
A

Linear algebra

In this appendix we review the main concepts of linear algebra. We stress
the geometrical interpretation wherever possible and we do not shun loose
expressions in order to appeal to intuition. For a thorough introduction to
linear algebra the reader is referred to references such as Lang (1997).

A.1 Vector space

The natural environment of linear algebra are finite-dimensional vector spaces.
A vector space is a set on whose elements we can perform certain operations. In
practice, we focus our attention on the Euclidean space RN . We can represent
geometrically the Euclidean space RN as the space generated by N axes, as
in the left portion of Figure A.1
A vector in RN can be represented as a column of N real numbers

v ≡ (v1, . . . , vN )0 , (A.1)

where the symbol 0 denotes transposition. Geometrically, it is natural to rep-
resent a vector as an arrow whose tail sits on the origin of the N axes that
generate the space and whose tip is the N -tuple (A.1).
Alternatively, it is useful to think of an analytical representation of a vector

as a function that with each of the first N integers associates a real number,
the "entry" on the respective axis:

v : n ∈ {1, . . . , N}→ vn ∈ R. (A.2)

Refer again to Figure A.1 for an interpretation.
The set of such vectors is a vector space, since the following operations are

properly defined on its elements.
The sum of two vectors is defined component-wise as follows:

[u+ v]n ≡ un + vn. (A.3)
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Fig. A.1. Representations of a vector

This is the parallelogram rule: the sum of two arrows stemming from the origin
is the diagonal of the parallelogram spanned by the arrows.
The multiplication by a scalar is defined component-wise as follows:

[αv]n ≡ αvn. (A.4)

This is a stretch by a factor α in the direction of v.
Combining sums and multiplications by a scalar we obtain linear combi-

nations of vectors.
All possible linear combinations of an arbitrary set of vectors {v1, . . . ,vK}

in a vector space generates a vector subspace of that vector space. To visual-
ize a subspace, consider the parallelotope described by the vertices of a set of
vectors {v1, . . . ,vK}. The subspace generated by these vectors is the paral-
lelotope obtained by stretching all the vertices to plus and minus infinity.
Vectors are linearly independent if the parallelotope they generate is non-

degenerate. We see in Figure A.2 the case of three vectors, respectively linearly
independent and linearly dependent.
The last important feature of the Euclidean space RN is the existence

of an inner product , an operation that allows to define useful concepts such
as orthogonality and length. The inner product is defined as the sum of the
entry-by-entry multiplication of two vectors:

hu,vi ≡
NX
n=1

unvn. (A.5)

By means of the inner product we can define the length of a vector in RN ,
also called the norm:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



A.1 Vector space 467
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Fig. A.2. Linear (in)dependence among vectors

kvk ≡
p
hv,vi. (A.6)

The reader will recognize that the norm is indeed the length, as its definition
can be interpreted in geometric terms as the Pythagorean theorem. Further-
more, the norm displays the following intuitive properties of a length:

kvk ≥ 0
kvk = 0⇔ v = 0 (A.7)

kαvk = |α| kvk
ku+ vk ≤ kuk+ kvk .

The last property is called triangular inequality and follows from the Cauchy-
Schwartz inequality :

|hu,vi| ≤ kuk kvk , (A.8)

in which the equality holds if and only if u ≡ αv for some scalar α. If the
scalar α is positive:

hu,vi = kuk kvk ; (A.9)

if the scalar α is negative:

hu,vi = − kuk kvk . (A.10)

We omit the (easy) proof.
Two vectors u and v are orthogonal if their inner product is null:

hu,vi = 0. (A.11)
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468 A Linear algebra

The projection of a vector u on a subspace V is the vector of that subspace
that is closest to u:

P (u, V ) ≡ argmin
v∈V

ku− vk . (A.12)

It is possible to check that if two vectors are orthogonal the projection of
either one on the subspace generated by the other is zero: geometrically, this
means that the two vectors are perpendicular. Therefore orthogonal vectors
are linearly independent, since the parallelotope they generate is not skewed,
and thus non-degenerate, see Figure A.2.

A.2 Basis

A basis for a vector space is a set of linearly independent elements of that
space that can generate all the other vectors by means of linear combinations.
The number of these elements is the dimension of that vector space. In the
case of the Euclidean space RN , this number is N . Therefore, a basis is a set
of vectors

e(n), n = 1, . . . , N , (A.13)

such that, for suitable scalars α1, . . . , αN , any vector v of RN can be expressed
as a linear combination:

v =
NX
n=1

αne
(n). (A.14)

The canonical basis is the following set of vectors:

δ(1) ≡ (1, 0, . . . , 0)0

... (A.15)

δ(N) ≡ (0, 0, . . . , 1)0 .

