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Evaluating allocations

The classical approach to allocation evaluation discussed in the second part of
the book assumes known the distribution of the market. In reality, the distri-
bution of the market is not known and can only be estimated with some error.
Therefore we need to update the evaluation criteria of a generic allocation in
such a way that they account for estimation risk: this is the subject of the
present chapter.
In Section 8.1 we realize that, since the distribution of the market is not

known, an allocation cannot be a simple number. Instead, it is the outcome of a
decision, contingent on the specific realization of the available information: the
same allocation decision would have outputted different portfolios if the time
series of market invariants had assumed different values. In order to evaluate
an allocation decision it is important to track its dependence on the available
information and stress test its performance in a set of different information
scenarios. This is the same approach used to assess the performance of an
estimator: the natural equivalent of the estimator’s loss in this context is the
opportunity cost, a positive quantity that the investor should try to minimize.
In Section 8.2 we apply the above evaluation process to the simplest alloca-

tion strategy: the prior allocation decision. This is a decision that completely
disregards any historical information from the market, as it only relies on
the investor’s prior beliefs. Such an extreme approach is doomed to yield sub-
optimal results. Indeed, in the language of estimators the prior allocation is an
extremely biased strategy. Nonetheless, the investor’s experience is a key in-
gredient in allocation problems: a milder version of the prior allocation should
somehow enter an optimal allocation decision.
In Section 8.3 we evaluate the most intuitive allocation strategy: the

sample-based allocation decision. This decision is obtained by substituting the
unknown market parameters with their estimated values in the maximization
problem that defines the classical optimal allocation. Intuitively, when the
estimates are backed by plenty of reliable data the final allocation is close to
the truly optimal, yet unattainable, allocation. Nevertheless, if the amount of
information is limited and the estimation process is naive, this approach is
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390 8 Evaluating allocations

heavily sub-optimal. In the language of estimators, the sample-based strategy
is an extremely inefficient allocation. We discuss in detail all the causes of
this inefficiency, which include the leverage effect of estimation risk due to
ill-conditioned estimates.

8.1 Allocations as decisions

A generic allocation α is more than just a vector that represents the number
of units of the securities in a given portfolio. An allocation is the outcome
of a decision process that filters the available information. Had the available
information been different, the same decision process would have yielded a
different allocation vector.
In order to evaluate an allocation we need to evaluate the decision process

behind it. This can be accomplished with the same approach used to eval-
uate an estimator. The recipe goes as follows: first, we introduce a natural
measure of sub-optimality for a generic allocation, namely the opportunity
cost; then we track the dependence of the opportunity cost on the unknown
market parameters; then we compute the distribution of the opportunity cost
of the given allocation decision under different information scenarios; finally
we evaluate the distribution of the opportunity cost of the given allocation
decision as the market parameters vary in a suitable stress test range.

8.1.1 Opportunity cost of a sub-optimal allocation

The optimal allocation α∗ was defined in (6.33) as the one that maximizes
the investor’s satisfaction, given his constraints:

α∗ ≡ argmax
α∈C

{S (α)} . (8.1)

For instance, in the leading example discussed Section 6.1, the constraints
are the budget constraint (6.24):

C1 : p0Tα = wT ; (8.2)

and the value at risk constraint (6.26):

C2 : Varc (α) ≤ γwT . (8.3)

The investor’s satisfaction is modeled by the certainty-equivalent of final
wealth (6.21), which reads:

CE(α) = ξ0α− 1

2ζ
α0Φα. (8.4)

The optimal allocation (6.39) reads:
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8.1 Allocations as decisions 391

α∗ ≡ ζΦ−1ξ +
wT − ζp0TΦ

−1ξ
p0TΦ−1pT

Φ−1pT . (8.5)

This allocation maximizes the certainty equivalent (8.4). Geometrically, this
allocation corresponds to the higher iso-satisfaction line compatible with the
investment constraints in the risk/reward plane of the allocations, see Figure
8.1 and refer to Figure 6.2 for a more detailed description.

e ≡ α 'ξ

v ≡ α' αΦ

optimal 
allocation

sub-optimal 
allocation

opportunity 
cost

iso-satisfaction line
2
ve
ζ

= +S

VaR
constraint budget 

constraint

Fig. 8.1. Leading allocation example: opportunity cost of a sub-optimal allocation

In a hypothetical deterministic world where the investor has complete fore-
sight of the market, the investor’s main objective Ψ , whether it is final wealth
as in (5.3), or relative wealth, as in (5.4), or net profits, as in (5.8), or pos-
sibly other specifications, becomes a deterministic function of the allocation,
instead of being a random variable. As discussed on p. 241, in this hypothetical
deterministic environment the investor does not need to evaluate an allocation
based on an index of satisfaction S. Instead, he considers directly his main
objective and determines the optimal allocation as the one that maximizes
his objective, given his constraints:

αd ≡ argmax
α∈C

{ψα} , (8.6)

where "d" stands for "deterministic" and the lower-case notation stresses that
the objective ψ is a deterministic value.
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392 8 Evaluating allocations

In our example, from (6.13) the markets are normally distributed:

PT+τ ∼ N(ξ,Φ) . (8.7)

The investor’s main objective is (6.4), namely final wealth:

Ψα ≡ α0PT+τ . (8.8)

Assume that the investor knows that the first security will display the
largest return over the investment horizon. Then he will invest all his budget
in the first security:

αd ≡
wT

p
(1)
T

δ(1), (8.9)

where δ(n) represents the n-th element of the canonical basis (A.15).

The allocation (8.1), which maximizes the investor’s satisfaction in a statis-
tical sense, is typically much worse than the allocation (8.6), which maximizes
the investor’s objective with certainty. We define the difference between the
satisfaction provided by these two allocations as the cost of randomness:

RC ≡ ψαd − S (α
∗) . (8.10)

Notice that, since both the objective and the index of satisfaction are measured
in terms of money, the cost of randomness is indeed a cost. Also notice that the
cost of randomness is a feature of the market and of the investor’s preferences:
it is not a feature of a specific allocation.

In our example it is immediate to understand that in hindsight the cash
pocketed for having picked the winner as in (8.9) exceeds the certainty-
equivalent of the suitably diversified portfolio (8.5).

