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P = g (m) + (X−m)0 ∂xg|x=m (3.108)

+
1

2
(X−m)0 ∂2xxg

¯̄
x=m

(X−m) + · · · ,

where m is a significative value of the invariants. One standard choice is zero:

m ≡ 0. (3.109)

Another standard choice is the expected value:

m ≡ E {X} . (3.110)

If the approximation in (3.108) is performed up to the first order, the market
prices at the horizon are a linear function of the invariants. If the approxi-
mation is carried on up to the second order, the market prices are quadratic
functions of the invariants. In either case, the distribution of the market prices
becomes a tractable expression of the distribution of the invariants.
Depending on its end users, the approximation (3.108) is known under

different names.
In the derivatives world the expansion up to order zero is called the theta

approximation. The expansion up to order one is called the delta-vega ap-
proximation. The delta is the first derivative (mathematical operation) of the
investment-horizon pricing function of the derivative (financial contract) with
respect to the underlying, whereas the vega is the first derivative (mathemat-
ical operation) of the investment-horizon pricing function of the derivative
(financial contract) with respect to the implied volatility. The expansion up
to order two is called the gamma approximation. The gamma is the second
derivative (mathematical operation) of the investment-horizon pricing func-
tion of the derivative (financial contract) with respect to the underlying.
In the fixed-income world the expansion up to order zero in (3.108) is

known as the roll-down or slide approximation. The expansion up to order
one is known as the PVBP or duration approximation. The expansion up
to order two is known as the convexity approximation, see Section 3.5 for a
thorough case-study.
We stress again that the accuracy of (3.108) is jeopardized by the hidden

threat of estimation risk , which we discuss in the third part of the book.

3.4 Dimension reduction

According to (3.79), the prices at the investment horizon of the securities in
our market are a function of the randomness in the market:

PT+τ = g (XT+τ,τ ) , (3.111)

where Xt,τ denotes the generic set of market invariants relative to the interval
τ that becomes known at time t.
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132 3 Modeling the market

In a generic market of a large number of securities, the following two
phenomena typically occur.
In the first place the actual dimension of the market is less than the number

of securities. This is due to the joint presence in the market of derivatives and
underlying securities. Such phenomena can be analyzed in terms of the copula
of the market and the related dependence summary statistics, as discussed in
Section 2.5.

For example, consider a market of two products: a stock which trades at
the generic time t at the price St and a call option on that stock with strikeeS that trades at the price Ct. If the investment horizon coincides with the
expiry of the option, the market is one-dimensional:

PT+τ =

Ã
ST+τ

max
³
ST+τ − eS, 0´

!
, (3.112)

see Figure 2.5. From Table 2.115, the Schweizer and Wolff measure of depen-
dence between these two securities is one, i.e. the maximum possible value.

In the second place, the actual dimension of the randomness in the market,
i.e. the actual dimension of the N -dimensional vector of investment-horizon
invariants X, is less than N . This is the subject of the remainder of this
section.
We aim at expressing the vector of invariants X as a function of two sets

of variables: a vector F of a few common factors that are responsible for most
of the randomness in the market; and a residual vector U of perturbations
that have a marginal effect:

Xt,τ ≡ h (Ft,τ ) +Ut,τ . (3.113)

In this expression the vector of factors F should have a much lower dimension
than the market invariants:

K ≡ dim (Ft,τ )¿ N ≡ dim (Xt,τ ) . (3.114)

We remark that, since Xt,τ represents the market invariants, i.e. it is a vec-
tor of independent and identically distributed random variables that become
known at time t, both factors Ft,τ and perturbationsUt,τ must also be market
invariants. In the sequel we drop the generic time t and the generic interval τ
from the notation.
Intuitively, the factors should affect all the invariants and be responsible for

most of the randomness in the market. In other words the invariants recovered
through the factors should be very close to the original market invariants:eX ≡ h (F) ≈ X. (3.115)

To measure the goodness of this approximation we use the generalized r-
square, which we define as follows:
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3.4 Dimension reduction 133

R2
n
X, eXo ≡ 1− E

½³
X− eX´0 ³X− eX´¾
tr {Cov {X}} . (3.116)

The term in the numerator is a measure of the amount of randomness in the
residual, which is zero if and only if the approximation (3.115) is exact. The
term in the denominator is a measure of the amount of randomness in the
original invariants, as it is proportional to the average of the variances of all
the invariants. The factor model (3.113) is viable if the generalized r-square
approaches one. An r-square close to zero or even negative indicates that the
factor model performs poorly.
The generic factor model (3.113) is too broad. In the sequel we will restrict

our models to linear functions. In other words, we express the invariants in
the following form:

X ≡ BF+U. (3.117)

The K columns of the N ×K matrix B are called the factor loadings: they
transfer the effect of each of the K factors in F to the N invariants in X. No-
tice that (3.117) represents a first-order Taylor approximations of the general
formula (3.113), if we include a constant among the factors.
Ideally, common factors and perturbations should be independent vari-

ables. For practical purposes this requirement is too restrictive, therefore we
only impose that common factors and perturbation be uncorrelated:

Cor {F,U} = 0K×N , (3.118)

which is a weaker assumption, see (2.136). The two assumptions (3.117) and
(3.118) encompass the vast majority of the factor models considered in the
financial literature.
Factor models for the market invariants can be obtained in two ways:

either the factors are measurable market invariants, in which case we obtain
an explicit factor model, or they are synthetic variables defined in terms of
the original market invariants, in which case we obtain a hidden factor model.
In either case, the perturbations are defined as the residual term.

3.4.1 Explicit factors

Here we assume that the factors F in the linear factor model (3.117) are
explicit market variables. In other words, for any choice of the N ×K matrix
B of the factor loadings we obtain a linear model that defines the residuals
as follows:

X ≡ BF+U. (3.119)

The regression factor loadings correspond to the best choice of the coefficients
B in terms of the generalized r-square criterion (3.116). By definition the
regression factor loadings solve:
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134 3 Modeling the market

Br ≡ argmax
B

R2 {X,BF} , (3.120)

where "r" stands for "regression".
As we show in Appendix www.3.4, the regression factor loadings read:

Br ≡ E
©
XF0

ª
E
©
FF0

ª−1
. (3.121)

The regression factor loadings in turn yield the recovered invariants eXr ≡ BrF
and the perturbations, i.e. the residuals Ur ≡ X − eXr. Unfortunately, the
perturbations do not display zero correlation with the explicit factors unless
the factors have zero expected value:

E {F} = 0⇒ Cor {F,U} = 0K×N . (3.122)

For example, consider an invariant and a factor that are jointly normally
distributed: µ

X
F

¶
∼ N

µµ
µX
µF

¶
,

µ
σ2X ρσXσF

ρσXσF σ2F

¶¶
. (3.123)

In this case the regression factor loading reads:

br =
µXµF + ρσXσF

µ2F + σ2F
. (3.124)

From the more general formulas of Appendix www.3.4 we obtain:

Cov {U,F} = ρσXσF

µ
1− 1

1 + µ2F /σ
2
F

¶
− µFµX
1 + µ2F /σ

2
F

, (3.125)

which is null if µF ≡ 0.

Nevertheless, we can always include a constant among the factors:

F 7→
µ
1
F

¶
. (3.126)

We show in Appendix www.3.4 that in this case the regression coefficients
(3.121) yield the following recovered invariants:

eXr ≡ E {X}+Cov {X,F}Cov {F}−1 (F− E {F}) , (3.127)

see Figure 3.12. The perturbations, which are defined as the residuals Ur ≡
X− eXr, have zero expected value and display zero correlation with the factors:

E {Ur} = 0, Cor {F,U} = 0K×N . (3.128)

Furthermore, the covariance of the residual reads:

Cov {Ur} = Cov {X}−Cov {X,F}Cov {F}−1Cov {F,X} . (3.129)
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{ }E X
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X

{ }E F
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i rX

Fig. 3.12. Explicit factor dimension reduction: regression

Notice the similarities between the recovered invariants (3.127) and the ex-
pected value of the conditional normal distribution (2.165) on the one hand,
and the covariance of the residuals (3.129) and the covariance of the condi-
tional normal distribution (2.166) on the other hand.

If in our example (3.123) we add a constant we obtain from (3.127) the
following recovered invariant:

eXr ≡ µX + ρ
σX
σF

(F − µF ) . (3.130)

This is the expected value of the conditional distribution of the invariant given
the factor (2.174). Similarly, the variance of the residual reads:

Var
neUro = σ2X

¡
1− ρ2

¢
, (3.131)

which is the variance of the conditional distribution of the invariant given the
factor (2.175).