It is possible to check that the canonical basis is the only set of vectors such
that the inner product of one of them, say δ(n), with a generic vector v in RN
yields the n-th entry of that vector:D

v, δ(n)
E
= vn. (A.16)

The generic element δ(n) of this basis is called the Kronecker delta centered
in n. This name stems from the analytical representation of the vector δ(n) as
in the right portion of Figure A.1, which is a function peaked on the integer
n.
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A.3 Linear transformations 469

A.3 Linear transformations

Consider a function A that maps vectors v of the Euclidean space RN into
vectors that belong to the same Euclidean space RN , or to another Euclidean
space RM :

A : v ∈ RN 7→ u ≡ A [v] ∈ RM . (A.17)

The functionA is a linear transformation, or a linear application, if it preserves
the sum and the multiplication by a scalar:

A [u+ v] = A [u] +A [v] (A.18)

A [αv] = αA [v] .

In Figure A.3 we sketch the graphical meaning of a linear application. Con-
sider the parallelotope P described by the vertices of a set of K vectors
{v1, . . . ,vK}. Now consider the parallelotope P0 described by the vertices
of the set of vectors {A [v1] , . . . , A [vK ]}. A transformation A is linear if
A (P) = P0, i.e. if parallelotopes are mapped into parallelotopes: it is called a
linear application because it does not bend straight lines. This interpretation

Fig. A.3. Geometrical representation of a linear transformation

makes it immediate to see that a sequence of two linear applications

(B ◦A) [v] ≡ B [A [v]] (A.19)

is a linear application.
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470 A Linear algebra

The inverse A−1 of a linear transformation A is the transformation that
applied either before or after the linear transformation A cancels the effect of
the transformation A. In other words, for all vectors v the inverse transfor-
mation A−1 satisfies:¡

A−1 ◦A
¢
[v] = v =

¡
A ◦A−1

¢
[v] . (A.20)

The inverse of a linear application is not always defined: if a linear transfor-
mation A "squeezes" a parallelotope into a degenerate parallelotope it is not
possible to recover univocally the vectors that generated the original paral-
lelotope. In this case the dimension of the image space A

£
RN
¤
is less than

the dimension N of the original space.
The dimension of the image space is called the rank of the application A:

rank (A) ≡ dim
¡
A
£
RN
¤¢
. (A.21)

Since a linear application can either squeeze a vector space or preserve its
dimension, it follows from the definition (A.21) of rank that:

rank (B ◦A) ≤ min (rank (A) , rank (B)) . (A.22)

A linear transformation is invertible if it is full-rank, i.e. if its rank is equal
to the dimension of the original vector space. Therefore, a linear transforma-
tion is full-rank if it maps a basis into another basis.
If a linear transformation is full-rank, the inverse transformationA−1 exists

and it is also a linear application, since in turn it maps parallelotopes in
parallelotopes.

A.3.1 Matrix representation

Just like vectors can be identified with N -tuples of numbers as in (A.1), linear
transformations can be identified with M × N matrices. Indeed, consider a
generic linear transformation (A.17). A Taylor expansion around zero of the
generic entry um as a function of the entries of v reads:

um = Am +
NX
n=1

Amnvn +
NX

n,l=1

Amnlvnvl + · · · , (A.23)

where A··· are suitable constant coefficients. In order for (A.18) to hold only
the coefficients Amn in the second term can contain non-zero elements. Col-
lecting these terms in a matrix A we can represent the linear transformation
(A.17) by means of its matrix representation as follows:

u ≡ A [v] ≡ Av, (A.24)

where the product of a matrix by a vector is defined as:
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A.3 Linear transformations 471

[Av]m ≡
NX
n=1

Amnvn. (A.25)

For example, consider the identity transformation defined as follows:

I [v] ≡ v. (A.26)

It is immediate to check that the identity transformation is represented by
the identity matrix , defined as follows:

IN ≡


1 0 · · · 0

0 1
. . .

...
...
. . .