Although the cost of randomness can be large, this cost is inevitable.
Therefore what we defined as the optimal solution (8.1) is indeed optimal.
As a result, the optimal allocation is the benchmark against which to evalu-
ate any allocation.
Indeed, consider a generic allocation α that satisfies the investment con-

straints. The difference between the satisfaction provided by the optimal al-
location α∗ and the satisfaction provided by the generic allocation α is the
opportunity cost of the generic allocation:

OC(α) ≡ S (α∗)− S (α) . (8.11)

Notice that the opportunity cost is always non-negative, since by definition
the optimal solution α∗ provides the maximum amount of satisfaction given
the constraints.
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8.1 Allocations as decisions 393

In our example, consider the deterministic allocation (8.9). This allocation,
which turns out to be ideal ex-post, is actually sub-optimal ex-ante, when the
investment decision is made, because it is not diversified.
The deterministic allocation satisfies the budget constraint (8.2) and, for

suitable choices of the confidence level c and the budget at risk γ, it also
satisfies the VaR constraint (8.3), see Figure 8.1.
From (6.38) the equation in the risk/reward plane of Figure 8.1 of the

iso-satisfaction line corresponding to a generic allocation α reads:

e = CE(α) +
v

2ζ
. (8.12)

Therefore the opportunity cost of the deterministic allocationαd is the vertical
distance between the iso-satisfaction line that corresponds to α∗ and the iso-
satisfaction line that corresponds to αd.

More in general we can evaluate any allocation, not necessarily an alloca-
tion that respects the investment constraints, by defining a cost, measured in
terms of money, whenever an allocation α violates the investment constraints.
We denote this cost as C+ (α).
For instance, if the indices of satisfaction eS associated with the investor’s

multiple objectives (6.9) are translation invariant, i.e. they satisfy (5.72), the
cost of violating the respective constraints (6.25) reads:

C+ (α) = max
n
0, es− eS (α)o . (8.13)

In our example, the investor evaluates his profits in terms of the value at
risk, which from (5.165) is translation invariant. Therefore the cost of violating
the VaR constraint (8.3) reads:

C+2 (α) = max {0,Varc (α)− γwT } . (8.14)

In general, it is always possible to associate a cost with the violation of a
given constraint, although possibly in a more ad-hoc way.

For instance, a possible constraint is the requirement that among the N
securities in the market only a smaller number M appear in the optimal
allocation. It is possible to model the cost for violating this constraint as
follows:

C+ (α) ≡ g (# (α)−M) , (8.15)

where the function # counts the non-null entries of a given allocation vector
α and the function g is null when its argument is negative or null and it is
otherwise increasing.
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394 8 Evaluating allocations

The opportunity cost of a generic allocation α that does not necessarily
satisfy the constraints reads:

OC(α) ≡ S (α∗)− S (α) + C+ (α) . (8.16)

Again, notice that the opportunity cost is always non-negative, given that by
definition the optimal solution α∗ provides the maximum amount of satis-
faction given the constraints. Also notice that the opportunity cost has the
dimensions of money, since the investor’s satisfaction is measured in terms of
money: thus the opportunity cost indeed represents a cost.

8.1.2 Opportunity cost as function of the market parameters

The distribution of the market invariants, and thus the distribution of the
market at the investment horizon, is fully determined by a set of unknown
market parameters θt. Consequently, the optimal allocation (8.1), i.e. the allo-
cation that maximizes the investor’s index of satisfaction given his constraints,
depends on these market parameters. Similarly, the opportunity cost (8.16) of
a generic allocation also depends on the on the market unknown parameters
θt. In view of evaluating an allocation, in this section we track the depen-
dence on the underlying market parameters of the optimal allocation and of
the opportunity cost of a generic suboptimal allocation.
The distribution of the market prices at the investment horizon PT+τ

is determined by the distribution of the market invariants relative to the
investment horizon XT+τ . This distribution in turn is the projection to the
investment horizon of the distribution of the market invariants relative to the
estimation interval, which is fully determined by a set of parameters θ:

θ
(3.64)7→ Xθ

T+τ

(3.79)7→ Pθ
T+τ . (8.17)

In our leading example we assume that the market consists of equity-like
securities. Therefore from Section 3.1.1 the linear returns are market invari-
ants:

Lt ≡ diag (Pt−τ )
−1Pt − 1. (8.18)

The simple projection formula (3.64) actually applies to the compounded re-
turns. Nevertheless, by assuming that the estimation interval eτ and the invest-
ment horizon τ coincide, the more complex projection formula for the linear
returns (3.78) becomes trivial. Also, we assume that the investment interval
is fixed and we drop it from the notation.
In order to be consistent with (8.7), the linear returns are normally dis-

tributed:
Lµ,Σt ∼ N(µ,Σ) , (8.19)

where the parameters of the market invariants µ andΣ are the N -dimensional
vector of expected returns and theN×N covariance matrix respectively. Then
the prices at the investment horizon are normally distributed:
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8.1 Allocations as decisions 395

Pµ,ΣT+τ ∼ N(ξ (µ) ,Φ (Σ)) , (8.20)

where from (8.18) we obtain:

ξ (µ) ≡ diag (pT ) (1+ µ) , Φ (Σ) ≡ diag (pT )Σdiag (pT ) . (8.21)

The lower-case notation pT stresses that the current prices are realized ran-
dom variables, i.e. they are known.
In this context (8.17) reads:

(µ,Σ)
(3.78)7→ Lµ,Σt

(3.79)7→ Pµ,ΣT+τ . (8.22)

Consider an allocation α. The market prices Pθ
T+τ and the allocation α

determine the investor’s objective Ψ , which in turn determines the investor’s
satisfaction S: ¡

α,Pθ
T+τ

¢ (5.10)-(5.15)7→ Ψθ
α

(5.52)7→ Sθ (α) . (8.23)

In our example the investor’s primary objective is his final wealth (8.8):

Ψµ,Σα ≡ α0Pµ,ΣT+τ . (8.24)

His satisfaction from the generic allocation α, modeled as the certainty-
equivalent of an exponential utility function, follows from (8.4) and (8.21)
and reads:

CEµ,Σ (α) = α0 diag (pT ) (1+ µ) (8.25)

− 1
2ζ
α0 diag (pT )Σdiag (pT )α.

A chain similar to (8.23) holds for the investor’s constraints ensuing from
the investor’s multiple secondary objectives:¡

α,Pθ
T+τ

¢ (5.10)-(5.15)7→ eΨθ
α

(5.52)7→ eSθ (α) (6.25)7→ Cθ . (8.26)

In our example the investor’s secondary objective are the profits since
inception (6.11): eΨµ,Σα ≡ α0

³
Pµ,ΣT+τ − pT

´
. (8.27)

The investor monitors his profits by means of the value at risk. From (6.22)
and (8.21) the dependence of the VaR on the market parameters reads:

Varµ,Σ (α) = −µ0 diag (pT )α (8.28)

+
p
2α0 diag (pT )Σdiag (pT )α erf−1 (2c− 1) .
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396 8 Evaluating allocations

Therefore the investor’s VaR constraint (8.3) reads:

Cµ,Σ : 0 ≥ −γwT − µ0 diag (pT )α (8.29)

+
p
2α0 diag (pT )Σdiag (pT )α erf−1 (2c− 1) .