In order to evaluate the quality of an explicit factor model, it is better to
reformulate our model in a scale-independent fashion.
First of all we normalize the market invariants by means of their z-scores

ZX , which from (1.35) read component-wise:

Z
(n)
X ≡ Xn − E {Xn}p

Cov {Xn,Xn}
. (3.132)
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136 3 Modeling the market

The z-scores have zero expected value and unit standard-deviation: therefore
they represent a scale- and location-independent version of the market invari-
ants.
To normalize the factors, we consider the principal component decompo-

sition (2.76) of their covariance matrix:

Cov {F} ≡ EΛE0. (3.133)

In this expression Λ is the diagonal matrix of the eigenvalues sorted in de-
creasing order:

Λ ≡ diag (λ1, . . . , λK) ; (3.134)

and E is the juxtaposition of the respective eigenvectors:

E ≡
³
e(1), . . . , e(K)

´
. (3.135)

This matrix satisfies EE0 = IK and thus it represents a rotation, see Figure
A.4. In terms of the principal component decomposition we can normalize the
factors as follows:

ZF ≡ Λ−
1
2E0 (F− E {F}) . (3.136)

These are the z-scores of the factors, rotated in a way that decorrelates them:

Cov {ZF } = IK , (3.137)

see the proof in Appendix www.3.4.
In terms of the normalized variables (3.132) and (3.136), the recovered

invariants (3.127) read: eZX = CXFZF , (3.138)

where the matrix CXF is the correlation between the market invariants and
the (rotated) explicit factors:

CXF ≡ Cor {X,E0F} . (3.139)

The correlation CXF in (3.138) is responsible for transferring the randomness
of the factors into the recovered invariants. Indeed, we show in Appendix
www.3.4 that the generalized r-square (3.116) of the explicit factor model can
be expressed as an average correlation:

R2
n
X, eXr

o
=
tr (CXFC

0
XF )

N
. (3.140)

Therefore the factors should be chosen as correlated as possible to the market
invariants, in order to increase their explanatory power.
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In our example (3.123), where there exists only one factor, (3.139) reads:

CXF ≡ Cor {X,F} = ρ. (3.141)

Therefore in our simple one-factor model the generalized r-square (3.140) is
the square of the correlation between the factor and the invariant:

R2 = ρ2. (3.142)

Indeed, from (3.131) when the factor and the invariant are highly correlated,
the residual is minimal and thus the explanatory power of the factor model is
maximal.

Adding factors trivially improves the quality of the result. Nevertheless,
the number of factors should be kept at a minimum, in order not to defeat
the purpose of dimension reduction.

1F
KF

X

Fig. 3.13. Collinearity: the regression plane is not defined

Furthermore, the factors should be chosen as diversified as possible, in
order to avoid the problem of collinearity. Indeed, when the K factors are not
diversified they span a hyperplane of dimension less than K. This makes it
impossible to identify the regression hyperplane, see Figure 3.13.
Several criteria have been developed in the statistical and financial liter-

ature to select the most suitable among a pool of potential explicit factors,
such as the Akaike information criterion and the Bayesian information crite-
rion. We refer the reader to references such as Parzen, Tanabe, and Kitagawa
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138 3 Modeling the market

(1998), see also Connor and Korajczyk (1993) for financial applications. To
implement the selection in practice once a suitable criterion has been deter-
mined see Section 3.4.5.

3.4.2 Hidden factors

In a linear model with hidden factors we assume that the factors are not
explicit market variables. Instead, they are functions of the original invari-
ants that summarize as much information about the invariants as possible.
Including a constant among the hidden factors, (3.117) reads:

X ≡ q+BF (X) +U. (3.143)

For any choice of the constant q and of the factor loading matrix B and for
any choice F (·) of the functional form that summarizes the invariants X into
the synthetic factors, we obtain a model that defines the residuals U.
According to the r-square criterion (3.116) the best, yet trivial, joint choice

of constant, factor loadings and functional form for the hidden factors is repre-
sented by q ≡ 0, B ≡ I and F (X) ≡ X respectively. In this case the residuals
are null and thus the generalized r-square is one. Nevertheless, no dimension
reduction takes place, i.e. (3.114) is not satisfied, since the number of factors
is equal to the number of invariants.
Once we impose the condition that the number of hidden factors be less

than the number of invariants, the "best" linear model depends on the possible
functional form that we consider for the factors.
Here we present two choices for the above functional form, which give rise

to two approaches to hidden factor dimension reduction: principal component
analysis and idiosyncractic factors.