. . . 0
0 · · · 0 1

 . (A.27)

From (A.25) we also derive the "row-by-column" multiplication rule for
matrices. Indeed, it is easy to check that the matrix representation C of the
transformation C ≡ B ◦A defined in (A.19) reads:

Cmn =
X
l

BmlAln. (A.28)

Notice that a matrix can be seen as a function from the two-dimensional grid
of integer coordinates to the real numbers:

A : (m,n) ∈ {1, . . . ,M} × {1, . . . , N}→ Amn ∈ R. (A.29)

This definition parallels the analytical definition (A.2) of a vector.

A.3.2 Rotations

Rotations are special kinds of linear transformations. As intuition suggests, a
linear transformation R is a rotation in the Euclidean space RN if it does not
alter the length1, i.e. the norm (A.6), of any vector in RN :

kR [v]k = kvk . (A.30)

A rotation is always invertible, since it does not "squeeze" parallelotopes
and therefore it does not make them degenerate. Moreover, the inverse of a
rotation is a rotation.
From the definition of rotation (A.30), the definition of norm (A.6), the

rule for the representation of the composition of two linear applications (A.28)

1 More precisely, this is the definition of isometries , which include rotations, reflec-
tions and inversions.
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472 A Linear algebra

and the representation of the identity (A.27), it is easy to derive the following
result for the matrix representation R of the rotation R:

R−1 = R0. (A.31)

In words, a linear transformation R is a rotation if and only if the represen-
tation of its inverse is the transpose of its representation.

For example, for any θ the matrix

Rθ ≡
µ
cos θ − sin θ
sin θ cos θ

¶
(A.32)

satisfies (A.31), and thus it represents a rotation in R2. Indeed, it represents a
counterclockwise rotation of an angle θ: this can be easily verified by checking
the result of applying (A.32) to the two vectors of the canonical basis (A.15).
Furthermore, it can be proved that any rotation in R2 can be represented

by a matrix of the form (A.32) for a suitable angle θ.

A.4 Invariants

Consider a generic linear transformation A from RN to itself. Consider now
another transformation eA obtained in terms of the composition (A.19) with
an invertible transformation B as follows:

eA ≡ B−1 ◦A ◦B. (A.33)

We call the transformations A and eA equivalent linear transformations. In-
deed, eA brings the original reference frame into an equivalent one by means of
the invertible transformation B, then performs the same operation as A and
finally brings the result back to the original reference frame by means of the
inverse transformation B−1.
Two equivalent transformations A and eA must share many properties.

Nevertheless, their matrix representations A and eA might be very different.
Therefore, it can be hard to detect equivalent transformations from their
representations. In this section we describe some features that are common to
any representation of equivalent transformations.

A.4.1 Determinant

Consider the parallelotope P described by the vertices of a set of independent
vectors. We recall that the linear transformation A by definition maps this
parallelotope into another parallelotope P0, see Figure A.3. In so doing, A
stretches and turns P and therefore modifies its volume by some factor. This
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A.4 Invariants 473

factor does not depend on the particular choice of P: the linearity of A implies
that the volume of any parallelotope is modified by the same factor. We call
this factor, modulo a sign, the determinant. In other words, the determinant
of the transformation A is the number det (A) such that

Vol (P0) = ±det (A)Vol (P) , (A.34)

where "Vol" denotes the volume and the sign is positive (negative) if the
transformation includes an even (odd) number of reflections.
In particular, the transformation A is not invertible if and only if P0 is

degenerate, i.e. if its volume is zero. Therefore, a transformation A is not
invertible if and only if

det (A) = 0. (A.35)

Furthermore, we see that for the composite transformation (A.19) the follow-
ing rule holds:

det (B ◦A) = det (B) det (A) . (A.36)

In particular, since the identity transformation (A.26) does not alter the vol-
umes:

1 = det
¡
B ◦B−1

¢
= det (B) det

¡
B−1

¢
. (A.37)

Now we can prove that the determinant is indeed an invariant. If a linear
transformation eA is equivalent to a linear transformation A as in (A.33),
then:

det
³ eA´ = det ¡B−1¢det (A) det (B) = det (A) . (A.38)

It can be proved that the formula to compute explicitly the determinant
of a linear transformation A in terms of its matrix representation A reads:

det (A) ≡ |A| =
X

{i1,...,iN}∈P
±Ai11 · · ·AiNN , (A.39)

where the sum is taken over all the permutations P of the first N integers
and the sign is positive for even permutations (i.e. obtained by a sequence of
an even number of switches) and negative for odd permutations.