The optimal allocation (8.1) is the one that maximizes the investor’s sat-
isfaction (8.23) given the investor’s constraints (8.26). As such, the optimal
allocation depends on the underlying market parameters:

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} . (8.30)

This is the optimal allocation function. The optimal allocation gives rise to
the maximum possible level of satisfaction, which also depends on the market
parameters:

S (θ) ≡ Sθ (α (θ)) ≡ max
α∈Cθ

{Sθ (α)} . (8.31)

In our example, substituting (8.21) in (8.5) we obtain the functional de-
pendence of the optimal allocation on the parameters µ and Σ that determine
the distribution of the market invariants:

α (µ,Σ) = [diag (pT )]
−1Σ−1

µ
ζµ+

wT − ζ10Σ−1µ
10Σ−11

1

¶
. (8.32)

As we prove in Appendix www.8.1 the maximum satisfaction reads:

CE(µ,Σ) =
ζ

2

µ
C − B2

A

¶
+wT

µ
1 +

B

A
− wT

ζ

1

2A

¶
, (8.33)

where
A ≡ 10Σ−11, B ≡ 10Σ−1µ, C ≡ µ0Σ−1µ. (8.34)

A generic allocation α is suboptimal because the satisfaction that the
investor draws from it is less than the maximum possible level (8.31). Fur-
thermore, the generic allocation α might violate the investment constraints.
From the constraint specification Cθ as a function of the market parameters
that follows from (8.26) we also derive the cost C+θ (α) of the generic allocation
violating the constraints.
For instance, if the indices of satisfaction eS associated with the investor’s

multiple objectives are translation invariant the cost of violating the respective
constraints follows from (8.13) and reads:

C+θ (α) = max
n
0, es− eSθ (α)o . (8.35)
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8.1 Allocations as decisions 397

In our example the cost of violating the VaR constraint is given by (8.14).
From the expression of the VaR (8.28) as a function of the market parameters,
the cost of violating the VaR constraint reads:

C+µ,Σ (α) = max {0,−γwT − µ0 diag (pT )α (8.36)

+
p
2α0 diag (pT )Σdiag (pT )α erf−1 (2c− 1)

o
.

From the maximum level of satisfaction (8.31), the satisfaction provided
by a generic allocation (8.23) and the cost of violating the constraints (8.35)
we obtain the expression of the opportunity cost (8.16) of a generic allocation
α as a function of the underlying parameters of the market invariants:

OCθ (α) ≡ S (θ)− Sθ (α) + C+θ (α) . (8.37)

In our example the opportunity cost of a generic allocation α that satisfies
the budget constraint is the difference between the optimal level of satisfaction
(8.33) and the satisfaction provided by the generic allocation (8.25), plus the
cost of violating the VaR constraint (8.36).

8.1.3 Opportunity cost as loss of an estimator

A generic allocation, not necessarily the optimal allocation, is a decision. As
discussed in (6.15), this decision processes the information iT available in
the market and based on the investor’s profile, which we consider fixed in this
chapter, outputs a vector that represents the amount to invest in each security
in a given market:

α [·] : iT 7→ RN , (8.38)

If the true parameters θt that determine the distribution of the market
were known, i.e. θt ∈ iT , then these would represent all the information
required to compute the optimal allocation: no additional information on the
market could lead to a better allocation. As a consequence, there would be
no need to consider any alternative allocation decision, as the only sensible
decision would be the optimal allocation function (8.30) evaluated in the true
value of the market parameters:

α [iT ] ≡ α
¡
θt
¢
. (8.39)

Nevertheless, the true value of the market parameters θt is not known, i.e.
θt is not part of the information iT available at the time the investment is
made: θt /∈ iT . At best, the parameters θt can be estimated with some error.
In other words, the truly optimal allocation (8.39) cannot be implemented.
Therefore the investor needs to decide how to process the information iT

available in the market in order to determine a suitable vector of securities.
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398 8 Evaluating allocations

For instance, but not necessarily, an investor might rely on estimates bθ [iT ] of
the market parameters in (8.39).
Consider a generic allocation decision α [iT ] as in (8.38). The information

on the market is typically summarized in the time series of the past observa-
tions of a set of market invariants:

iT ≡ {x1, . . . ,xT } , (8.40)

where the lower-case notation stresses that these are realizations of random
variables.

In our leading example, the market invariants are the linear returns (8.19)
and the information on the market is contained in the time series of the past
non-overlapping observations of these returns:

iT ≡ {l1, . . . , lT } . (8.41)

Consider for instance a very simplistic allocation decision, according to
which all the initial budget wT is invested in the best performer over the last
period. This strategy only processes part of the available information, namely
the last observation in the time series (8.41). Indeed, this allocation decision
is defined as follows:

α [iT ] ≡ wT
δ(b)

p
(b)
T

. (8.42)

In this expression δ(n) denotes the n-th element of the canonical basis (A.15)
and b is the index of the best among the realized returns:

b ≡ argmax
n∈{1,...,N}

{lT,n} , (8.43)

where lT,n denotes the last-period return of the n-th security.

The generic allocation decision α [iT ] gives rise to an opportunity cost
(8.37), which depends on the underlying market parameters:

OCθ (α [iT ]) ≡ S (θ)− Sθ (α [iT ]) + C+θ (α [iT ]) . (8.44)

The satisfaction ensuing from the best-performer decision (8.42) follows
from (8.25) and reads:

CEµ,Σ (α [iT ]) = wT (1 + µb)−
w2T
2ζ

Σbb. (8.45)

The cost of the best-performer strategy violating the VaR constraint follows
from substituting (8.42) in (8.36) and reads:

C+µ,Σ (α [iT ]) = wT max
n
0,
p
2Σbb erf

−1 (2c− 1)− µb − γ
o
. (8.46)
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Recalling the expression (8.33) of the maximum possible satisfaction, the op-
portunity cost of the best-performer strategy reads:

OCµ,Σ (α [iT ]) =
ζ

2

µ
C − B2

A

¶
+wT

µ
1 +

B

A
− wT

ζ

1

2A

¶
−wT (1 + µb) +

w2T
2ζ

Σbb (8.47)

+wT max
n
0,
p
2Σbb erf

−1 (2c− 1)− µb − γ
o
,

where A, B and C are the constants defined in (8.34). Notice that since ζ and
w have the dimension of money and all the other quantities are a-dimensional,
the opportunity cost is measured in terms of money.

