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The above steps allow us to model the market when the total number
of securities is limited. In practical applications, the number of securities in-
volved in asset allocation problems is typically large. In these cases the actual
dimension of randomness in the market is much lower than the number of
securities. In Section 3.4 we discuss the main dimension-reduction techniques:
explicit-factor approaches, such as regression analysis, and hidden-factor ap-
proaches, such as principal component analysis and idiosyncratic factors. To
support intuition we stress the geometric interpretation of these approaches in
terms of the location-dispersion ellipsoid. Finally we present a useful routine
to perform dimension reduction in practice in a variety of contexts, including
portfolio replication.
To conclude, in Section 3.5 we present a non-trivial implementation of all

the above steps in the swap market. By setting the problem in the contin-
uum we provide a frequency-based interpretation of the classical "level-slope-
hump" principal component factorization. From this we compute the distri-
bution of the swap prices exactly and by means of the duration-convexity
approximation.
To summarize, in this chapter we detect the market invariants, we project

their distribution to a generic horizon in the future and we translate this
projection into the distribution of the market prices at the investment horizon,
possibly after reducing the dimension of the market.
In the above analysis we take for granted the distribution of the invariants

at a fixed estimation interval. In reality, this distribution can only be estimated
with some approximation, as discussed in Chapter 4. We tackle the many
dangers of estimation risk in the third part of the book.

3.1 The quest for invariance

In this section we show how to process the information available in the market
to determine the market invariants.
In order to do so, we need a more precise definition of the concept of

invariant. Consider a starting point et and a time interval eτ , which we call the
estimation interval . Consider the set of equally-spaced dates:

Det,eτ ≡ ©et,et+ eτ ,et+ 2eτ , . . .ª . (3.1)

Consider a set of random variables:

Xt, t ∈ Det,eτ . (3.2)

The random variables Xt are market invariants for the starting point et and
the estimation interval eτ if they are independent and identically distributed
and if the realization xt of Xt becomes available at time t.
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104 3 Modeling the market

For example, assume that the estimation interval eτ is one week and the
starting point et is the first Wednesday after January 1st 2000. In this case
Det,eτ is the set of all Wednesdays since January 1st 2000. Consider flipping
a fair coin once every Wednesday since January 1st 2000. One outcome is
independent of the other, they are identically distributed (50% head, 50% tail),
and the result of each outcome becomes available immediately. Therefore, the
outcomes of our coin-flipping game are invariants for the starting point "first
Wednesday after January 1st 2000", and a weekly estimation interval.

A time homogenous invariant is an invariant whose distribution does not
depend on the reference time et. In our quest for invariance, we will always
look for time-homogeneous invariants.

In the previous example, it does not matter whether the coins are flipped
each Wednesday or each Thursday. Thus the outcomes of the coin-flipping
game are time-homogeneous invariants.

To detect invariance, we look into the time series of the financial data
available. The time series of a generic set of random variables is the set of
past realizations of those random variables. Denoting as T the current time,
the time series is the set

xt, t = et,et+ eτ , . . . , T , (3.3)

where the lower case notation indicates that xt is the specific realization of
the random variable Xt occurred at time t in the past.

For example the time series in the coin-flipping game is the record of heads
and tails flipped since the first Wednesday after January 1st 2000 until last
Wednesday.

In order to detect invariance, we perform two simple graphical tests.
The first test consists in splitting the time series (3.3) into two series:

xt, t = et, . . . ,et+ [T − et
2eτ ]eτ (3.4)

xt, t =

Ã
[
T − et
2eτ ] + 1

!eτ , . . . , T , (3.5)

where [·] denotes the integer part. Then we compare the respective histograms.
If Xt is an invariant, in particular all the terms in the series are identically
distributed: therefore the two histograms should look very similar to each
other.
The second test consists of the scatter-plot of the time series (3.3) on one

axis against its lagged values on the other axis. In other words, we compare
the following two series:
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3.1 The quest for invariance 105

xt versus xt−eτ , t = et+ eτ, . . . , T . (3.6)

If Xt is an invariant, in particular all the terms in the series are independent
of each other: therefore the scatter plot must be symmetrical with respect to
the reference axes. Furthermore, since all the terms are identically distributed,
the scatter plot must resemble a circular cloud.
These tests are sufficient to support our arguments. For more on this sub-

ject, see e.g. Hamilton (1994), Campbell, Lo, and MacKinlay (1997), Lo and
MacKinlay (2002).