For example, the formula for the determinant of a generic 2× 2 matrix

A ≡
µ
A11 A12
A21 A22

¶
(A.40)

is
|A| = A11A22 −A21A12. (A.41)

In one situation the determinant is particularly easy to compute. Consider
a diagonal matrix D, i.e. a matrix where all elements Dmn for m 6= n are
zero. Geometrically, a diagonal matrix D represents a stretch by a factor Dnn
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474 A Linear algebra

along the generic n-th axis. In this situation a parallelotope is stretched into a
new parallelotope whose volume is multiplied by D11 · · ·DNN . Therefore the
determinant in this case reads

|D| =
NY
n=1

Dnn, (A.42)

i.e., the determinant is the product of the diagonal elements. Notice that
(A.42) automatically accounts for the change in sign due to reflections, since
a reflection is associated with a negative entry on the diagonal.
Since the determinant is an invariant, the result is the same for any equiv-

alent representation eA. Therefore, it is particularly convenient to find, if pos-
sible, equivalent representations eA of a generic linear transformation A that
are diagonal.

A.4.2 Trace

The trace of a generic linear transformation A from RN to itself is defined in
terms of its matrix representation A as the sum of the diagonal entries:

tr (A) ≡ tr (A) ≡
NX
n=1

Ann. (A.43)

From this definition and the multiplication rule (A.28) we obtain the circular
property of the trace:

tr (A ◦B ◦ C) = tr (B ◦ C ◦A) . (A.44)

Consider now two equivalent linear transformations A and eA as in (A.33).
Then the following result holds:

tr
³ eA´ = tr ¡B−1 ◦A ◦B¢ = tr ¡B ◦B−1 ◦A¢ = tr (A) . (A.45)

This proves that the trace is indeed an invariant.

A.4.3 Eigenvalues

An eigenvector of a linear transformation A from RN to RN is a vector v that
is not rotated by the transformation, i.e. such that for a suitable scalar λ the
following holds:

A [v] = λv. (A.46)

The number λ is called the eigenvalue relative to the eigenvector v. Notice
that if v is an eigenvector of A, so is any multiple αv. In general, a linear
transformationA does not admit eigenvalues. Nevertheless, if some eigenvalues
exist, it becomes much easier to analyze the properties of A.
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If they exist, eigenvalues are invariants (beware: eigenvectors are not in-
variants). Indeed, if there exists a pair (λ,v) that satisfies (A.46) then, for
any equivalent transformation eA as in (A.33) we can see that w ≡ B−1v is
an eigenvector for the same eigenvalue:

eA [w] = B−1ABw = B−1Av = λB−1v = λw. (A.47)

In order to compute the eigenvalues of A, or to realize that they do not exist,
notice from the definition (A.46) that λ is an eigenvalue if and only if the
linear application A−λI, where I is the identity (A.26), "squeezes" a specific
direction, i.e. the direction spanned by the eigenvector v, into the zero vector.
This can happen only if A − λI is not invertible. Therefore, from (A.35) an
eigenvalue λ solves the equation

det (A− λI) = 0. (A.48)

In general, this equation does not necessarily admit real solutions.

For example, consider a generic 2×2 matrix (A.40). Making use of (A.41)
it is easy to check that (A.48) becomes:

0 = λ2 − λ tr (A) + det (A) . (A.49)

The possible solutions read:

λ =
1

2

µ
tr (A)±

q
tr (A)2 − 4 det (A)

¶
. (A.50)

This shows that if tr (A)2 < 4 det (A) there is no solution. Otherwise, the two
solutions are invariants, as they only depend on trace and determinant, which
are invariants.

A.5 Spectral theorem

The spectral theorem is an extremely useful result whose interpretation and
application involve all the invariants described in Section A.4.

A.5.1 Analytical result

In general a linear transformation does not admit eigenvectors and eigenvalues.
Nevertheless, in a special, yet very important, case it is possible to find a whole
basis of orthogonal eigenvectors.
First we need two definitions. A linear application S is symmetric if its

matrix representation is symmetric with respect to the diagonal, i.e. it is equal
to its transpose:
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S = S0. (A.51)

A linear application S is positive if for any v ∈ RN its matrix representation
satisfies the following inequality:2

hv,Svi ≥ 0. (A.52)

We stress that a positive matrix can have negative entries.
The spectral theorem states that a symmetric matrix admits an orthogonal

basis of eigenvectors. In other words, if a square matrix S satisfies (A.51), then
there exist N numbers (λ1, . . . , λN ) and N vectors