Nevertheless, the opportunity cost (8.44) is not deterministic. Indeed, the
times series (8.40) that feeds the generic allocation decision α [iT ] is the spe-
cific realization of a set of T random variables, namely the market invariants:

IθT ≡
©
Xθ
1 , . . . ,X

θ
T

ª
. (8.48)

The distribution of the invariants depends on the underlying unknown market
parameters θ. In different markets, or even in the same market θ but in
different scenarios, the realization of the time series would have assumed a
different value i0T and thus the given allocation decision would have outputted
a different set of values α [i0T ].
This is the same situation encountered in the evaluation of an estimator,

see (4.15). Therefore, in order to evaluate a generic allocation we have to
proceed as in Figure 4.2. In other words, we replace the specific outcome of
the market information iT with the random variable (8.48). This way the
given generic allocation decision (8.38) yields a random variable:

α [·] : IθT 7→ RN . (8.49)

We stress that the distribution of the random variable α
£
IθT
¤
depends on the

underlying assumption θ on the distribution of the market invariants.

In our leading example, the time series of the past non-overlapping linear
returns (8.41) is a specific realization of a set of T random variables identically
distributed as in (8.19) and independent across time:

Iµ,ΣT ≡
n
Lµ,Σ1 ,Lµ,Σ2 , . . . ,Lµ,ΣT

o
. (8.50)

By substituting in (8.43) the last observation in the time series (8.41) with
the last of the set of random variables (8.50) we obtain a discrete random
variable B that takes values among the first N integers:
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B (µ,Σ) ≡ argmax
n∈{1,...,N}

n
Lµ,ΣT,n

o
. (8.51)

In turn, the scenario-dependent version of the best-performer strategy (8.42)
is defined in terms of the random variable B as follows:

α
h
Iµ,ΣT

i
≡ wT

δ(B)

P
(B)
T

. (8.52)

This is a discrete random variable that depends on the assumptions on the
underlying market parameters (µ,Σ) through (8.51).

The random variable α
£
IθT
¤
in turn gives rise to an opportunity cost (8.44)

which also becomes a random variable that depends on the underlying assump-
tion on the market parameters:

Loss
¡
α
£
IθT
¤
,α (θ)

¢
≡ OCθ

¡
α
£
IθT
¤¢

(8.53)

≡ S (θ)− Sθ
¡
α
£
IθT
¤¢
+ C+θ

¡
α
£
IθT
¤¢
.

In the context of estimators, the opportunity cost is the (non-quadratic) loss
(4.19) of the generic allocation decision with respect to the optimal alloca-
tion: indeed this random variable is never negative and is zero only in those
scenarios where the outcome of the allocation decision happens to coincide
with the optimal strategy.

The satisfaction ensuing from the stochastic version of the best-performer
strategy (8.52) replaces the satisfaction (8.45) ensuing from the specific real-
ization of the last-period returns:

CEµ,Σ
³
α
h
Iµ,ΣT

i´
= wT (1 + µB)−

w2T
2ζ

ΣBB. (8.54)

This is a random variable, defined in terms of the random variable (8.51).
More precisely, this is a discrete random variable, since its realizations can
only take on a number of values equal to the number N of securities in the
market, see Figure 8.2.
Similarly, the cost of violating the VaR constraint ensuing from the sto-

chastic version of the best-performer strategy (8.52) replaces the cost (8.46)
ensuing from the specific realization of the last-period returns:

C+µ,Σ
³
α
h
Iµ,ΣT

i´
= wT max

n
0,
p
2ΣBB erf

−1 (2c− 1)− µB − γ
o
. (8.55)

This is also a discrete random variable, defined in terms of the random variable
(8.51), see Figure 8.2.
The difference between the optimal satisfaction (8.33) and the actual sat-

isfaction (8.54) plus the cost of violating the VaR constraint (8.55) represents
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the opportunity cost of the best-performer strategy (8.52). This opportunity
cost is a discrete random variable which replaces the opportunity cost (8.47)
ensuing from the specific realization of the last-period returns, see Figure 8.2:

OCµ,Σ
³
α
h
Iµ,ΣT

i´
=

ζ

2

µ
C − B2

A

¶
+wT

µ
1 +

B

A
− wT

ζ

1

2A

¶
−wT (1 + µB) +

w2T
2ζ

ΣBB (8.56)

+wT max
n
0,
p
2ΣBB erf

−1 (2c− 1)− µB − γ
o
,

where A, B and C are the constants defined in (8.34).

8.1.4 Evaluation of a generic allocation decision

With the expression of the opportunity cost (8.53) we can evaluate an alloca-
tion decision for any value of the parameters θ that determine the underlying
distribution of the market invariants. Quite obviously, we only care about the
performance of the allocation decision for the true value θt of the market pa-
rameters. Nevertheless, even more obviously, we do not know the true value
θt, otherwise we would simply implement the optimal allocation (8.39).
Therefore, in order to evaluate the given allocation decision, we consider

the opportunity cost (8.53) of that strategy as a function of the underlying
market parameters as we let the market parameters θ vary in a suitable range
Θ that is broad enough to most likely include the true, unknown parameter
θt:

θ 7→ OCθ
¡
α
£
IθT
¤¢
, θ ∈ Θ. (8.57)

If the distribution of the opportunity cost is tightly peaked around a pos-
itive value very close to zero for all the markets θ in the given range Θ, in
particular it is close to zero in all the scenarios in correspondence of the true,
yet unknown, value θt. In this case the given allocation strategy is guaranteed
to perform well and is close to optimal. This is the definition of optimality
for an allocation decision in the presence of estimation risk: it is the same ap-
proach used to evaluate an estimator, see Figure 8.2 and compare with Figure
4.4.

In order to reduce the dimension of the market parameters and display the
results of our evaluation, we assume in our example (8.19) that the correlation
matrix of the linear returns has the following structure:

Ξ (ρ) ≡


1 ρ · · · ρ

ρ
. . .

...
...

