assume a correlation of 0.5.
Suppose that the investor is bound by the standard budget constraint

w01 = 1 and the standard no-short-sale constraint w ≥ 0.
In Figure 9.10 we plot the general robust Bayesian efficient frontier (9.158)

and the limit cases (9.159) and (9.160), refer to symmys.com for more details.
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