¡
e(1), . . . , e(N)

¢
such that

Se(n) = λne
(n), (A.53)

and, if m 6= n, D
e(m), e(n)

E
= 0. (A.54)

If in addition the matrix S is positive, due to (A.52) all the eigenvalues must
be positive. Furthermore, we can always rearrange the eigenvalues, and their
respective eigenvectors, in such a way that:

λ1 ≥ . . . ≥ λN ≥ 0. (A.55)

Finally, we can always normalize the eigenvectors in such a way that their
length is unitary: °°°e(n)°°° = 1, n = 1, . . . , N . (A.56)

Under the restrictions (A.55) and (A.56), and modulo a reflection of the
eigenvectors, there exists only one such set of eigenvalue-eigenvector pairs©
λn, e

(n)
ª
.

For example the matrix

S ≡
Ã

9
4

√
3
4√

3
4

11
4

!
(A.57)

is symmetric and positive definite. Indeed, the eigenvalues can be computed
as in (A.50) and read:

λ1 = 3, λ2 = 2. (A.58)

Solving (A.46) for the eigenvectorsÃ
9
4 − 3

√
3
4√

3
4

11
4 − 3

!
e(1) = 0,

Ã
9
4 − 2

√
3
4√

3
4

11
4 − 2

!
e(2) = 0, (A.59)

2 It is customary to define a matrix as positive definite if the inequality in (A.52)
is strict and positive semi-definite if that inequality is slack.
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we obtain:

e(1) = ρ

µ
1√
3

¶
= eρµ cos π3

sin π
3

¶
(A.60)

e(2) = κ

µ
−
√
3

1

¶
= eκµ− sin π

3
cos π3

¶
. (A.61)

In this expression ρ,eρ, κ and eκ are arbitrary constants: imposing (A.56) we
obtain eρ ≡ eκ ≡ 1.
Notice that (A.54) and (A.56) imply that the following matrix, defined as

the juxtaposition of the eigenvectors:

E ≡
³
e(1), . . . , e(N)

´
, (A.62)

satisfies:
EE0 = IN . (A.63)

Comparing (A.63) with (A.31) we see that E represents a rotation in RN and
thus does not alter the norm of a vector:

kEvk = kvk = kE0vk . (A.64)

Defining:
Λ ≡ diag (λ1, . . . , λN ) , (A.65)

we can restate the spectral theorem (A.53) as follows:

S = EΛE0. (A.66)

From the invariance of the trace (A.45).we obtain the following relation
between the diagonal elements of S and the sum of its eigenvalues:

NX
n=1

Snn ≡ tr (S) = tr (Λ) ≡
NX
n=1

λn, (A.67)

Notice also that the first, largest eigenvalue of the symmetric and positive
matrix S satisfies the following identity:

λ1 = max
kuk=1

{u0Λu} = max
kE0zk=1

n
(E0z)0Λ (E0z)

o
(A.68)

= max
kzk=1

{z0Sz} = max
z

½
z0Sz
z0z

¾
.

Similarly, the last, smallest eigenvalue of S satisfies:

λN = min
z

zSz

z0z
. (A.69)
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We conclude mentioning that if all the entries of a symmetric and positive
matrix S are positive, the Perron-Frobenius theorem implies that the entries of
the eigenvector relative to the largest eigenvalue are all positive, see Smirnov
(1970). In other words, the first eigenvector points in the direction of the first
orthant in the geometrical representation on the left of Figure A.1.

A.5.2 Geometrical interpretation

By means of the spectral theorem we can provide an intuitive geometrical
representation of a symmetric and positive matrix. First of all, we write the
spectral theorem (A.66) as follows:

S = E
√
Λ
√
ΛE

0
, (A.70)

where Λ is the diagonal matrix (A.65) of the positive eigenvalues of S and E
is the juxtaposition of the eigenvectors of S as defined in (A.62).