. . . ρ
ρ · · · ρ 1

 , ρ ∈ Θ ≡ [0, 1) . (8.58)
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Fig. 8.2. Evaluation of allocation decisions as estimators

For the standard deviations and the expected values we assume the following
structure: p

diag (Σ (ρ)) ≡ (1 + ξρ)v, µ ≡ p
p
diag (Σ (ρ)), (8.59)

where v is a fixed vector of volatilities and ξ and p are fixed positive scalars.
In other words, we assume that more correlated markets are more volatile,
see Loretan and English (2000) and Forbes and Rigobon (2002) for comments
regarding this assumption; furthermore, we assume that there exists a fixed
risk premium for volatility. This way we obtain a one-parameter family of
markets steered by the overall level of correlation among the securities.
In the top plot in Figure 8.2 we display the maximum satisfaction (8.33),

which is not attainable:

ρ 7→ CE(µ (ρ) ,Σ (ρ)) , ρ ∈ Θ ≡ [0, 1) . (8.60)

In the same plot we display the distribution of the satisfaction (8.54) ensuing
from the best-performer strategy:

ρ 7→ CEµ(ρ),Σ(ρ)

³
α
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.61)

In the middle plot in Figure 8.2 we display the distribution of the cost (8.55)
of the best-performer strategy violating the value at risk constraint:

ρ 7→ C+µ(ρ),Σ(ρ)
³
α
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.62)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



8.2 Prior allocation 403

In the bottom plot in Figure 8.2 we display the distribution of the opportunity
cost (8.56) of the best-performer strategy:

ρ 7→ OCµ(ρ),Σ(ρ)

³
α
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.63)

Refer to symmys.com for more details on these plots.

We remark that since the opportunity cost (8.57) of an allocation decision
is a random variable, the evaluation of its distribution is rather subjective.
In principle, we should develop a theory to evaluate the distribution of the
opportunity cost that parallels the discussion in Chapter 5. Nonetheless, aside
from the additional computational burden, modeling the investor’s attitude
toward estimation risk is an even harder task than modeling his attitude
toward risk. Given the scope of the book, we do not dwell on this topic,
leaving the evaluation of the distribution of the opportunity cost on the more
qualitative level provided by a graphical inspection, see Figure 8.2.

8.2 Prior allocation

The simplest allocation strategy consists in investing in a pre-defined portfolio
that reflects the investor’s experience, models, or prior beliefs and disregards
any historical information from the market. In this section we analyze this
strategy along the guidelines discussed in Section 8.1.

8.2.1 Definition

The prior allocation decision is a strategy that neglects the information iT
contained in the time series of the market invariants:

αp [iT ] ≡ α, (8.64)

where "p" stand for "prior" and α is a vector that satisfies all the constraints
that do not depend on the unknown market parameters.
We remark that the prior allocation is a viable decision of the form (8.38),

i.e. it is a decision that processes (by disregarding) only the information avail-
able on the market at the time the investment is made.

An example of such an allocation decision is the equally-weighted portfolio
(6.16), which we report here:

αp ≡
wT

N
diag (pT )

−1 1, (8.65)

where wT is the initial budget, pT are the current market prices and 1 is an
N -dimensional vector of ones.
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8.2.2 Evaluation

In order to evaluate the prior allocation we proceed as in Section 8.1.
First we consider a set Θ of market parameters that is broad enough to

most likely include the true, unknown value θt.
For each value θ of the market parameters in the stress test set Θ we

compute as in (8.30) the optimal allocation function:

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} ; (8.66)

Then we compute as in (8.31) the optimal level of satisfaction if θ are the
underlying market parameters, namely S (θ).

In our leading example the optimal allocation is (8.32), which provides the
optimal level of satisfaction (8.33).

Next, we should randomize as in (8.48) the information from the mar-
ket iT , generating a distribution of information scenarios IθT that depends on
the assumption θ on the market parameters and then we should compute
the outcome of the prior allocation decision (8.64) applied to the information
scenarios, obtaining the random variable αp

£
IθT
¤
. Nevertheless, since by defi-

nition the prior allocation does not depend on the information on the market,
we do not need to perform this step.
Therefore we move on to the next step and compute from (8.23) the satis-

faction Sθ (αp) ensuing from the prior allocation decision under the assump-
tion θ for the market parameters. Similarly, from (8.26) and expressions such
as (8.35) we compute the cost of the prior allocation decision violating the
constraints C+θ (αp) under the assumption θ for the market parameters. We
stress that, unlike in the general case, in the case of the prior allocation deci-
sion both satisfaction and cost of constraint violation are deterministic.
Then we compute the opportunity cost (8.53) of the prior allocation, which

is the difference between the satisfaction from the unattainable optimal allo-
cation and the satisfaction from the prior allocation, plus the cost of the prior
allocation violating the constraints:

OCθ (αp) ≡ S (θ)− Sθ (αp) + C+θ (αp) . (8.67)

Again, unlike in the general case, in the case of the prior allocation decision
the opportunity cost is not a random variable.

The satisfaction provided by the equally weighted portfolio (8.65) follows
from (8.25) and reads:

CEµ,Σ (αp) = wT

µ
1 +

(µ01)
N

¶
− w2T
2ζ

10Σ1
N2

. (8.68)
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The cost of the equally weighted portfolio (8.65) violating the VaR constraint
follows from (8.36) and reads:

C+µ,Σ (αp) = wT max

½
0,−γ − 1

0µ
N

(8.69)

+

√
210Σ1
N

erf−1 (2c− 1)
)
.

Therefore the opportunity cost of the equally weighted portfolio under the
assumption µ and Σ for the market parameters reads:

OCµ,Σ (αp) ≡ CE(µ,Σ)−CEµ,Σ (αp) + C+µ,Σ (αp) , (8.70)

where the first term on the right hand side is given in (8.33).

Finally we consider as in (8.57) the opportunity cost of the prior allocation
as a function of the underlying assumptions θ on the market, as θ varies in
the stress test range:

θ 7→ OCθ (αp) , θ ∈ Θ, (8.71)

see Figure 8.3. If this function is close to zero for each value θ of the market
parameters in the stress test setΘ then the prior allocation is close to optimal.