3.1.1 Equities, commodities, exchange rates

In this section we pursue the quest for invariance in the stock market. Nev-
ertheless the present discussion applies to other tradable assets, such as com-
modities and currency exchange rates.
We make the standard assumption that the securities do not yield any

cash-flow. This does not affect the generality of the discussion: it is always pos-
sible to assume that cash-flows such as dividends are immediately re-invested
in the same security.
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Fig. 3.1. Stock prices are not market invariants

Consider one stock. We assume that we know the stock price at all past
times. The first question is whether the price can be considered a market
invariant. To ascertain this, we fix an estimation interval eτ (e.g. one week)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



106 3 Modeling the market

and a starting point et (e.g. five years ago) and we consider the set of stock
prices at the equally spaced estimation times (3.1):

Pt, t ∈ Det,eτ . (3.7)

Each of these random variables becomes available at the respective time t. To
see if they are independent and identically distributed we analyze the time
series of their realization up to the investment decision time:

pt, t = et,et+ eτ , . . . , T . (3.8)

If the stock price were an invariant, the histogram of the first half of the time
series would be similar to the histogram of the second half of the time series.
Furthermore, the scatter-plot of the price series with its lagged values would
resemble a circular cloud. In Figure 3.1 we see that this is not the case: stock
prices are not market invariants.
Before we continue, we need to introduce some terminology. The total

return at time t for a horizon τ on any asset (equity, fixed income, etc.)
that trades at the price Pt at the generic time t is defined as the following
multiplicative factor between two subsequent prices:

Ht,τ ≡
Pt
Pt−τ

. (3.9)

The linear return at time t for a horizon τ is defined as follows:

Lt,τ ≡
Pt
Pt−τ

− 1. (3.10)

The compounded return at time t for a horizon τ is defined as follows:

Ct,τ ≡ ln
µ

Pt
Pt−τ

¶
. (3.11)

Going back to our quest for invariance, we notice a multiplicative relation
between prices at two different times. Indeed, if the prices were rescaled we
would expect future prices to be rescaled accordingly: this is what happens
when a stock split occurs.
Therefore we focus on the set of non-overlapping total returns as potential

market invariants:
Ht,eτ , t ∈ Det,eτ . (3.12)

Each of these random variables becomes available at the respective time t. To
see if they are independent and identically distributed we perform the tests
described in the introduction to Section 3.1 on the time series of the past
observations of the non-overlapping total returns:

ht,eτ , t = et,et+ eτ, . . . , T . (3.13)
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3.1 The quest for invariance 107
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Fig. 3.2. Stock returns are market invariants

First we split the series (3.13) in two halves and plot the histogram of each
half. If all the Ht,eτ are identically distributed, the histogram from the first
sample of the series must resemble the histogram from the second sample. In
Figure 3.2 we see that this is the case.
Then we move on to the second test: we scatter-plot the time series of the

total returns against the same time series lagged by one estimation interval. If
Ht,eτ is independent of Ht+eτ,eτ and they are identically distributed, the scatter
plot must resemble a circular cloud. In Figure 3.2 we see that this is indeed
the case.
Therefore we accept the set of non-overlapping total returns as invariants

for the equity market. More in general, any function g of the total returns
defines new invariants for the equity market:

g (Ht,eτ ) , t ∈ Det,eτ . (3.14)

Indeed, if the set of Ht,eτ are independent and identically distributed random
variables that become known at time t, so are the variables (3.14).
In particular, the linear returns (3.10) and the compounded returns (3.11)

are functions of the total returns, as well as of one another:

L = eC − 1 = H − 1, C = ln (1 + L) = ln (H) . (3.15)

Therefore, both linear returns and compounded returns are invariants for the
stock market.
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108 3 Modeling the market

Notice that if the price Pt−τ is close to the price Pt in the definitions
(3.9)-(3.11), the linear return is approximately the same as the compounded
return. Indeed, from a first-order Taylor expansion of (3.15) we obtain:

L ≈ C. (3.16)

This happens when the price is not very volatile or when the estimation in-
terval between the observations is very short. Nevertheless, under standard
circumstances the difference is not negligible.
We claim that the most convenient representation of the invariants for the

stock market is provided by the compounded returns:

equity invariants: compounded returns (3.17)

The reasons for this choice are twofold.
In the first place, unlike for linear returns or total returns, the distribution

of the compounded returns can be easily projected to any horizon, see Section
3.2, and then translated back into the distribution of market prices at the
specified horizon, see Section 3.3.
Secondly, the distribution of either linear returns or total returns is not

symmetrical: for example we see from (3.9) that total returns cannot be neg-
ative, whereas their range is unbounded from above. Instead, compounded
returns have an approximately symmetrical distribution. This makes it easier
to model the distribution of the compounded returns.

For example, from the time series analysis of the stock prices over a weekly
estimation interval eτ we derive that the distribution of the compounded re-
turns (3.11) on a given stock can be fitted to a normal distribution:

Ct,eτ ≡ ln
µ

Pt
Pt−eτ

¶
∼ N

¡
µ, σ2

¢
. (3.18)

Notice that (3.18) is the benchmark assumption in continuous-time finance
and economics, see Black and Scholes (1973) and Merton (1992). Measuring
time in years we obtain eτ ≡ 1

52
(3.19)

and, say,
µ ≡ 9.6× 10−2, σ2 ≡ 7.7× 10−4. (3.20)

The distribution of the original invariants, i.e. the total returns (3.12), is
lognormal with the same parameters:

Ht,eτ ≡ Pt
Pt−eτ ∼ LogN

¡
µ, σ2

¢
. (3.21)

This distribution is not as analytically tractable as (3.18).
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3.1 The quest for invariance 109

The symmetry of the compounded returns becomes especially important
in a multivariate setting, where we can model the joint distribution of these
invariants with flexible, yet parsimonious, parametric models that are analyt-
ically tractable. For instance, we can model the compounded returns of a set
of stocks as members of the class of elliptical distributions:

Xt,eτ ≡ Ct,eτ ∼ El (µ,Σ, g) , (3.22)

for suitable choices of the location parameter µ, the scatter parameter Σ and
the probability density generator g, see (2.268). Alternatively, we can model
the compounded returns of a set of stocks as members of the class of symmetric
stable distributions:

Xt,eτ ≡ Ct,eτ ∼ SS (α,µ,mΣ) , (3.23)

for suitable choices of the tail parameter α, the location parameter µ, the
scatter parameter Σ and the measure m, see (2.285).
We mention that in a multivariate context it is not unusual to detect

certain functions of the returns, such as linear combinations, which are not
independent across time. This gives rise to the phenomenon of cointegration,
which has been exploited by practitioners to try to predict the market move-
ments of certain portfolios. For instance, trading strategies such as equity pairs
are based on cointegration, see e.g. Alexander and Dimitriu (2002). A discus-
sion of this subject is beyond the scope of the book and the interested reader
should consult references such as Hamilton (1994).

3.1.2 Fixed-income market

In this section we pursue the quest for invariance in the fixed-income market.
Without loss of generality, we focus on zero-coupon bonds, which are the
building blocks of the whole fixed-income market.
A zero-coupon bond is a fixed-term loan: a certain amount of money Z(E)t

is turned in at the generic time t and a (larger) determined amount is received
back at a later, specified maturity date E. Since the amount to be received
is determined, we can normalize it as follows without loss of generality:

Z
(E)
E ≡ 1. (3.24)

As in the equity market, the first question is whether bond prices can be
market invariants. In other words, we fix an estimation interval eτ (e.g. one
week) and a starting point et (e.g. five years ago) and we consider the set of
bond prices:

Z
(E)
t , t ∈ Det,eτ , (3.25)

where the set of equally spaced estimation intervals is defined in (3.1). Each of
these random variables becomes available at the respective time t. Neverthe-
less, the constraint (3.24) affects the evolution of the price: as we see in Figure
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110 3 Modeling the market
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Fig. 3.3. Lack of time-homogeneity of bond prices