In our example (A.57) we have

√
Λ ≡ diag

³√
3,
√
2
´
, (A.71)

and

E ≡
µ
cos π3 − sin

π
3

sin π
3 cos π3

¶
. (A.72)

Consider the following locus:

Em,S ≡
©
x ∈ RN such that (x−m)0 S−1 (x−m) ≤ 1

ª
, (A.73)

where m is any fixed vector in RN . This equation represents an ellipsoid.
Indeed, consider a new set of coordinates y in RN , obtained by the following
affine transformation:

y ≡ Λ− 1
2E0 (x−m) . (A.74)

Using (A.63) we invert this relation as follows:

x =m+EΛ
1
2y. (A.75)

Substituting this expression in (A.73) we see that Em,S is the equation of the
unit sphere in the new coordinates:

Em,S ≡
©
y ∈ RN such that y21 + · · ·+ y2N ≤ 1

ª
. (A.76)

On the other hand, from (A.75) it follows that the locus (A.73) is obtained
by first left-multiplying each point y on the unit sphere by the matrix Λ

1
2 ;

then by left-multiplying the outcome by the matrix E; and finally by adding
the vector m.
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rotate

≡ +x m u

translate m

Fig. A.4. Representation of symmetric positive matrices as ellipsoids

Since the matrix Λ
1
2 is diagonal, the first operation in (A.75), namely

the multiplication by Λ
1
2 , corresponds to stretching the unit sphere along

each coordinate axis by an amount equal to the square root of the respective
eigenvalue, see Figure A.4. Therefore the sphere becomes an ellipsoid whose
principal axes are aligned with the reference axes and where, for each n =
1, . . . , N , the length of the n-th principal axis is the square root of the n-th
eigenvalue of S. This step defines the shape of the ellipsoid. In particular, the
volume of the ellipsoid is proportional to the product of the lenghts of the
principal axes:

Vol {Em,S} = γN
p
λ1 · · ·

p
λN = γN

p
|Λ| = γN

p
|S|, (A.77)

In this expression the constant γN is the volume of the unit sphere in N
dimensions:

γN ≡
π
N
2

Γ
¡
N
2 + 1

¢ , (A.78)

where Γ is the gamma function (B.80), see Fang, Kotz, and Ng (1990), p. 74.

In our example from (A.71) the first reference axis is stretched by a factor√
3 and the second reference axis is stretched by a factor

√
2. Thus the area

of the ellipsoid is π
√
6.

As for the second operation in (A.75), namely the multiplication by the
rotation E, from (A.15) and (A.62) the rotation E applied to the n-th element
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of the canonical basis δ(n) satisfies:

Eδ(n) =
³
e(1), · · · , e(N)

´
δ(n) = e(n). (A.79)

Therefore E rotates δ(n), i.e. the direction of the n-th coordinate axis, into the
direction defined by the n-th eigenvector of S. In other words, the rotation E
brings the principal axes of the ellipsoid, that originally were aligned with the
reference axes, to be aligned with the direction of the eigenvectors, see Figure
A.4. This step defines the orientation of the ellipsoid.

In our example, comparing (A.72) with (A.32) we see that E represents a
counterclockwise rotation of a π/3 angle in the plane.

Finally the third operation in (A.75), namely adding the vector m, trans-
lates the center of the ellipsoid from the origin to the point m, keeping the
principal axes parallel to the eigenvectors. This step defines the location of
the ellipsoid.

In our example we assumed:

m ≡ (0.3, 0.4)0 . (A.80)

Therefore the ellipsoid is translated in such a way that (A.80) becomes its
center.

To summarize, the locus Em,S defined in (A.73) is an ellipsoid. The princi-
pal axes of this ellipsoid are parallel to the eigenvectors of S and the lenghts of
the principal axes are the square roots of the eigenvalues of S. Hence, the ori-
entation and the shape of the ellipsoid Em,S contain all the information about
S, namely the information about eigenvalues and eigenvectors: therefore the
orientation and the shape of Em,S are a representation of S. Similarly, the el-
lipsoid Em,S is centered inm. Hence, the location of the ellipsoid Em,S contains
all the information about m and thus the location of Em,S is a representation
of m.

A.6 Matrix operations

We present here some matrix operations that we apply in the main text to
tackle financial problems. See Searle (1982), Magnus and Neudecker (1999),
and references therein for more on this subject.