In order to display the results in Figure 8.3 we let the underlying market
parameters vary according to (8.58)-(8.59), obtaining a one-parameter fam-
ily of markets, parameterized by the overall level of correlation ρ. Refer to
symmys.com for more details on these plots.
In the top plot in Figure 8.3 we display the maximum satisfaction (8.33),

which is not attainable:

ρ 7→ CE(µ (ρ) ,Σ (ρ)) , ρ ∈ Θ ≡ [0, 1) . (8.72)

In the same plot we display the satisfaction (8.68) ensuing from the equally
weighted portfolio (8.65):

ρ 7→ CEµ(ρ),Σ(ρ) (αp) , ρ ∈ Θ ≡ [0, 1) . (8.73)

In the plot in the middle of Figure 8.3 we display the cost (8.69) of the
equally weighted portfolio violating the VaR constraint:

ρ 7→ C+µ(ρ),Σ(ρ) (αp) , ρ ∈ Θ ≡ [0, 1) . (8.74)

Notice that for large enough values of the overall market correlation the value
at risk constraint is not satisfied: therefore the investor pays a price that
affects his total satisfaction.
In the bottom plot in Figure 8.3 we display the opportunity cost (8.70) of

the equally weighted portfolio:
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ρ 7→ OCµ(ρ),Σ(ρ) (αp) , ρ ∈ Θ ≡ [0, 1) . (8.75)

It appears that for our investor the equally weighted portfolio is only suitable
if the market is sufficiently diversified.
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Fig. 8.3. Prior allocation: evaluation

8.2.3 Discussion

In general the opportunity cost of a prior allocation is large. The reason why
the prior allocation decision is sub-optimal is quite obvious: just like the hands
of a broken watch, which happen to correctly indicate the time only twice a
day, the prior allocation is only good in those markets, if any, where the
optimal allocation happens to be close to the prior allocation.
Notice the resemblance of this situation with the failure of the "fixed"

estimator (4.32). Indeed, like in the case of the fixed estimator, the prior
allocation is extremely efficient, meaning that the loss, namely the opportunity
cost (8.67), is a deterministic variable, instead of a random variable like in
the general case (8.53). Nevertheless, since the information on the market is
disregarded, the prior allocation does not track the market parameters θ as
these vary in the stress test set Θ, see Figure 8.3. As a result, in the language
of estimators the prior allocation is extremely biased.
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8.3 Sample-based allocation

In this section we discuss the most intuitive approach to allocation, namely
the sample-based allocation decision. This decision consists in replacing the
true unknown value of the market parameters with estimates in the optimal
allocation function.
We evaluate the sample-based allocation decision by computing its oppor-

tunity cost along the guidelines discussed in Section 8.1. Since the opportunity
cost is caused by the error in the estimation of the market parameters, in this
context the opportunity cost is called estimation risk .
As it turns out, the large estimation risk of sample-based allocation deci-

sions is due to the extreme sensitivity of the optimal allocation function to the
input market parameters: in other words, the optimization process leverages
the estimation error already present in the estimates of the market parame-
ters, see also Jobson and Korkie (1980), Best and Grauer (1991), Green and
Hollifield (1992), Chopra and Ziemba (1993) and Britten-Jones (1999).

8.3.1 Definition

Consider the optimal allocation function (8.30):

α (θ) ≡ argmax
α∈Cθ

{Sθ (α)} . (8.76)

The truly optimal allocation (8.39) cannot be implemented because it relies
on knowledge of the true market parameters θt, which are unknown.

In our leading example the optimal allocation function is (8.32):

α (µ,Σ) = [diag (pT )]
−1Σ−1

µ
ζµ+

wT − ζ10Σ−1µ
10Σ−11

1

¶
. (8.77)

The market parameters µ and Σ are unknown.

Nevertheless, these parameters can be estimated by means of an estimatorbθ that processes the information available in the market iT as described in
Chapter 4: bθ [iT ] ≈ θt. (8.78)

In our leading example, from the time series of the past observations of
the non-overlapping linear returns (8.41) we can estimate the parameters µ
and Σ that determine the distribution of the market (8.19). For instance, we
can estimate these parameters by means of the sample mean (4.98), which in
this context reads:

bµ [iT ] ≡ 1

T

TX
t=1

lt; (8.79)
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and sample covariance (4.99), which in this context reads:

bΣ [iT ] ≡ 1

T

TX
t=1

(lt − bµ) (lt − bµ)0 . (8.80)

It is intuitive to replace the unknown market parameters θt that should
ideally feed the optimal allocation function (8.76) with their estimates (8.78).
This way we obtain the sample-based allocation decision:

αs [iT ] ≡ α
³bθ [iT ]´ (8.81)

≡ argmax
α∈Cbθ [iT ]

n
Sbθ [iT ] (α)

o
.

We stress that, unlike the truly optimal allocation (8.39) which cannot be im-
plemented, the sample-based allocation decision is indeed a decision and thus
it can be implemented. In other words, the sample-based allocation decision
processes the information available on the market at the time the investment
decision is made, i.e. it is of the general form (8.38).

In our leading example, the sample-based allocation follows from replacing
(8.79) and (8.80) in (8.77) and reads:

αs = [diag (pT )]
−1 bΣ−1Ãζbµ+ wT − ζ10 bΣ−1bµ

10 bΣ−11 1

!
. (8.82)

8.3.2 Evaluation

In order to evaluate the sample-based allocation we proceed as in Section 8.1.
First we consider a set Θ of market parameters that is broad enough to

most likely include the true, unknown value θt.
For each value θ of the market parameters in the stress test set Θ we

compute the optimal allocation function α (θ), see (8.76).
Then we compute as in (8.31) the optimal level of satisfaction if θ are the

underlying market parameters, namely S (θ).

In our leading example the optimal allocation (8.77) provides the optimal
level of satisfaction (8.33).

Then, as in (8.48), for each value θ of the market parameters in the stress
test set Θ we randomize the information from the market iT , generating a
distribution of information scenarios IθT that depends on the assumption θ on
the market parameters:
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IθT ≡
©
Xθ
1 , . . . ,X

θ
T

ª
. (8.83)

By applying the estimator bθ to the different information scenarios (8.83)
instead of the specific realization iT as in (8.78) we obtain a random variable:bθ [iT ] 7→ bθ £IθT ¤ . (8.84)

We stress that the distribution of this random variable is determined by the
underlying assumption θ on market parameters.

In our leading example, we replace iT , i.e. the specific observations of the
past linear returns (8.41), with the set Iµ,ΣT of independent and identically
distributed variables (8.50). This way the estimators (8.79) and (8.80) be-
come random variables, whose distribution follows from (4.102) and (4.103)
respectively:

bµ hIµ,ΣT

i
∼ N

µ
µ,
Σ

T

¶
(8.85)

T bΣ hIµ,ΣT

i
∼W(T − 1,Σ) , (8.86)

where the two random variables bµ and bΣ are independent.
In turn, the sample-based allocation decision (8.81) in the different infor-

mation scenarios yields a random variable whose distribution depends on the
underlying market parameters:

αs
£
IθT
¤
≡ α

³bθ £IθT ¤´ (8.87)

≡ argmax
α∈Cbθ [IθT ]

n
Sbθ[IθT ] (α)

o
.

This step corresponds to (8.49).