3.3 the time series of a bond price Z(E)t converges to the redemption value, as
the maturity approaches. Therefore bond prices cannot be market invariants,
because the convergence to the redemption value at maturity breaks the time
homogeneity of the set of variables (3.25).
As a second attempt, we notice that, like in the equity market, there exists

a multiplicative relation between the prices at two different times. Therefore,
we are led to consider the set of non-overlapping total returns on the generic
bond whose time of maturity is E:

H
(E)
t,eτ ≡ Z

(E)
t

Z
(E)
t−eτ , t ∈ Det,eτ . (3.26)

Each of these random variables becomes available at the respective time t.
Nevertheless, the total returns cannot be invariants, because the convergence
to the redemption value of the prices also breaks the time homogeneity of the
set of variables (3.26).
To find an invariant, we must formulate the problem in a time-homogenous

framework by eliminating the redemption date. Suppose that there exists a
zero-coupon bond for all possible maturities. We can compare the price Z(E)t

of the bond we are interested in with the price Z(E−eτ)t−eτ of another bond that
expires at a date which is equally far in the future, i.e. with the same time
to maturity. This series is time-homogeneous, as we see in Figure 3.4, where
we plot the price of the bond that at each point of the time series expires five
years in the future.
Therefore, we consider the set of non-overlapping "total returns" on bond

prices with the same time υ to maturity:
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Fig. 3.4. Time-homogeneity of bond prices with fixed time to maturtity

R
(υ)
t,eτ ≡ Z

(t+υ)
t

Z
(t+υ−eτ)
t−eτ , t ∈ Det,eτ . (3.27)

Notice that these variables do not depend on the fixed expiry E and thus they
are time-homogeneous. We stress that these "total returns to maturity" do
not represent real returns on a security, since they are the ratio of the prices
of two different securities.
Each of the random variables in (3.27) becomes available at the respective

time t. To see if they qualify as invariants for the fixed-income market, we
perform the two simple tests discussed in the introduction to Section 3.1 on
the time series of the past realizations of these random variables:

r
(υ)
t,eτ , t = et,et+ eτ , . . . , T . (3.28)

First we split the series (3.28) in two halves and plot the histogram of each
half. If all the R(υ)t,eτ are identically distributed, the histogram from the first
sample of the series must resemble the histogram from the second sample. In
Figure 3.5 we see that this is the case.
Then we move on to the second test: we scatter-plot the time series (3.28)

against the same time series lagged by one estimation interval. If each R
(υ)
t,eτ

is independent of R(υ)t+eτ,eτ and they are identically distributed, the scatter plot
must resemble a circular cloud. In Figure 3.5 we see that this is indeed the
case.
Therefore we accept (3.27) as invariants for the fixed-income market. More

in general, any function g of R defines new invariants for the equity market:
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Fig. 3.5. Fixed-income market invariants

g
³
R
(υ)
t,eτ
´
, t ∈ Det,eτ . (3.29)

Indeed, also (3.29) are independent and identically distributed random vari-
ables that become known at time t.
To determine the most convenient representation of the market invariants,

i.e. the best function g in (3.29), we need some terminology. Consider a generic
time t and a zero-coupon bond that expires at time t+ υ and thus trades at
the price Z(t+υ)t . The yield to maturity υ of this bond is defined as follows:

Y
(υ)
t ≡ − 1

υ
ln
³
Z
(t+υ)
t

´
. (3.30)

The graph of the yield to maturity as a function of the maturity is called
the yield curve. A comparison of (3.30) with (3.11) shows that the yield to
maturity times the time to maturity is the compounded return of a zero-
coupon bond over a horizon equal to its entire life. In particular if, as it is
customary in the fixed-income world, time is measured in years, then the yield
to maturity can be interpreted as the annualized return of the bond.
It is easy to relate the fixed-income invariant (3.27) to the yield to maturity

(3.30). Consider the changes in yield to maturity:

X
(υ)
t,eτ ≡ Y

(υ)
t − Y

(υ)
t−eτ = − 1υ ln

³
R
(υ)
t,eτ
´
. (3.31)

Since R is an invariant, so is X.
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3.1 The quest for invariance 113

