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In the swaption world the underlying rate (3.57) has a bounded range and
thus it does not display the explosive pattern typical of a stock price. Therefore
the swaption prices are also stable, see Figure 3.9, and compare with Figure
3.6. This implies that in (3.51) we do not need to normalize the swaption
price with the underlying in order to obtain stable patterns. Therefore in the
swaption world the changes in ATMF implied basis point volatility are market
invariants, as the two simple tests discussed in the introduction to Section 3.1
show, see Figure 3.10.

3.2 Projection of the invariants to the investment
horizon

In Section 3.1 we detected the invariants Xt,eτ for our market relative to the
estimation interval eτ . In Chapter 4 we show how to estimate the distribution
of these invariants. The estimation process yields the representation of the
distribution of the invariants, in the form of either their probability density
function fXt,eτ or their characteristic function φXt,eτ .
In this section we project the distribution of the invariants, which we

assume known, to the desired investment horizon, see Meucci (2004).
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Fig. 3.11. Projection of the market invariants to the investment horizon

The distribution of the invariants as estimated in Chapter 4 is the same
for all the generic times t. Denoting as T the time the investment decision
is made, the estimation process yields the distribution of the "next step"
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3.2 Projection of the invariants to the investment horizon 123

invariants XT+eτ,eτ , which become known with certainty at time T + eτ , see
Figure 3.11. This distribution contains all the information on the market for
the specific horizon eτ that we can possibly obtain from historical analysis.
Nevertheless, the investment horizon τ is in general different, typically

larger, than the estimation interval eτ . In order to proceed with an alloca-
tion decision, we need to determine the distribution of XT+τ,τ , where τ is the
generic desired investment horizon. This random variable, which only becomes
known with certainty at the investment horizon, contains all the information
on the market for that horizon that we can possibly obtain from historical
analysis. Therefore our aim is determining either the probability density func-
tion fXT+τ,τ or the characteristic function φXT+τ,τ

of the investment-horizon
invariants, see Figure 3.11.
Due to the specification of the market invariants it is easy to derive this

distribution. Indeed, consider first an investment horizon τ that is a multiple
of the estimation horizon eτ . The invariants are additive, i.e. they satisfy the
following relation:

XT+τ,τ = XT+τ,eτ +XT+τ−eτ,eτ + · · ·+XT+eτ,eτ . (3.60)

This follows easily from the fact that all the invariants are in the form of
differences: in the equity market (or the commodity market, or the foreign
exchange market) the compounded returns (3.11) satisfy:

Xt,τ ≡ ln (Pt)− ln (Pt−τ ) ; (3.61)

in the fixed-income market the changes in yield to maturity (3.31) satisfy:

Xt,τ ≡ Yt −Yt−τ , (3.62)

where each entry correspond to a different time to maturity; in the derivatives
market the changes in implied volatilities (3.52) satisfy:

Xt,τ ≡ σt − σt−τ , (3.63)

where each entry refers to a specific ATMF time to expiry. Therefore we can
factor the investment-horizon difference into the sum of the estimation-interval
differences, which is (3.60).
Since the terms in the sum (3.60) are invariants relative to non-overlapping

time intervals, they are independent and identically distributed random vari-
ables. This makes it straightforward to compute the distribution of the in-
vestment horizon invariants. Indeed, as we show in Appendix www.3.2, the
investment-horizon characteristic function is simply a power of the estimated
characteristic function:

φXT+τ,τ
=
³
φXt,eτ

´ τeτ
, (3.64)

where the characteristic function on the right hand side does not depend on
the specific time t. Representations involving either the investment-horizon
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124 3 Modeling the market

pdf fXT+τ,τ or the estimation-interval pdf fXt,eτ can be easily derived from
this expression by means of the generic relations (2.14) and (2.15) between
the probability density function and the characteristic function, which we
report here:

φX = F [fX] , fX = F−1 [φX] , (3.65)

where F denotes the Fourier transform (B.34) and F−1 denotes the inverse
Fourier transform (B.40).
Expression (3.64) and its equivalent formulations represent the projection

of the invariants from the estimation interval eτ to the investment horizon τ .
We remark that we formulated the projection to the horizon assuming

that the investment horizon τ was a multiple of the estimation interval eτ .
This assumption does not seem to play any role in the projection formula
(3.64). Indeed, we can drop that hypothesis, and freely use the projection
formula for any horizon, as long as the distribution of the estimated invariant
is infinitely divisible, see Section 2.7.3. If this is not the case, the expression
on the right-hand side of (3.64) might not be a viable characteristic function:
in such circumstances formula (3.64) only holds for investment horizons that
are multiple of the estimation interval.

Consider the normally distributed weekly compounded returns on a stock
(3.18) and the three-year sector of the curve with normally distributed weekly
yield changes (3.33). In other words, consider the following two market invari-
ants:

Xt,eτ ≡
µ
Ct,eτ
Xυ
t,eτ
¶
≡
µ
lnPt − lnPt−eτ
Y
(υ)
t − Y

(υ)
t−eτ

¶
, (3.66)

where υ denotes the three-year sector of the curve as in (3.34). Assume that
their distribution is jointly normal:

Xt,eτ ∼ N(µ,Σ) , (3.67)

where

µ ≡
µ
µC
µX

¶
, Σ ≡

µ
σ2C ρσCσX

ρσCσX σ2X

¶
; (3.68)

and where
¡
µC , σ

2
C

¢
are estimated in (3.20),

¡
µX , σ

2
X

¢
are estimated in (3.35)

and the correlation is estimated as, say,

ρ ≡ 35%. (3.69)

From (2.157) we obtain the characteristic function of the weekly invariants:

φXt,eτ (ω) = eiω
0µ− 1

2ω
0Σω . (3.70)

Assume that the investment horizon, measured in years, is four and a half
weeks: eτ ≡ 1

52
, τ ≡ 4.5

52
. (3.71)
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3.2 Projection of the invariants to the investment horizon 125

Notice that τ/eτ is not an integer, but from (2.298) the normal distribution is
infinitely divisible and therefore we do not need to worry about this issue.
We are interested in the distribution of the invariants relative to the in-

vestment horizon:

XT+τ,τ ≡
µ
CT+τ,τ

Xυ
T+τ,τ

¶
≡
µ
lnPT+τ − lnPT
Y
(υ)
T+τ − Y

(υ)
T

¶
. (3.72)

To obtain their distribution we use (3.64) to project the characteristic function
(3.70) to the investment horizon:

φXT+τ,τ
(ω) = eiω

0 τeτ µ− 1
2ω

0 τeτΣω . (3.73)

This formula shows that the compounded return on the stock and the change
in yield to maturity of the three-year sector at the investment horizon have a
joint normal distribution with the following parameters:

XT+τ,τ ∼ N
³τeτ µ, τeτΣ´ . (3.74)

The projection formula (3.64) implies a special relation between the pro-
jected moments and the estimated moments of the invariants. As we prove in
Appendix www.3.3, when the expected value is defined the following result
holds:

E {XT+τ,τ} =
τeτ E {Xt,eτ} , (3.75)

where the right hand side does not depend on the specific date t. Also, when
the covariance is defined the following result holds:

Cov {XT+τ,eτ} = τeτ Cov {Xt,eτ} , (3.76)

where again the right hand side does not depend on the specific date t. More
in general, a multiplicative relation such as (3.75) or (3.76) holds for all the
raw moments and all the central moments, when they are defined.
In particular, we recall from (2.74) that the diagonal elements of the co-

variance matrix are the square of the standard deviation of the respective
entries. Therefore (3.76) implies:

Sd {XT+τ,τ} =
√
τ Sd {X} , (3.77)

where in the right hand side we dropped the specific date t, which does not
play a role, and we set the reference horizon eτ ≡ 1, measuring time in years
and dropping it from the notation. This identity is known among practition-
ers as the square-root rule. Specifically, in the case of equities it reads "the
standard deviation of the compounded return of a stock at a given horizon
is the square root of the horizon times the annualized standard deviation of
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126 3 Modeling the market

the compounded return". In the case of fixed-income securities it reads: "the
standard deviation of the change in yield to maturity in a given time span is
the square root of the time span times the annualized standard deviation of
the change in yield to maturity".
We remark that the simplicity of the projection formula (3.64) is due to the

particular formulation for the market invariants that we chose in Section 3.1.
For instance, if we had chosen as invariants for the stock market the linear
returns (3.10) instead of the compounded returns, we would have obtained
instead of (3.60) the following projection formula:

LT+τ,τ = diag (1+ LT+τ,eτ ) · · ·diag (1+ LT+eτ,eτ )− 1. (3.78)

The distribution of LT,τ in terms of the distribution of Lt,eτ cannot be rep-
resented in closed form as in (3.64). Similarly, the projection formula must
be adapted in an ad-hoc way for more complex market dynamics than those
discussed in Section 3.1.
We conclude pointing out that the simplicity of the projection formula

(3.64) hides the dangers of estimation risk . In other words, the distribution
at the investment horizon is given precisely by (3.64) if the estimation-horizon
distribution is known exactly. Since by definition an estimate is only an ap-
proximation to reality, the distribution at the investment horizon cannot be
precise. In fact, the farther in the future the investment horizon, the larger
the effect of the estimation error. We discuss estimation risk and how to cope
with it extensively in the third part of the book.

3.3 From invariants to market prices

In general the market, i.e. the prices at the investment horizon of the securities
that we are considering, is a function of the investment-horizon invariants:

P = g (X) , (3.79)

where in this section we use the short-hand notation P for PT+τ and X for
XT+τ,τ .
In this section we discuss how to recover the distribution of the market from

the distribution of the investment-horizon invariants, as obtained in (3.64).
We analyze separately raw securities and derivatives.

3.3.1 Raw securities

Obtaining the distribution of the prices of the raw securities is particularly
simple.
In the case of equities, foreign exchange rates and commodities, discussed

in Section 3.1.1, the invariants are the compounded returns (3.11) and there-
fore the pricing formula (3.79) takes the following form:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer

Attilio
Cross-Out



T-56 Attilio Meucci - Risk and Asset Allocation

e(ω) (x) = Aωe
gωx. (T3.102)

To determine this constant, we compare the normalization condition (T3.98)
with (B.41) obtaining:

e(ω) (x) = eiωx. (T3.103)

To compute the eigenvalues of S we substitute (T3.103) in (T3.91) and we
re-write the spectral equation:

λωe
iωx =

Z
R
S (x, x+ z) eiω(x+z)dz = eiωx

Z
R
S (x, x+ z) eiωzdz (T3.104)

Now recall that S is Toeplitz and thus it is fully determined by its cross-
diagonal section:

S (x, x+ z) = S (0, z) ≡ h (z) , (T3.105)

where h is symmetric around the origin. Therefore we only need to evaluate
(T3.104) at x = 0, which yields:

λω =

Z
R
h (z) eiωzdz (T3.106)

In other words, the eigenvalues as a function of the frequency ω are the Fourier
transform of the cross-diagonal section of the kernel representation (T3.105)
of the operator:

λω = F [h] (ω) (T3.107)

In particular, if
h (z) ≡ σ2e−γ|z| (T3.108)

then

λω = σ2
Z
R
e−γ|z| cos (ωz) dz + iσ2

Z
R
e−γ|z| sin (ωz) dz

= 2σ2
Z +∞

0

e−γz cos (ωz) dz + 0 (T3.109)

=
2σ2γ

γ2 + ω2
.

3.7 Numerical Market Projection

Here we show how to perform the operations (3.65) by means of the fast
Fourier transform in the standard case where analytical results are not avail-
able. The idea draws on Albanese, Jackson, and Wiberg (2003), the proof
relies heavily on Xi Chen’s contribution.
Approximating the probability density function
Consider a random variable X with pdf fX . We approximate the pdf with

a histogram of N bins:
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Technical Appendix to Chapter 3 T-57

fX (x) ≈
NX
n=1

fn1∆n
(x) , (T3.110)

The bins ∆1, . . . ,∆N are defined as follows. First of all, we define the bins’
width:

h ≡ 2a
N
, (T3.111)

where a is a large enough real number and N is an even larger integer number.
Now, consider a grid of equally spaced points:

ξ1 ≡ −a+ h

...