Principal component analysis

Principal component analysis (PCA) provides the best dimension reduction
under the assumption that the hidden factors in (3.143) be affine transforma-
tions of the invariants:

Fp ≡ dp +A0
pX, (3.144)

where d is a K-dimensional vector, A is an N ×K matrix and "p" stands for
"PCA". Notice that this is a first-order Taylor expansion of the more general
functional form F (X) that appears in (3.143).
Under the above assumption, from (3.143) the optimally recovered invari-

ants must be an affine transformation of the original invariants:

eXp ≡mp +BpA
0
pX, (3.145)

where
mp ≡ q+Bpdp. (3.146)
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Therefore, the PCA solution is represented by the following set of factor load-
ings and coefficients:

(Bp,Ap,mp) ≡ argmax
B,A,m

R2
©
X,m+BA0X

ª
. (3.147)

From this solution we can identify the coefficients q and d by imposing for
instance the following condition:

E {F} ≡ 0. (3.148)

To present the solution to this problem, we consider the spectral decom-
position of the covariance matrix (2.76), which we report here:

Cov {X} ≡ EΛE0. (3.149)

In this expression Λ is the diagonal matrix of the decreasing, positive eigen-
values of the covariance:

Λ ≡ diag (λ1, . . . , λN ) ; (3.150)

and E is the juxtaposition of the respective eigenvectors:

E ≡
³
e(1), . . . , e(N)

´
, (3.151)

which satisfies EE0 = IN . Also, we consider the location-dispersion ellipsoid
(2.75) associated with the expected value and the covariance matrix, see Fig-
ure 3.14.
First, we present a heuristic argument under the assumption that we only

require one factor, i.e. K ≡ 1. We guess that this factor reads:

F ≡
h
e(1)

i0
X. (3.152)

Indeed, from (2.82)-(2.83) the one-dimensional variable F captures the most
randomness contained in the invariants that is possible by means of a linear
transformation. The variable F represents the orthogonal projection of the
variable X onto the direction defined by the first eigenvector, i.e. the longest
principal axis in the location-dispersion ellipsoid.
To recover the N -dimensional invariant X with an affine transformation

of F we must proceed as follows: we choose a fixed vector, i.e. a direction in
RN ; we multiply this vector by F ; and we add a constant vector m, i.e. we
"center" the newly defined recovered variable.
Since the direction that contains most of the randomness in X is the

longest principal axis, we let the random variable F vary along that direction
by multiplying it by the first eigenvector e(1). From (3.152) this means that
the recovered invariants become the following affine function of the original
invariants:
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Fig. 3.14. Hidden factor dimension reduction: PCA

eX ≡m+ e(1)
h
e(1)

i0
X. (3.153)

To properly choose m, i.e. to properly center the above recovered invariants,
we impose that the expected values of both the original and the recovered
invariants be the same. From this condition we immediately obtain:

m ≡
µ
IN −

h
e(1)

i h
e(1)

i0¶
E {X} , (3.154)

where IN is the identity matrix. Notice that with this choice of m the opti-
mally recovered invariants (3.153) become the orthogonal projection of the
original invariants along the direction of the longest principal axis of the
location-dispersion ellipsoid. This is the line that contains the maximum pos-
sible randomness of the original invariants, i.e. the line that contains the
maximum information about the original invariants.
Since (3.153)-(3.154) are in the form (3.145) we would argue that they

provide the PCA dimension reduction (3.147) by means of one factor:

{Bp,Ap,mp} ≡
½
e(1), e(1),

µ
IN −

h
e(1)

i h
e(1)

i0¶
E {X}

¾
. (3.155)

As far as the factor (3.152) is concerned, in order to satisfy (3.148), we shift
it by a scalar as follows:

F ≡
h
e(1)

i0
X−

h
e(1)

i0
E {X} . (3.156)
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Since this factor is in the form (3.144), we would argue that it represents the
PCA factor, when only one factor is required.
It turns out that the above heuristic arguments and conjectures are correct.

Furthermore, they can be generalized to any number K of factors. Indeed, the
following statements and results hold, see Brillinger (2001).
Consider the N × K matrix defined as the juxtaposition of the first K

eigenvectors:

EK ≡
³
e(1), . . . , e(K)

´
. (3.157)

The solution to the PCA dimension reduction problem (3.147) reads:

{Bp,Ap,mp} ≡ {EK ,EK , (IN −EKE
0
K)E {X}} , (3.158)

which generalizes (3.155).
The hidden factors that optimally summarize the most information in the

invariants by means of affine transformations read:

Fp ≡ E0K (X− E {X}) . (3.159)

This expression generalizes (3.156).
From the solution (3.158) we also obtain the expression of the PCA-

recovered invariants:

eXp ≡ E {X}+EKE
0
K (X− E {X}) . (3.160)

This expression generalizes (3.153)-(3.154). As we show in Appendix www.3.5,
this expression represents the orthogonal projection of the original invariants
onto the hyperplane spanned by the K longest principal axes, i.e. the K-
dimensional hyperplane that contains the maximum information about the
original invariants, see Figure 3.14.
Furthermore, the perturbations in the PCA dimension reduction model,

defined as the residuals Up ≡ X− eXp, have zero expected value and display
zero correlation with the factors:

E {Up} = 0, Cor {Fp,Up} = 0K×N , (3.161)

see Appendix www.3.5.
Quite obviously, the quality of the approximation provided by the recov-

ered invariants (3.160) depends on the number K of factors. Indeed, we prove
in Appendix www.3.5 that the generalized r-square (3.116) can be expressed
in terms of the eigenvalues (3.150) of the covariance matrix as follows:

R2
n
X, eXp

o
=

PK
n=1 λnPN
n=1 λn

. (3.162)

This expression is intuitive. Adding the generic K-th factor to a (K − 1)-
factor PCA analysis corresponds to adding one dimension to the hyperplane
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on which the invariants are projected, namely the direction of theK-th largest
principal axis of the location-dispersion ellipsoid. On the other hand, theK-th
eigenvalue is the variance of the K-th factor:

Var {Fn} =
h
e(n)

i0
EΛE0

h
e(n)

i
= λn. (3.163)

We can thus interpret the K-th eigenvalue as the contribution to the total
recovered randomness obtained by adding the K-th dimension of randomness.
In this respect, the numerator in (3.162) is the cumulative contribution to

total randomness from the K main dimensions of randomness. Similarly, the
denominator is the cumulative contribution to total risk from all the factors,
i.e. the denominator represents the total randomness in the invariants.
To summarize, the generalized r-square is the percentage cumulative con-

tribution to total randomness from the K main dimensions of randomness.
Notice that the eigenvalues are sorted in decreasing order. Therefore, the mar-
ginal contribution of adding one factor decreases with the number of factors.

Idiosyncratic perturbations

Principal component analysis is not the only way to specify the linear hidden-
factor model (3.143), which we report here:

X ≡ q+BF (X) +U. (3.164)

Among other options, one can impose that each of the residual perturbations
refer to one and only one invariant, i.e. that the entries of U be independent
of one another.
Imposing this constraint corresponds to factoring the randomness in the

market into K contributions common to all the market invariants and N
idiosyncratic perturbations each of which affects only one invariant.
Nevertheless, the assumption that the perturbations be independent of one

another is too strong in general markets. Even the much weaker assumption
that the perturbations be uncorrelated is too strong. Indeed this hypothesis,
together with the standard assumption (3.118) that factors and perturbations
be uncorrelated, is equivalent to the following condition:

Cov {Xm,Xn} = [BCov {F (X)}B0]mn , for all m 6= n. (3.165)

This condition can be satisfied in general only in approximation.
Furthermore, the common factors and factor loadings can be identified

only modulo an invertible transformation, which we can, but do not have to,
assume linear. In other words, if a pair (F,B) yields a viable model (3.164),
so does the pair

¡
AF,BA−1

¢
for any conformable invertible matrix A.
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3.4.3 Explicit vs. hidden factors

At this point the legitimate question might arise, whether in order to sum-
marize the randomness in the market is it better to use explicit factors, as
discussed in Section 3.4.1, or hidden factors, as discussed in Section 3.4.2.
In general, explicit factor models are easier to interpret, whereas hidden

factor models tend to provide a better explanatory power. The first statement
is straightforward, therefore we focus on the comparison of the explanatory
power of the two methods. Nevertheless, each situation should be evaluated
independently.
Consider a generic PCA dimension reduction on the first K factors of

an N -dimensional set of invariants X. From (3.160) this process recovers the
following invariants: eXp ≡ E {X}+EKE

0
K (X− E {X}) . (3.166)

We recall that the recovered invariants represent the projection of the orig-
inal invariants onto the K-dimensional hyperplane of maximum randomness
spanned by the first K principal axes of the location-dispersion ellipsoid, see
Figure 3.15 and compare with Figure 3.14.

i pX

X

i rX

AX

BX

{ }E X

Fig. 3.15. Regression vs. PCA dimension reduction

In order to compare the PCA results with an explicit-factor model we need
to restrict our analysis to endogenous explicit-factor models. In other words,
first we split the invariants into two subsets:

X ≡
µ
XA

XB

¶
, (3.167)
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where XA is a set of K among the N entries of X, and XB is the set of the
remaining entries. As factors, we consider the variables XA and a constant:

F ≡
µ
1
XA

¶
. (3.168)

This regression model is completely endogenous, in that the factors are a
function of the original invariants. From (3.127) the recovered invariants read:

eXr ≡ E {X}+VA,B (X− E {X}) , (3.169)

where

VA,B ≡
µ

IK 0K,N−K
Cov {XB,XA}Cov {XA}−1 0N−K,N−K

¶
. (3.170)

Geometrically, the recovered invariants represent the projection of the original
invariants along the direction defined by the reference axes of XB onto the K-
dimensional hyperplane that passes through the expected value and satisfies
the following parametric equation:

xB = E {XB}+Cov {XB,XA}Cov {XA}−1 (xA − E {XA}) , (3.171)

see Figure 3.15. From (3.128) this is the hyperplane that decorrelates the
residuals from the factors.
The PCA dimension reduction represents a more symmetrical approach.

