
126 3 Modeling the market

the compounded return". In the case of fixed-income securities it reads: "the
standard deviation of the change in yield to maturity in a given time span is
the square root of the time span times the annualized standard deviation of
the change in yield to maturity".
We remark that the simplicity of the projection formula (3.64) is due to the

particular formulation for the market invariants that we chose in Section 3.1.
For instance, if we had chosen as invariants for the stock market the linear
returns (3.10) instead of the compounded returns, we would have obtained
instead of (3.60) the following projection formula:

LT+τ,τ = diag (1+ LT+τ,eτ ) · · ·diag (1+ LT+eτ,eτ )− 1. (3.78)

The distribution of LT,τ in terms of the distribution of Lt,eτ cannot be rep-
resented in closed form as in (3.64). Similarly, the projection formula must
be adapted in an ad-hoc way for more complex market dynamics than those
discussed in Section 3.1.
We conclude pointing out that the simplicity of the projection formula

(3.64) hides the dangers of estimation risk . In other words, the distribution
at the investment horizon is given precisely by (3.64) if the estimation-horizon
distribution is known exactly. Since by definition an estimate is only an ap-
proximation to reality, the distribution at the investment horizon cannot be
precise. In fact, the farther in the future the investment horizon, the larger
the effect of the estimation error. We discuss estimation risk and how to cope
with it extensively in the third part of the book.

3.3 From invariants to market prices

In general the market, i.e. the prices at the investment horizon of the securities
that we are considering, is a function of the investment-horizon invariants:

P = g (X) , (3.79)

where in this section we use the short-hand notation P for PT+τ and X for
XT+τ,τ .
In this section we discuss how to recover the distribution of the market from

the distribution of the investment-horizon invariants, as obtained in (3.64).
We analyze separately raw securities and derivatives.

3.3.1 Raw securities

Obtaining the distribution of the prices of the raw securities is particularly
simple.
In the case of equities, foreign exchange rates and commodities, discussed

in Section 3.1.1, the invariants are the compounded returns (3.11) and there-
fore the pricing formula (3.79) takes the following form:
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3.3 From invariants to market prices 127

PT+τ = PT e
X . (3.80)

Consider now the fixed-income securities discussed in Section 3.1.2. From
(3.27) and (3.31) we obtain the pricing function of the generic zero-coupon
bond with maturity E:

Z
(E)
T+τ = Z

(E−τ)
T e−X

(E−T−τ)(E−T−τ). (3.81)

We see that in the case of raw securities, the pricing function (3.79) has
the following simple form:

P = eY, (3.82)

where the ancillary variable Y is an affine transformation of the market in-
variants:

Y ≡ γ + diag (ε)X. (3.83)

The constant vectors γ and ε in this expression read respectively component-
wise:

γn ≡
(
ln (PT ), if the n-th security is a stock

ln
³
Z
(E−τ)
T

´
, if the n-th security is bond

(3.84)

and

εn ≡
½
1, if the n-th security is a stock
− (E − T − τ), if the n-th security is bond.

(3.85)

For example, consider the two-security market relative to the invariants
(3.72). In other words, one security is a stock and the other one is a zero-
coupon bond with maturity:

E ≡ T + τ + υ, (3.86)

where υ is the three-years sector of the curve. In this case (3.82)-(3.83) read:

P ≡
µ
PT+τ
Z
(E)
T+τ

¶
= eγ+diag(ε)X, (3.87)

where X is (3.72) and from (3.84) and (3.85) we obtain:

γ ≡
Ã

ln (PT )

ln
³
Z
(T+υ)
T

´!
, ε ≡

µ
1
−υ

¶
. (3.88)

Since the ancillary variable (3.83) is a simple affine transformation of the
market invariants, computing its distribution from that of the market invari-
ants X is straightforward, see Appendix 2.4. For example, in terms of the
characteristic function we obtain:

φY (ω) = eiω
0γφX (diag (ε)ω) . (3.89)
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128 3 Modeling the market