In our example, the distribution of the sample-based allocation (8.82) un-
der the assumptions (8.85) and (8.86) is not known analytically but we can
easily compute it numerically. We generate a large number J of Monte Carlo
scenarios from (8.85) and (8.86), which are independent of each other:

jbµµ,Σ, j
bΣµ,Σ, j = 1, . . . , J . (8.88)

Then we compute the respective sample-based allocation (8.82) in each of
these scenarios:

jα
µ,Σ
s ≡ ζ [diag (pT )]

−1
j
bΣ−1jbµ. (8.89)

+
wT − ζ10j bΣ−1jbµ

10j bΣ−11 [diag (pT )]
−1

j
bΣ−11.
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Notice that the allocations generated this way depend on the underlying pa-
rameters µ and Σ through the sample estimators (8.88).

Next we compute as in (8.23) the satisfaction Sθ
¡
αs
£
IθT
¤¢
ensuing from

each scenario of the sample-based allocation decision (8.87) under the assump-
tion θ for the market parameters, which, we recall, is a random variable.
Similarly, from (8.26) and expressions such as (8.35) we compute the cost

of the sample-based allocation decision violating the constraints C+θ
¡
αs
£
IθT
¤¢

in each scenario under the assumption θ for the market parameters, which is
also a random variable.

In our example we compute according to (8.25) the satisfaction ensuing
from each Monte Carlo scenario (8.89) of the sample-based allocation:

CEµ,Σ

³
αs
h
Iµ,ΣT

i´
≈ CEµ,Σ

¡
jα

µ,Σ
s

¢
, j = 1 . . . J . (8.90)

The respective histogram represents the numerical probability density func-
tion of the satisfaction from the sample-based allocation.
Similarly we compute according to (8.36) the cost of violating the value at

risk constraint ensuing from each Monte Carlo scenario (8.89) of the sample-
based allocation:

C+µ,Σ
³
αs
h
Iµ,ΣT

i´
≈ C+µ,Σ

¡
jα

µ,Σ
s

¢
, j = 1 . . . J . (8.91)

The respective histogram represents the numerical probability density func-
tion of the cost of the sample-based allocation violating the VaR constraint.

Then we compute the opportunity cost (8.53) of the sample-based alloca-
tion under the assumption θ for the market parameters, which is the difference
between the satisfaction from the unattainable optimal allocation and the sat-
isfaction from the sample-based allocation, plus the cost of the sample-based
allocation violating the constraints:

OCθ
¡
αs
£
IθT
¤¢
≡ S (θ)− Sθ

¡
αs
£
IθT
¤¢
+ C+θ

¡
αs
£
IθT
¤¢
. (8.92)

We stress that the opportunity cost is a general concept: whenever the
investor misses the optimal, unattainable allocation he is exposed to a loss.
When the sub-optimality of his allocation decision is due to the error in the
estimates of the underlying market parameters, like in the case of the sample-
based allocation, the loss, or the opportunity cost, is called estimation risk .
Finally, as in (8.57) we let the market parameters θ vary in the stress test

range Θ, analyzing the opportunity cost of the sample-based strategy as a
function of the underlying market parameters:

θ 7→ OCθ
¡
αs
£
IθT
¤¢
, θ ∈ Θ, (8.93)
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Fig. 8.4. Sample-based allocation: evaluation

see Figure 8.4.
If the distribution of the opportunity cost (8.93) is tightly peaked around

a positive value very close to zero for all the markets θ in the stress test range
Θ, in particular it is close to zero in all the scenarios in correspondence of the
true, yet unknown, value θt. In this case the sample-based allocation decision
is guaranteed to perform well and is close to optimal.

In order to display the results in our leading example we let the underlying
market parameters vary according to (8.58)-(8.59), obtaining a one-parameter
family of markets, parameterized by the overall level of correlation ρ.
In the top plot in Figure 8.4 we display the unattainable maximum satis-

faction (8.33) as a function of the overall correlation:

ρ 7→ CE(µ (ρ) ,Σ (ρ)) , ρ ∈ Θ ≡ [0, 1) . (8.94)

In the same plot we display the histograms of the satisfaction (8.90) from the
sample-based allocation:

ρ 7→ CEµ(ρ),Σ(ρ)

³
αs
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.95)

In the plot in middle of Figure 8.4 we display the histograms of the cost
(8.91) of violating the value at risk constraint:

ρ 7→ C+µ(ρ),Σ(ρ)
³
αs
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.96)
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We notice from this plot that the value at risk constraint is violated regularly
in slightly correlated markets.
In the bottom plot in Figure 8.4 we display the histograms of the oppor-

tunity cost of the sample-based allocation, which, according to (8.92), is the
difference between the satisfactions (8.94) and (8.95), plus the cost (8.96):

ρ 7→ OCµ(ρ),Σ(ρ)

³
αs
h
I
µ(ρ),Σ(ρ)
T

i´
, ρ ∈ Θ ≡ [0, 1) . (8.97)

Refer to symmys.com for more details on these plots.

8.3.3 Discussion

The sample-based allocation decision gives rise to a very scattered opportunity
cost. The dispersion of the opportunity cost is due mainly to the sensitivity of
the optimal allocation function (8.76) to the input parameters. This sensitivity
gives rise to a leveraged propagation of the estimation error, as we proceed to
discuss.
In the first place, the scenario-dependent estimates bθ £IθT ¤ provided by

sample-based estimators are in general quite dispersed around the underly-
ing market parameter θ. In other words, sample-based estimators are quite
inefficient.

In our example the distribution of the estimator is given in (8.85) and
(8.86). These estimates are very disperse when the number of observations T
in the sample is low, see (4.109) and (4.119).

In the second place, the inefficiency of the estimators propagates into the
estimates of the investor’s satisfaction Sbθ and of the constraints Cbθ that appear
in the definition of the sample-based allocation (8.87).