As such it should yield better results.
Indeed, from (3.147) the PCA approach maximizes the generalized r-square

as follows:
(Gp,mp) ≡ argmax

(G,m)∈Cp
R2 {X,m+GX} , (3.172)

under the only constraint Cp that the rank of G be K. This follows because a
generic N ×N matrix G has rank K if and only if it is the product G ≡ BE0
of two full-rank N ×K matrices B and E.
On the other hand, from (3.120) the regression approach maximizes the

generalized r-square as follows:

(Gr,mr) ≡ argmax
(G,m)∈Cr

R2 {X,m+GX} , (3.173)

under a much stronger set of constraints:

Cr :


mA ≡ 0K
GAA ≡ IK
GAB ≡ 0K,N−K
GBB ≡ 0N−K,N−K .

(3.174)

Therefore the PCA approach yields better results:
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R2
n
X, eXp

o
≥ R2

n
X, eXr

o
. (3.175)

Nevertheless, the regression approach displays other advantages. For in-
stance, the regression dimension reduction is invariant under any rescaling of
the factors (3.168), whereas the PCA approach is only invariant under a global
rescaling of all the invariants. In practice, one has to be careful to measure
the variables in homogenous units when implementing PCA dimension reduc-
tion, whereas this is not necessary when implementing regression dimension
reduction.
Furthermore, the explanatory power as summarized by the generalized r-

square is a statistical identity, whereas the word "explaining" is closely related
to the word "understanding": in other words the interpretation of the K
invariants XA is clear, whereas the interpretation of the K PCA factors might
be more obscure.
Finally, if the explanatory variables XA are chosen appropriately among

the invariants X, regression and principal component analysis yield similar
reductions, i.e. (3.175) approaches an equality.

3.4.4 Notable examples

We present here a few notable examples of dimension reduction in the financial
markets by means of the techniques discussed in this section: a model for
equities, based on one explicit factor and related to the Capital Asset Pricing
Model; another model for equity, namely the Fama-French regression, based
on three explicit factors; a model for the fixed income market, based on three
hidden factors, namely the level-slope-hump PCA decomposition of the yield
curve; and a hidden-factor model with idiosyncratic perturbations, related to
the Arbitrage Pricing Theory.

Explicit factors and the Capital Asset Pricing Model

Consider a broad stock index like the S&P 500, whose value at the generic
time t we denote as Mt. Consider as invariants for a market of N stocks the
linear returns (3.10):

L
(n)
t,τ ≡

P
(n)
t

P
(n)
t−τ
− 1, n = 1, . . . , N . (3.176)

Consider an explicit factors linear model (3.119) based on a constant and one
explicit factor, defined as the linear return on the market index:

FM
t,τ ≡

Mt

Mt−τ
− 1. (3.177)

In this case the regression (3.127) recovers the following portion of the stock
returns:
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eL(n)t,τ ≡ E
n
L
(n)
t,τ

o
+ β(n)τ

¡
FM
t,τ − E

©
FM
t,τ

ª¢
, (3.178)

where the regression coefficient β is called the beta of the stock. From (3.127),
the beta is defined as follows:

β(n)τ ≡
Cov

n
L
(n)
t,τ , F

M
t,τ

o
Var

©
FM
t,τ

ª . (3.179)

Notice that the beta depends on the interval τ . Had we used compounded
returns as invariants instead, the "square-root rule" (3.76) would have made
the beta independent of the interval.
Suppose that the distribution of the linear returns of each stock satisfies

the following additional constraint:

E
n
L
(n)
t,τ

o
= β(n)τ E

©
FM
t,τ

ª
+
³
1− β(n)τ

´
Rf
t,τ . (3.180)

In this expression the risk-free rate R is the return on a zero-coupon bond from
a period τ before maturity until maturity, which in the notation of Section
3.1.2 reads:

Rf
t,τ ≡

Ã
1

Z
(t)
t−τ
− 1
!
. (3.181)

Then the explicit factor model (3.178) becomes the Capital Asset Pricing
Model (CAPM) of Sharpe (1964), and Lintner (1965), a general equilibrium
model for the markets which recovers the following portion of the stock re-
turns: eL(n)t,τ ≡ Rf

t,τ + β(n)τ

³
FM
t,τ −Rf

t,τ

´
. (3.182)

See Ingersoll (1987) for an introduction to the CAPM.