A.6.1 Useful identities

From I = AA−1 and I = I0 we obtain the following identity:
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(A0)−1 =
¡
A−1

¢0
. (A.81)

From (A.36) we derive:
|BA| = |B| |A| . (A.82)

In particular, from (A.37) we obtain:¯̄
A−1

¯̄
=

1

|A| . (A.83)

Changing the matrix A into its transpose A0 in the computation of the de-
terminant (A.39) does not affect the result, therefore:

|A0| = |A| . (A.84)

From (A.44) we obtain:

tr (ABC) = tr (BCA) . (A.85)

Finally, partition a generic N ×N invertible matrixM as follows:

M ≡
µ
A B
C D

¶
, (A.86)

where the K × K matrix A is invertible and so is the (N −K) × (N −K)
matrix D, the size of the remaining matrices being determined accordingly.
Define the Schur complements of A and D respectively:

(M|A) ≡ D−CA−1B, (M|D) ≡ A−BD−1C; (A.87)

and define:

(B|M) ≡ (M|D)−1BD−1, (C|M) ≡ D−1C (M|D)−1 . (A.88)

Then

M−1 =
µ
(M|D)−1 − (B|M)
− (C|M) (M|A)−1

¶
. (A.89)

In particular, some algebra shows that the following identity holds for any
conformable matrices:¡

A−BD−1C
¢−1

= A−1 −A−1B
¡
CA−1B−D

¢−1
CA−1. (A.90)

Also, the relation below follows:

|IJ +CB| = |IK +BC| , (A.91)

where J ≡ N −K is the number of rows in C, which is arbitrary, since N and
K are arbitrary.
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A.6.2 Tensors and Kronecker product

Loosely speaking, vectors can be considered as matrices with only one side.
Matrices have two sides. Tensors are matrices with three or more sides. Tensors
are the subject of multilinear analysis. A tensor of order p is a function from
the p-dimensional grid of coordinates to R:

T : {1, . . . , N1} × · · · × {1, . . . , Np} 7→ Tn1···np ∈ R. (A.92)

For example, from (A.2) a vector is a tensor of order 1:

v : {1, . . . , N} 7→ vn ∈ R. (A.93)

Similarly, from (A.29) a matrix is a tensor of order 2:

A : {1, . . . ,M} × {1, . . . , N} 7→ Amn ∈ R. (A.94)

The set of tensors of a given order is a vector space whose elements en-
joy remarkable transformation properties. A less superficial discussion of this
subject is beyond the scope of this book.
The Kronecker product is an operation defined between two generic ma-

trices A and B of dimensions M ×N and P ×Q respectively. The result is a
tensor of order four:

[A⊗B]mnpq ≡ AmnBpq. (A.95)

Given the special structure of the tensor (A.95), we can represent the Kro-
necker product equivalently as the following MP ×NQ matrix:

A⊗B ≡

 A11B · · · A1NB
...

. . .
...

AM1B · · · AMNB

 . (A.96)

We can check from the definition (A.96) that the Kronecker product is dis-
tributive with respect to the sum and associative:

A⊗ (B+C) = A⊗B+A⊗C
(B+C)⊗A = B⊗A+C⊗A (A.97)

A⊗ (B⊗C) = (A⊗B)⊗C.

Nevertheless, it is not commutative:

A⊗B 6= B⊗A. (A.98)

Also, the Kronecker product satisfies:

(A⊗B)0 = A0 ⊗B0 (A.99)
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and
(A⊗B) (C⊗D) = AC⊗BD. (A.100)

If A is an N ×N invertible matrix and B is a K ×K invertible matrix,
from (A.100) it follows immediately:

(A⊗B)−1 = A−1 ⊗B−1. (A.101)

Also, for the determinant of the Kronecker product it follows:

|A⊗B| = |A|K |B|N , (A.102)

and for the trace of the Kronecker product:

tr (A⊗B) = tr (A) tr (B) . (A.103)

A.6.3 The "vec" and "vech" operators

The vec operator stacks the K columns of a generic N × K matrix A ≡¡
a(1), . . . , a(K)

¢
into an NK-dimensional column vector:

vec [A] ≡

 a(1)

...
a(K)

 . (A.104)

For instance, in the case N ≡ 2:

vec

·µ
a11 a12
a21 a22

¶¸
≡


a11
a21
a12
a22

 . (A.105)

A notable link between the vec operator and the Kronecker product is the
following relation, that holds for any conformable matrices:

vec [ABC] = (C0 ⊗A) vec [B] . (A.106)

Also notice the simple relation between the vec operator and the trace:

tr (AB) = vec [A0]0 vec [B] . (A.107)

If instead of stacking the columns ofA we stacked the columns of its trans-
pose A0 we would obtain an NK-dimensional vector with the same entries,
but in different order. The matrixK that transforms one vector into the other
is called the commutation matrix and is thus defined by the following identity:
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vec [A] ≡KNK vec [A
0] . (A.108)

The commutation matrix satisfies:

K0
NK =K

−1
NK =KKN . (A.109)

The explicit expression of the commutation matrix is given in terms of the
canonical basis (A.15) as follows:

KNK ≡
NX
n=1

KX
k=1

µh
δ(n)

i h
δ(k)

i0
⊗
h
δ(k)

i h
δ(n)

i0¶
. (A.110)

For instance, in the case N ≡ K ≡ 2:

K22 ≡


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (A.111)

Consider now a symmetric N × N square matrix Ω. To deal only with
the non-redundant entries of Ω we introduce the vech operator, which stacks
the columns of a Ω skipping the entries above the diagonal. The result is an
N (N + 1) /2-dimensional column vector.