Notice that the changes in yield to maturity do not refer to a specific
bond, as each invariant (3.31) is defined in terms of two bonds with different
maturities. Instead, each invariant is specific to a given sector υ of the yield
curve.
We claim that the most convenient representation of the invariants for the

fixed-income market is provided by the changes in yield to maturity:

fixed-income invariants: changes in yield to maturity (3.32)

The reasons for this choice are two-fold.
In the first place, unlike the original invariants (3.27), the distribution

of changes in yield to maturity can be easily projected to any horizon, see
Section 3.2, and then translated back into the distribution of bond prices at
the specified horizon, see Section 3.3.
Secondly, the distribution of the original invariants (3.27) is not symmetri-

cal: for example those invariants cannot be negative. Instead, the distribution
of the changes in yield to maturity is symmetrical.1 . This makes it easier to
model the distribution of the changes in yield to maturity.

For example from weekly time series analysis we derive that the distribu-
tion of the changes in yield to maturity (3.31) for the three-year sector of the
bond market can be fitted to a normal distribution:

X
(υ)
t,eτ ≡ Y

(υ)
t − Y

(υ)
t−eτ ∼ N ¡µ, σ2¢ . (3.33)

Measuring time in years we have

eτ ≡ 1

52
, υ ≡ 3 (3.34)

and, say,
µ ≡ 0, σ2 ≡ 2× 10−5. (3.35)

The distribution of the original invariants (3.27) is lognormal with the follow-
ing parameters:

R
(υ)
t,eτ = e−υX

(υ)
t,eτ ∼ LogN ¡−υµ, υ2σ2¢ . (3.36)

This distribution is not as analytically tractable as (3.33).

1 Apparently, this is not correct. The bond is a loan: as such the money lent cannot
exceed the money returned when the loan expires, which prevents the yield to
maturity from being negative. Therefore the change in yield to maturity must
satisfy the constraint Xt ≥ −Yt−eτ . We can bypass this problem by considering as
invariant the changes in the "shadow yield" S, a variable that can take any value

and such that Y (υ)
t ≡ max

³
S
(υ)
t , 0

´
, see Black (1995).

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



114 3 Modeling the market

The symmetry of the changes in yield to maturity becomes especially im-
portant in a multivariate setting, where we can model the joint distribution
of the changes in yield to maturity, together with other symmetric invariants
such as the compounded returns for the stock market, by means of flexible,
yet parsimonious, parametric models that are analytically tractable. For in-
stance, we can model these invariants as members of the class of elliptical
distributions:

Xt,eτ ∼ El (µ,Σ, g) , (3.37)

for suitable choices of the location parameter µ, the scatter parameter Σ and
the probability density generator g, see (2.268). Alternatively, we can model
the changes in yield to maturity of a set of bonds, together with other sym-
metrical invariants, as members of the class of symmetric stable distributions:

Xt,eτ ∼ SS (α,µ,mΣ) , (3.38)

for suitable choices of the tail parameter α, the location parameter µ, the
scatter parameter Σ and the measure m, see (2.285).
We mention that in a multivariate context it is not unusual to detect cer-

tain functions of the changes in yield to maturity, such as linear combinations,
which are not independent across time. This gives rise to the phenomenon of
cointegration, see e.g. Anderson, Granger, and Hall (1990) and Stock and
Watson (1988). This phenomenon has been exploited by practitioners. For
instance, cointegration is the foundation of a trading strategy known as PCA
trading . A discussion of this subject is beyond the scope of the book.

3.1.3 Derivatives

In this section we pursue the quest for invariance in the derivatives market,
see Wilmott (1998) and Hull (2002) for more on this subject. Although our
approach is as general as possible, this market is very heterogeneous, and
therefore each case must be analyzed independently.
Although "raw" securities such as stocks and zero-coupon bonds constitute

the building blocks of the market, there exist financial products that cannot
be analyzed in terms of the building blocks only: the derivatives of the raw
securities.
There exist several kinds of derivatives, but the most liquid derivatives

are the vanilla European options, tradable products defined and priced as
functions of the price of one or more underlying raw securities and/or some
extra market variables. In other words, a vanilla European derivative is a
security whose price Dt at the generic time t can be expressed as follows:

Dt = h (Vt) , (3.39)

where h is a specific pricing function that might depend on a set of parameters
and Vt is the price at time t of a set of market variables.
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3.1 The quest for invariance 115

The most liquid vanilla European options are the call option and put
option.
A European call option with strike K and expiry date E on an underlying

whose price at the generic time t we denote as Ut is a security whose price at
time t ≤ E reads2:

C
(K,E)
t ≡ CBS

³
E − t,K,Ut, Z

(E)
t , σ

(K,E)
t

´
. (3.40)

In this expression Z
(E)
t is the price at time t of a zero-coupon bond that

matures at time E; and σ
(K,E)
t is called the implied percentage volatility at

time t of the underlying U relative to the strike K and to the expiry E. The
implied volatility is a new market variable which we discuss further below.
The function CBS in (3.40) is the pricing formula of Black and Scholes

(1973). The Black-Scholes formula can be expressed in terms of the error
function (B.75) as follows:

CBS (τ ,K,U,Z, σ) ≡ 1

2
U

µ
1 + erf

µ
d1√
2

¶¶
(3.41)

−1
2
ZK

µ
1 + erf

µ
d2√
2

¶¶
,

where the two ancillary variables (d1, d2) are defined as follows:

d1 ≡
1

σ
√
τ

½
ln

µ
U

ZK

¶
+

σ2τ

2

¾
(3.42)

d2 ≡ d1 − σ
√
τ . (3.43)

The call option price (3.40) is of the form (3.39), where the market vari-
ables are the price of the underlying, the zero-coupon bond price and the
implied percentage volatility:

Vt ≡
³
Ut, Z

(E)
t , σ

(K,E)
t

´0
. (3.44)

The payoff of an option is its value at expiry. The payoff of the call option
only depends on the underlying, as (3.40) reduces at expiry to the following
simpler function:

C
(K,E)
E = max (UE −K, 0) . (3.45)

2 We introduce the value of the call option (3.40) from a trader’s perspective,
according to which the implied volatility is an exogenous market variable. The
standard textbook approach first models the "right" process for the underlying U
and then derives the "right" pricing formula from non-arbitrage arguments. For-
mula (3.40) is a specific instance of the textbook approach first developed in Black
and Scholes (1973), where the process for the underlying is assumed lognormal.
In this approach σ is the constant percentage volatility of the underlying.
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116 3 Modeling the market

A European put option with strikeK and expiry E on an underlying whose
price at the generic time t we denote as Ut is a security whose price at time
t ≤ E reads:

P
(K,E)
t = CBS

³
E − t,K,Ut, Z

(E)
t , σ

(K,E)
t

´
− Ut + Z

(E)
t K, (3.46)

where CBS is the Black-Scholes pricing function (3.40) of the call option with
the same strike and expiry. The pricing relation (3.46) is called put-call parity .
Since the call price is of the form (3.39), so is the put price (3.46), for the
same market variables (3.44).
Similarly to the call option, the payoff of the put option only depends on

the underlying, as (3.46) reduces at expiry to the following simpler function:

P
(K,E)
E = −min (UE −K, 0) . (3.47)

We can now proceed in our quest for invariance in the derivatives market.
We have already detected in Sections 3.1.1 and 3.1.2 the invariants behind
two among the three market variables (3.44) involved in pricing derivatives,
namely the bond Z and the underlying U , whether this is a commodity, a
foreign exchange rate, a stock, or a fixed-income security.
Therefore, in order to complete the study of the invariance in the deriva-

tives market, we have to analyze the invariance behind the implied percentage
volatility σ of the underlying. There exist several studies in the financial lit-
erature regarding the evolution of the implied volatility in the so-called risk
neutral measure, a synthetic environment that allows to compute no-arbitrage
prices for securities, see e.g. Schoenbucher (1999), Amerio, Fusai, and Vulcano
(2002), Brace, Goldys, Van der Hoek, and Womersley (2002). In our case we
are interested in the econometric study of the patterns of the implied volatility,
see also Fengler, Haerdle, and Schmidt (2003).
In particular, we consider the at-the-money-forward (ATMF) implied per-

centage volatility of the underlying, which is the implied percentage volatility
of an option whose strike is equal to the forward price of the underlying at
expiry:

Kt ≡
Ut

Z
(E)
t

. (3.48)

We focus on the ATMF volatility because ATMF options are the most liquid.
As in the other markets, we first consider whether the ATMF volatility is

itself a market invariant. In other words, we fix an estimation interval eτ (e.g.
one week) and a starting point et (e.g. five years ago) and we consider the set
of ATMF implied percentage volatility:

σ
(Kt,E)
t , t ∈ Det,eτ , (3.49)

where the observation dates are equally spaced as in (3.1). Each of these
random variables becomes available at the respective time t. Nevertheless,
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implied volatilities cannot be market invariants, because the convergence to
the payoff at expiry breaks the time-homogeneity of the set of variables (3.49).
As in the case of bonds, we must formulate the problem in a time-

homogenous framework by eliminating the expiration date. Therefore we con-
sider the set of implied percentage volatilities with the same time υ to expiry:

σ
(Kt,t+υ)
t , t ∈ Det,eτ . (3.50)

As we show in Appendix www.3.1 the following approximation holds:

σ
(Kt,t+υ)
t ≈

r
2π

υ

C
(Kt,t+υ)
t

Ut
. (3.51)

In other words, the variables (3.50) represent the prices of time-homogeneous
contracts divided by the underlying. If the underlying displays an unstable,
say explosive, pattern, the price of the respective time-homogeneous contract
also displays an unstable pattern. Once we normalize the contract by the
value of the underlying as in (3.51), the result displays a time-homogenous
and stable pattern.

Jan91 Jan 92 Jan93 Jan 94 Jan 95 Jan 96 Jan 97 Jan 98

S&P 500

VIX

Fig. 3.6. Implied volatility versus price of underlying

For example, consider options in the stock market. The VIX index is the
rolling ATMF implied percentage volatility of the S&P 500, i.e. the left-hand
side in (3.51) and the S&P 500 index is the underlying, i.e. the denominator
in the right-hand side of (3.51). In Figure 3.6 we plot the VIX index and the
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S&P 500. Although the underlying displays an explosive pattern, the VIX
index is stable.
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Fig. 3.7. Implied volatility is not a market invariant

Each of the values (3.50) becomes available at the respective time t. Nev-
ertheless, the "levels" of implied percentage volatility to rolling expiry are not
invariant. This is not obvious: although the value at any time of the rolling
ATMF call (the numerator in (3.51)) is definitely dependent on its value at
a previous time, and so is the underlying (the denominator in (3.51)), these
two effects might cancel in (3.51) and thus in (3.50). Nevertheless, a scatter
plot of the series of observations of (3.50) versus their lagged values shows
dependence, see Figure 3.7.
Therefore we consider as potential invariants the "differences" in ATMF

implied percentage volatility with generic fixed rolling expiry υ:

X
(υ)
t,eτ ≡ σ

(Kt,t+υ)
t − σ

(Kt−eτ ,t−eτ+υ)
t−eτ , t ∈ Det,eτ . (3.52)

Each of these random variables becomes available at the respective time t.
To check whether they qualify as invariants for the derivatives market, we
perform the two simple tests discussed in the introduction to Section 3.1 on
the past realizations of the random variables (3.52):

x
(υ)
t,eτ , t = et,et+ eτ , . . . , T . (3.53)
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First we split the series (3.53) in two halves and plot the histogram of each
half. If all the X(υ)

t,eτ are identically distributed, the histogram from the first
sample of the series must resemble the histogram from the second sample. In
Figure 3.8 we see that this is the case.
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Fig. 3.8. Changes in implied volatility are market invariants

Then we move on to the second test: we scatter-plot the time series (3.53)
against the same series lagged by one estimation interval. If each X

(υ)
t+eτ,eτ is

independent ofX(υ)
t,eτ and they are identically distributed, the scatter plot must

resemble a circular cloud. In Figure 3.8 we see that this is indeed the case.
Therefore we accept the set of changes in the rolling at—the-money forward

implied volatility (3.52) as invariants for the derivatives market:

derivatives invariants: changes in roll. ATMF impl. vol. (3.54)