In our example the characteristic function of the horizon invariants is
(3.73). Therefore from (3.89) the characteristic function of the ancillary vari-
able Y reads:

φY (ω) = eiω
0[γ+ τeτ diag(ε)µ]− 1

2
τeτ ω 0 diag(ε)Σdiag(ε)ω , (3.90)

where µ and Σ are given in (3.68) and γ and ε are given in (3.88).
In other words, the ancillary variable Y is normally distributed with the

following parameters:

Y ∼ N
³
γ +

τeτ diag (ε)µ, τeτ diag (ε)Σdiag (ε)´ . (3.91)

Notice that we could have obtained this result also from (3.74) and the affine
property (2.163) of the normal distribution.

To compute the distribution of the prices, we notice from (3.82) that the
prices P ≡ eY have a log-Y distribution, see Section 2.6.5. In some cases this
distribution can be computed explicitly.

In our example, since the ancillary variable Y in (3.91) is normal, the
variable P is by definition lognormal with the same parameters:

P ∼ LogN
³
γ +

τeτ diag (ε)µ, τeτ diag (ε)Σdiag (ε)´ , (3.92)

where µ and Σ are given in (3.68) and γ and ε are given in (3.88).

In most cases it is not possible to compute the distribution of the prices in
closed form. Nevertheless, in practical allocation problems only the first few
moments of the distribution of the prices are required. We can easily com-
pute all the moments of the distribution of P directly from the characteristic
function of the market invariants.
Indeed, dropping the horizon to ease the notation, from (2.214) and (3.89)

the generic raw moment of the prices of the securities reads:

E {Pn1 · · ·Pnk} = eiγ
0ωn1···nkφX (diag (ε)ωn1···nk) , (3.93)

where the vector ω is defined in terms of the canonical basis (A.15) as follows:

ωn1···nk ≡
1

i

³
δ(n1) + · · ·+ δ(nk)

´
. (3.94)

In particular we can compute the expected value of the prices of the generic
n-th security:

E {Pn} = eγnφX

³
−iεnδ(n)

´
. (3.95)

Similarly, we can compute the covariance of the prices of the generic m-th and
n-th securities:
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3.3 From invariants to market prices 129

Cov {Pm, Pn} = E {PmPn}− E {Pm}E {Pn} , (3.96)

where
E {PmPn} = eγm+γnφX

³
−iεmδ(m) − iεnδ

(n)
´
. (3.97)

Formulas (3.95) and (3.96) are particularly useful in the mean-variance allo-
cation framework, which we discuss in Chapter 6.

For example, the stock price PT+τ at the investment horizon is the first
entry of the vector P in our example (3.87). Substituting (3.88) in (3.95) we
obtain:

E {PT+τ} = PTφX

µ
−i
0

¶
. (3.98)

From the expression of the characteristic function (3.73) of the investment-
horizon invariants this means:

E {PT+τ} = PT e
τeτ µC+ τeτ σ 2C

2 , (3.99)

where
¡
µC , σ

2
C

¢
are estimated in (3.20). This formula is in accordance with

the expected value of the first entry of the joint lognormal variable (3.92), as
computed in (2.219).

We remark that this technique is very general, because it allows to compute
all the moments of the prices from a generic distribution of investment-horizon
invariants, as represented by the characteristic function.
Furthermore, we can replace the simple expression (3.64) of the charac-

teristic function at the investment horizon φX in (3.93) and directly compute
all the moments of the distribution of the market prices from the estimated
characteristic function:

E {Pn1 · · ·Pnk} = eiγ
0ωn1···nk

h
φXt,eτ (diag (ε)ωn1···nk)

i τeτ
, (3.100)

where the right hand side does not depend on the specific time t and ω is
given in (3.94).

For example, we could have derived (3.99) by means of (3.100) directly
from the expression for the estimation-interval characteristic function (3.70).
The check is left to the reader.

We stress again that the simplicity of expressions such as (3.93) and (3.100)
hides the dangers of estimation risk , which we discuss in the third part of the
book.