For instance, in the case N ≡ 2:

vech

·µ
ω11 ω21
ω21 ω22

¶¸
≡

ω11
ω21
ω22

 . (A.112)

Since vec [Ω] contains the redundant entries of Ω, it can be obtained from
vech [Ω] by means of a suitable constant matrix D, called the duplication
matrix , which is defined by the following identity:

vec [Ω] ≡ DN vech [Ω] . (A.113)

For instance in the case N ≡ 2:

D2 ≡


1 0 0
0 1 0
0 1 0
0 0 1

 . (A.114)
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A.6.4 Matrix calculus

We assume known the rules of calculus for smooth real-valued functions f (x),
where x is a vector in RN . Consider an N × K matrix of variables X and
a smooth real-valued function f (X). By means of the vec operator we can
extend the rules of calculus to this new environment. Indeed, the function f
can be seen equivalently as feeding on NK-dimensional vectors:

f (X) ≡ f (vec [X]) , (A.115)

where vec is the operator (A.104). In view of optimization problems, we are
mainly interested in computing the gradient g, which is an NK-dimensional
vector

g ≡ ∂f

∂ vec [X]
, (A.116)

and the Hessian H, which is an NK ×NK symmetric matrix:

H ≡ ∂2f

∂ vec [X] ∂ vec [X]0
. (A.117)

Since the direct computation of these quantities from the definition might be
hard, we propose alternative routes to obtain the desired results, based on a
Taylor expansion. Indeed, if we manage to express the first variation of the
function f due to an infinitesimal change dX as follows:

df = g0 vec [dX] , (A.118)

then g is the gradient (A.116). For instance the following result holds:

df = tr (GdX)⇒ ∂f

∂ vec [X]
= vec [G0] , (A.119)

which follows from (A.118) and the set of equalities:

tr (GdX) =
NX

m,n=1

[G0]nm dXnm = vec [G
0]0 vec [dX] . (A.120)

Similarly, if we manage to express the second variation of the function f due
to an infinitesimal change dX as follows:

d (df) = vec [dX]0Hvec [dX] , (A.121)

where H is symmetric, then H is the Hessian (A.117).

As an application we derive the gradient and the Hessian of ln |X|, where
X is a square N ×N matrix. Consider first a matrix ² of small elements. A
direct computation of the determinant (A.39) shows that:
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|I+ ²| ≈ 1 + tr (²) + · · · , (A.122)

where the dots contain products of two or more small terms �mn which are
second-order with respect to the leading terms. Then:

d |X| ≡ |X+ dX|− |X| = |X|
¡¯̄
I+X−1dX

¯̄
− 1
¢

(A.123)

= |X| tr
¡
X−1dX

¢
,

and thus:
d ln |X| = tr

¡
X−1dX

¢
. (A.124)

Applying the general rule (A.119) to this specific case we obtain:

∂ ln |X|
∂ vec [X]

= vec
h
(X0)−1

i
. (A.125)

To compute the Hessian of ln |X| first of all we differentiate I = XX−1 to
obtain:

d
¡
X−1

¢
= −X−1 (dX)X−1. (A.126)

Computing the second differential from (A.124) we obtain:

d (d ln |X|) = tr
¡
d
¡
X−1

¢
dX
¢
= − tr

¡
X−1 (dX)X−1dX

¢
. (A.127)

Using (A.106), (A.107) and (A.108) we arrive at the following expression:

d (d ln |X|) = −vec [dX0]0 vec
£
X−1 (dX)X−1

¤
(A.128)

= −vec [dX]0KNN

³
(X0)−1 ⊗X−1

´
vec [dX] .

Therefore from (A.121) we obtain:

∂2 ln |X|
∂ vec [X] ∂ vec [X]0

= −KNN

³
(X0)−1 ⊗X−1

´
. (A.129)
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