ξn ≡ −a+ nh (T3.112)
...

ξN−1 ≡ a− h.

Then for n = 1, . . . , N − 1 we define ∆n as the interval of length h that
surrounds symmetrically the point ξn:

∆n ≡
µ
ξn −

h

2
, ξn +

h

2

¸
. (T3.113)

For n = N we define the interval as follows:

∆N ≡
µ
−a,−a+ h

2

¸
∪
µ
a− h

2
, a

¸
. (T3.114)

This wraps the real line around a circle where the point −a coincides with the
point a.
As far as the coefficients fn in (T3.110) are concerned, for all n = 1, . . . , N

they are defined as follows:

fn ≡
1

h

Z
∆n

f (x) dx. (T3.115)

We collect the discretized pdf values fn into a vector fX .
Approximating the characteristic function
We need to compute the characteristic function:

φX (ω) ≡
Z
R
eiωxfX (x) dx. (T3.116)

Using (T3.110) and

1

h

Z
R
g (x) 1∆n (x) dx ≈ g (−a+ nh) , (T3.117)
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we can approximate the characteristic function as follows:

φX (ω) ≈
NX
n=1

fn

Z
R
eiωx1∆n

(x) dx (T3.118)

≈
NX
n=1

fnhe
iω(−a+nh) =

NX
n=1

fnhe
− 2πi

N
ωa
π (

N
2 −n).

In particular, we can evaluate the approximate characteristic function at
the points:

ωr ≡ − (r − 1)
π

a
, (T3.119)

obtaining:

φX (ωr) ≈
NX
n=1

fnhe
− 2πi

N (r−1)(n−N
2 )

=
NX
n=1

fnhe
− 2πi

N (r−1)neπi(r−1) (T3.120)

= eπi(r−1)he−
2πi
N (r−1)

NX
n=1

fne
− 2πi

N (r−1)ne
2πi
N (r−1)

= eπi(r−1)(1−
2
N )h

NX
n=1

fne
− 2πi

N (r−1)(n−1).

Finally, since N is supposed to be very large we can finally write:

φX (ωr) ≈ eπi(r−1)h
NX
n=1

fne
− 2πi

N (r−1)(n−1). (T3.121)

The discrete Fourier transform
Consider now the discrete Fourier transform (DFT), an invertible matrix

operation f 7→ p which is defined component-wise as follows:

pr (f) ≡
NX
n=1

fne
− 2πi

N (r−1)(n−1). (T3.122)

Its inverse, the inverse discrete Fourier transform (IDFT), is the matrix oper-
ation p 7→ f which is defined component-wise as follows:

fn (p) ≡
1

N

NX
r=1

pre
2πi
N (r−1)(n−1). (T3.123)
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Comparing (T3.121) with (T3.122) we see that the approximate cf is a simple
multiplicative function of the DFT of the discretized pdf f .

φX (ωr) ≈ eπi(r−1)hpr (fX) . (T3.124)

Now consider the random variable:

Y ≡ X1 + · · ·+XT , (T3.125)

where X1, . . . ,XT are i.i.d. copies of X. The cf of Y satisfies the identity
φY ≡ φTX , see (3.64). Therefore

φY (ωr) ≈ eπi(r−1)ThT (pr (fX))
T . (T3.126)

On the other hand, from (T3.124), the relation between the cf φY and the
discrete pdf fY is:

φY (ωr) ≈ eπi(r−1)hpr (fY ) , (T3.127)

Therefore
pr (fY ) ≈ eπi(r−1)(T−1)hT−1 (pr (fX))

T . (T3.128)

The values pr (fY ) can now be fed into the IDFT (T3.123) to yield the dis-
cretized pdf fY of Y as defined in (T3.125).