Market-size-type explicit factors

A notable three-factor model for linear returns on stocks is discussed in Fama
and French (1993). We consider a set of N stocks, where the generic n-th
stock trades at time t at the price P (n)t and we specify the invariants as the
compounded returns (3.11) on these stocks:

C
(n)
t,τ ≡ ln

Ã
P
(n)
t

P
(n)
t−τ

!
. (3.183)

The first explicit factor, in addition to a constant, is the compounded
return CM of a broad stock index like the S&P 500. The second factor is
the difference SmB ("small minus big") between the compounded returns
of a small-cap stock index and the compounded returns of a large-cap stock
index; the third factor is the difference HmL ("high minus low") between
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the compounded returns of a large book-to-market-value stock index and the
compounded returns of a small book-to-market-value stock index. Therefore,
this market-size-type three-factor linear model reads:

C
(n)
t,τ ≡ E

n
C
(n)
t,τ

o
+ β(n)

¡
CM
t,τ − E

©
CM
t,τ

ª¢
+γ(n) (SmBt,τ − E {SmBt,τ}) (3.184)

+ζ(n) (HmLt,τ − E {HmLt,τ}) + U
(n)
t,τ ,

where n ranges through all the stocks considered. From (3.127), the regression
coefficients (β, γ, ζ) are defined in terms of the cross-covariances among factors
and invariants: due to the "square-root" property (3.76), these coefficients do
not depend on the estimation interval τ .

Hidden factors and principal component analysis

One of the most widely used applications of hidden factor dimension reduction
stems from the principal component analysis of the yield curve. We detail
every step of this analysis in our case study, see Section 3.5.2.

Hidden factors and the arbitrage pricing theory model

A notable example of the idiosyncratic approach to hidden factors linear mod-
els (3.164) is provided by the Arbitrage Pricing Theory (APT) of Ross (1976).
Like the CAPM, this is a factor model for the linear returns of the stocks in
a broad index such as the S&P 500:

L ≡ E {L}+BF (L) +U. (3.185)

The APT superimposes a restriction on the distribution of the linear returns,
namely:

E {L} = ξ01+Bξ, (3.186)

where 1 is an N -dimensional vector of ones, ξ0 is a constant and ξ is a K-
dimensional vector of risk premia. See Ingersoll (1987) and Connor and Ko-
rajczyk (1995) for an introduction to the APT.

3.4.5 A useful routine

In the context of dimension reduction, a challenging problem that often arises
is the selection of the best K in a pool of N potential candidates to perform
a given task. This is a combinatorial problem. The pool of candidates can be
indexed by the first N integers:

IN ≡ {1, . . . , N} ; (3.187)
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we have to consider all the possible combinations of K elements from the pool
of candidates:

IK ≡ {n1, . . . , nK} ; (3.188)

and we must select the best combination I∗K among all the above combinations.

For example, consider reducing the dimension by means of an explicit
factor model as in Section 3.4.1. There exists a pool of N potential explicit
factors:

FIN ≡ (F1, . . . , FN )
0 , (3.189)

but eventually we only consider K among the N potential factors:

FI∗K ≡
¡
Fn∗1 , . . . , Fn∗K

¢0
. (3.190)

As another example, consider an allocation problem in a market of N
securities, where the final portfolio is constrained to contain a number K
of these securities. This dimension-reduction problem is known as portfolio
replication, namely replicating with as few as K securities a portfolio that
should ideally contain N securities.

The best combination I∗K is defined as the one that maximizes a given
objective O:

I∗K = argmax
IK⊂IN

O (IK) . (3.191)

For instance, in the case of regression dimension reduction the objective
is represented by the generalized r-square:

O (IK) ≡ R2
n
X, eX (IK)o , (3.192)

see (3.120). In this expression eX follows from (3.121) and reads:

eX (IK) ≡ E©XF0IKªE©FIKF0IKª−1FIK . (3.193)

An alternative specification of the objective is provided for instance by the
Akaike criterion, see Parzen, Tanabe, and Kitagawa (1998).
In the case of the PCA approach to dimension reduction the selection prob-

lem does not exist, because the PCA factors are naturally sorted in decreasing
order of importance, i.e. I∗K ≡ (1, . . . ,K).
In a portfolio replication problem, the objective is minimizing the tracking

error:
O (IK) ≡ −TE(α (IK)) , (3.194)

see (6.179) later in the text.