In our example, two variables fully determine the investor’s satisfaction
(8.25) and the cost of constraint violation (8.36), namely:

v ≡ α0 diag (pT )Σdiag (pT )α (8.98)

e ≡ α0 diag (pT ) (1+ µ) . (8.99)

The natural estimators of these variables in terms of the estimators (8.85)
and (8.86) read:

bv ≡ α0 diag (pT ) bΣdiag (pT )α (8.100)be ≡ α0 diag (pT ) (1+ bµ) . (8.101)

In Appendix www.8.2 we show that the distributions of the estimators (8.100)
and (8.101) read respectively:
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Fig. 8.5. Sample-based allocation: error in satisfaction and constraints assessment

be ∼ N(e, v) , Tbv ∼ Ga (T − 1, v) . (8.102)

To gain insight into the main joint properties of bv and be, which fully
determine the quantities of interest to the investor, we consider the location-
dispersion ellipsoid of (bv, be) in the plane of coordinates (v, e), see Figure 8.5
and refer to Figure 8.1. Also refer to Section 2.4.3 for a thorough discussion of
the location-dispersion ellipsoid in a general context and to Appendix www.8.2
for a proof of the results that follow.
The center of the location-dispersion ellipsoid of (8.100)-(8.101) reads:

E {bv} = T − 1
T

v, E {be} = e. (8.103)

In other words, there exists a bias that disappears as the number of obser-
vations grows. Since bv and be are independent, the principal axes of their
location-dispersion ellipsoid are aligned with the reference axes.
The semi-lengths of the two principal axes of the location-dispersion el-

lipsoid of (8.100)-(8.101), which represent the standard deviations of each
estimator respectively, read:

Sd {bv} =r2T − 1
T 2

v, Sd {be} =r v

T
. (8.104)

In Figure 8.5 we plot the location-dispersion ellipsoid along with several
possible outcomes (small dots) of the estimation process. In each scenario
the investor estimates that the variables v and e, which fully determine his
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satisfaction and his constraints, are represented by the respective small dot,
whereas in reality they are always represented by the fixed value close to the
center of the ellipsoid.
Consequently, the investor’s estimate of his satisfaction can be completely

mistaken, since from (8.25) this estimate reads:

Sbµ,bΣ ≡ be− bv
2ζ
. (8.105)

Similarly, the estimate of the cost of violating the value at risk constraint
can also be completely mistaken, since from (8.36) this estimate reads:

C+bµ,bΣ ≡ max
n
0, (1− γ)wT − be+√2bv erf−1 (2c− 1)o . (8.106)

In particular, the allocation in Figure 8.5 satisfies the VaR constraint, al-
though in many scenarios the investor believes that it does not.

sample-based 
allocations

optimal

e

v

constraints satisfied

VaR constraint 
boundary

budget 
boundary

Fig. 8.6. Sample-based allocation: leverage of estimation error

Finally, the optimal allocation function is extremely sensitive to the value
of the market parameters. In other words, the maximization in (8.87) leverages
the dispersion of the estimates of satisfaction and constraints.

In our example the solution jαs defined in (8.89) of the allocation opti-
mization problem in the j-th Monte Carlo scenario involves the inverse of the
sample covariance matrix j

bΣ of the linear returns.
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Consider as in (4.148) the PCA decomposition of the true covariance ma-
trix and of its sample estimator in each of the J Monte Carlo scenarios:

Σ ≡ EΛE0, j
bΣ ≡ j

bEj
bΛj bE0. (8.107)

In this expression Λ is the diagonal matrix of the eigenvalues sorted in de-
creasing order:

Λ ≡ diag (λ1, . . . , λN ) ; (8.108)

the matrix E is the juxtaposition of the respective normalized eigenvectors;
and the same notation holds for all the sample ("hat") counterparts.
The sample estimator of the covariance matrix tends to push the low-

est eigenvalues of the sample covariance matrix toward zero, see Figure
4.15. Therefore the inverse of the sample covariance matrix displays a small-
denominator effect:

j
bΣ−1 = j

bEdiagÃ 1

j
bλ1 , . . . , 1

j
bλN
!

j
bE0. (8.109)

These small denominators push the inverse matrix (8.109) toward infinity. As
a consequence, the ensuing allocations jαs become both very extreme and
very sensitive.
In turn, the above extreme allocations jαs give rise to very poor levels of

satisfaction and badly violate the constraints. Indeed, consider the true coor-
dinates (8.98) and (8.99) (not the estimated coordinates (8.100) and (8.101))
of the sample-based allocations in the j-th Monte-Carlo scenario:

jv ≡ jα
0
s diag (pT )Σdiag (pT ) jαs (8.110)

je ≡ jα
0
s diag (pT ) (1+ µ) . (8.111)

In Figure 8.6 we plot the coordinates (8.110) and (8.111) obtained in the
Monte Carlo scenarios, also refer to Figure 8.1.
From (8.25) the investor’s satisfaction from the generic allocation jαs in

the j-th scenario is completely determined by the coordinates (8.110) and
(8.111):

CE
¡
kαs

¢
= je− jv

2ζ
. (8.112)

Similarly, we see from (8.36) that these coordinates also determine the cost
of violating the value at risk constraint:

C+ (jαs) = max
©
0, (1− γ)wT − je+

p
2jv erf

−1 (2c− 1)
ª
. (8.113)

The sample-based allocation satisfies the budget constraint: therefore all the
allocations lie in suboptimal positions within the budget-constraint boundary.
Nevertheless, the value at risk constraint is not satisfied in many scenarios. We
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see from Figure 8.4 that the situation is not exceptional, as the VaR constraint
is violated regularly for a wide range of market parameters.
For the allocations that satisfy the VaR constraint the opportunity cost, or

estimation risk, is the vertical distance between the allocation’s iso-satisfaction
line and the optimal iso-satisfaction line as in Figure 8.1.
For the allocations that do not satisfy the VaR constraint, the cost of

violating the VaR constraint kicks in, and the opportunity cost becomes the
vertical distance between the allocation’s iso-satisfaction line and the optimal
iso-satisfaction line, plus the term (8.113).

The opportunity cost associated with a generic allocation decision can be
interpreted as a loss in the context of estimators, see (8.53).
Unlike the prior allocation, which disregards the information available on

the market, the sample-based allocation processes that information. In par-
ticular, the sample-based allocation tracks the market parameters θ through
the estimator bθ as these vary in the stress test range. Therefore the center
of the distribution of the opportunity cost of the sample-based allocation is
quite close to zero for all the values of the market parameters in the stress
test range, see Figure 8.4 and compare with Figure 8.3: in the language of
estimators, the sample-based allocation decision is not too biased.
On the other hand, the extreme sensitivity of the allocation optimization

process to the market parameters leverages the estimation error of the esti-
mator bθ, making the distribution of the opportunity cost very disperse: in the
language of estimators, the sample-based allocation decision is very inefficient.
We stress that the above remarks depend on the choice of the estimatorbθ chosen in (8.78) to estimate the market parameters. For instance, we can

lower the inefficiency of the sample-based allocation decision by using shrink-
age estimators, refer to Section 4.4. Indeed, in the extreme case where the
estimator is fully shrunk toward the shrinkage target, the ensuing sample-
based allocation degenerates into a prior allocation: as discussed in Section
8.2, the prior allocation is extremely efficient.
We revisit "shrinkage" allocation decisions in a more general Bayesian

context in Chapter 9.
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