As for the market invariants in the equity and in the fixed-income world,
the distribution of changes in ATMF implied percentage volatility to rolling
expiry can be easily projected to any horizon, see Section 3.2, and then trans-
lated back into option prices at the specified horizon, see Section 3.3.
Furthermore, the distribution of the changes in ATMF implied percentage

volatility to rolling expiry is symmetrical. This feature becomes especially
important in a multivariate setting, where we can model the joint distribution
of these and possibly other symmetrical invariants by means of flexible, yet
parsimonious, parametric models that are analytically tractable. For instance,
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120 3 Modeling the market

we can model these market invariants as members of the class of elliptical
distributions:

Xt,eτ ∼ El (µ,Σ, g) , (3.55)

for suitable choices of the location parameter µ, the scatter parameter Σ
and the probability density generator g, see (2.268). Alternatively, we can
model these market invariants as members of the class of symmetric stable
distributions:

Xt,eτ ∼ SS (α,µ,mΣ) , (3.56)

for suitable choices of the tail parameter α, the location parameter µ, the
scatter parameter Σ and the measure m, see (2.285).
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Fig. 3.9. Normalized volatility as proxy of swaption value

Before concluding we mention a variation of the invariants (3.52) that is
popular among swaption traders. First we need some terminology. The υa-
into-υb forward par swap rate S

(υa,υb)
t is defined as follows in terms of the

zero-coupon bond prices Z and an additional fixed parameter ρ, which in the
US swap market is three months:

S
(υa,υb)
t ≡ Z

(t+υa)
t − Z

(t+υa+υb)
t

ρ
Pυb/ρ

k=1 Z
(t+υa+kρ)
t

. (3.57)

The parameter υa is called term. The parameter υb is called tenor . The for-
ward par swap rate (3.57) is the fixed rate that makes the respective forward
swap contract worthless at inception, see (3.203) and comments thereafter.
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A vanilla υa-into-υb payer swaption is a call option like (3.40), where the
underlying is a maturing forward par swap rate S

(E−t;υb)
t , and the option

expires one term ahead of the time T when the contract is signed:

E ≡ T + υa. (3.58)

Similarly, a vanilla υa-into-υb receiver swaption is a put option like (3.46),
with underlying and expiration date as in the payer swaption. See Rebonato
(1998) or Brigo and Mercurio (2001) for more on the swaption market.
Swaption traders focus on the normalized implied volatility, also known

as basis point implied volatility, or "b.p. vol", which is the ATMF implied
percentage volatility multiplied by the underlying, i.e. the forward par rate:

σBPt ≡ S
(υa,υb)
t σ

(Kt,t+υa;υb)
t . (3.59)

Notice that the implied volatility depends on the extra-parameter υb, i.e. the
tenor.
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Fig. 3.10. Changes in normalized volatility are market invariants

From (3.51) the basis point volatility closely tracks the price of the ATMF
swaption value.

For example, in Figure 3.9 we consider the case of the one-into-five year
ATMF receiver swaption in the US market. We plot the daily values of both
the ATMF implied basis point volatility (3.59) and the ATMF swaption price.
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In the swaption world the underlying rate (3.57) has a bounded range and
thus it does not display the explosive pattern typical of a stock price. Therefore
the swaption prices are also stable, see Figure 3.9, and compare with Figure
3.6. This implies that in (3.51) we do not need to normalize the swaption
price with the underlying in order to obtain stable patterns. Therefore in the
swaption world the changes in ATMF implied basis point volatility are market
invariants, as the two simple tests discussed in the introduction to Section 3.1
show, see Figure 3.10.

3.2 Projection of the invariants to the investment
horizon

In Section 3.1 we detected the invariants Xt,eτ for our market relative to the
estimation interval eτ . In Chapter 4 we show how to estimate the distribution
of these invariants. The estimation process yields the representation of the
distribution of the invariants, in the form of either their probability density
function fXt,eτ or their characteristic function φXt,eτ .
In this section we project the distribution of the invariants, which we

assume known, to the desired investment horizon, see Meucci (2004).
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Fig. 3.11. Projection of the market invariants to the investment horizon

The distribution of the invariants as estimated in Chapter 4 is the same
for all the generic times t. Denoting as T the time the investment decision
is made, the estimation process yields the distribution of the "next step"
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