Combinatorial problems are computationally very challenging. Indeed, the
optimization (3.191) implies evaluating the objective

¡
N
K

¢
times. Furthermore,
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the number K is often a decision variable. In other words, the optimal number
K is only decided after evaluating the trade-offs of the dimension reduction
process, i.e. after computing the following function:

K 7→ O (I∗K) , K = 1, . . . , N . (3.195)

For instance, in portfolio replication problems, the ideal number K of
securities in the final portfolio is evaluated according to the trade-off between
the quality of the replication and the transaction costs.

Computing (3.195) implies evaluating the objective the following number
of times:

NX
K=1

K

µ
N

K

¶
= 2N . (3.196)

This number is exorbitant precisely when a dimension reduction is most
needed, namely when N is large. Here we propose a routine which evaluates
the objective only the following number of times:

NX
K=1

K =
N (N + 1)

2
. (3.197)

The routine proceeds as follows:
Step 0. Set K ≡ N , and consider the initial set IK ≡ {1, . . . , N}
Step 1. Consider the K sets obtained from IK by dropping the generic

k-th element:

IkK ≡ {n1, . . . , nk−1, nk+1, . . . nK} , k = 1, . . . ,K. (3.198)

Step 2. Evaluate the above sets:

k 7→ vkK ≡ O
¡
IkK
¢
, k = 1, . . . ,K. (3.199)

Step 3. Determine the worst element in IK :

k∗ ≡ argmax
k∈{1,...,K}

©
vkK
ª
. (3.200)

Step 4. Drop the worst element in IK :

IK−1 ≡ Ik
∗

K . (3.201)

Step 5. If K = 2 stop. Otherwise set K ≡ K − 1 and go to Step 1.
Although this routine yields suboptimal results, in practice it proved very

close to optimal in a variety of applications. In other words, the function

K 7→ vk
∗

K , K = 1, . . . , N . (3.202)

is in general a very good approximation of (3.195).
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3.5 Case study: modeling the swap market

In this section we discuss how to model the swap market. Swaps are very liquid
securities and many new contracts are traded every day. A υ-swap (E − t)-
forward is a contract whose value at the generic time t reads:

P
(E,υ)
t ≡ sρ

υ/ρX
k=1

Z
(Ek)
t + Z

(E+υ)
t − Z

(E)
t . (3.203)

In this formula s is the agreed upon fixed rate expressed in annualized terms: at
inception t0 this rate is typically set in such a way that the value of the contract
zero, i.e. it is set as the (E − t0)-into-υ forward par swap rate defined in (3.57);
ρ is a fixed time-interval of the order of a few months; the generic term Ek ≡
E + kρ is one fixed-leg payment date; Z(E)t is the price of a zero-coupon bond
with maturity E. The pricing formula (3.203) originates from the structure
of the contract, according to which agreed upon fixed payments are swapped
against floating payments that depend on the current levels of interest rates,
see Rebonato (1998) and Brigo and Mercurio (2001). Nevertheless, we can
take (3.203) as the definition of a security.
In this case study the investment decision is taken at T ≡ January 1st

2000 and we plan to invest in an "eight-year swap two-years forward", i.e.
a swap that starts (E − T ) ≡ two years from the investment date on E ≡
January 1st 2002 and ends υ ≡ eight years later on E+υ ≡ January 1st 2010.
The fixed payments occur every ρ ≡ three months. Therefore, this contract is
determined by the price of thirty-three zero-coupon bonds.
We assume that the investment horizon is τ ≡ two months. Our aim is

to determine the distribution of P (E,υ)T+τ . To do this, we dispose of the daily
database of all the zero-coupon bond prices for the past ten years.

3.5.1 The market invariants

Everyday, many new forward swap contracts are issued with new starting and
ending dates. Therefore, the swap market is completely priced by the set of
all the zero-coupon bond prices for virtually all the maturities on a daily basis
up to around thirty years in the future:

Z
(E)
t such that E = t+ 1d, t+ 2d, . . . , t+ 30y. (3.204)

The first step to model a market is to determine its invariants. We have seen
in Section 3.1.2 that the natural invariants for the fixed-income market are
the changes in yield to maturity:

X
(υ)
t,eτ ≡ Y

(υ)
t − Y

(υ)
t−eτ . (3.205)

In this expression eτ is the estimation interval and υ denotes a specific time
to maturity in the yield curve, which is the plot of the yield to maturity as a
function of the respective time to maturity:
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