3.3.2 Derivatives

In the case of derivatives, the prices at the investment horizon P do not have a
simple log-distribution. If the generic entry of the price vector P corresponds
to a derivative, the investment-horizon pricing function (3.79) reads:
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130 3 Modeling the market

P = g (X) , (3.101)

where g is in general a complicated function of several investment-horizon
invariants.

For example, consider a call option with strike K that expires at time E
on a stock that trades at price Ut. From (3.40) we obtain:

C
(K,E)
T+τ ≡ CBS

³
υ,K,UT+τ , Z

(E)
T+τ , σ

(K,E)
T+τ

´
, (3.102)

where CBS is the Black-Scholes formula (3.41) and

υ ≡ (E − T − τ) . (3.103)

The three market variables (U,Z, σ) all admit invariants and thus can be
expressed as functions of the respective horizon-invariant. For the stock from
(3.80) we have:

UT+τ = UT e
X1 , (3.104)

where X1 is the compounded return to the investment horizon.
For the zero-coupon bond, from (3.81) we have:

Z
(E)
T+τ = Z

(E−τ)
T e−X2υ, (3.105)

where X2 is the change until the investment horizon in yield for the υ-sector
of the yield curve.
For the implied volatility from (3.52) we have3:

σ
(K,E)
T+τ = σ

(KT ,E−τ)
T +X3, (3.106)

where KT is the ATMF strike (3.48) and X3 is the change over the invest-
ment horizon in ATMF implied percentage volatility with fixed rolling expiry
(3.103).
Therefore the investment-horizon pricing function (3.101) reads:

C
(K,E)
T+τ (X) = CBS

³
υ,K,UT e

X1 , Z
(E−τ)
T e−X2υ, σ

(KT ,E−τ)
T +X3

´
. (3.107)

In the general case, given the complexity of the pricing formula at the
investment horizon (3.101), it is close to impossible to compute the exact
distribution of the prices from the market invariants. Nevertheless, the pricing
formula may be approximated by its Taylor expansion:

3 More accurately, the right-hand side in (3.106) is σ
(KT+τ ,E)
T+τ . The difference be-

tween the two sides is the smile of the implied voltility, see e.g. Hull (2002)
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3.4 Dimension reduction 131

P = g (m) + (X−m)0 ∂xg|x=m (3.108)

+
1

2
(X−m)0 ∂2xxg

¯̄
x=m

(X−m) + · · · ,

where m is a significative value of the invariants. One standard choice is zero:

m ≡ 0. (3.109)

Another standard choice is the expected value:

m ≡ E {X} . (3.110)

If the approximation in (3.108) is performed up to the first order, the market
prices at the horizon are a linear function of the invariants. If the approxi-
mation is carried on up to the second order, the market prices are quadratic
functions of the invariants. In either case, the distribution of the market prices
becomes a tractable expression of the distribution of the invariants.
Depending on its end users, the approximation (3.108) is known under

different names.
In the derivatives world the expansion up to order zero is called the theta

approximation. The expansion up to order one is called the delta-vega ap-
proximation. The delta is the first derivative (mathematical operation) of the
investment-horizon pricing function of the derivative (financial contract) with
respect to the underlying, whereas the vega is the first derivative (mathemat-
ical operation) of the investment-horizon pricing function of the derivative
(financial contract) with respect to the implied volatility. The expansion up
to order two is called the gamma approximation. The gamma is the second
derivative (mathematical operation) of the investment-horizon pricing func-
tion of the derivative (financial contract) with respect to the underlying.
In the fixed-income world the expansion up to order zero in (3.108) is

known as the roll-down or slide approximation. The expansion up to order
one is known as the PVBP or duration approximation. The expansion up
to order two is known as the convexity approximation, see Section 3.5 for a
thorough case-study.
We stress again that the accuracy of (3.108) is jeopardized by the hidden

threat of estimation risk , which we discuss in the third part of the book.

3.4 Dimension reduction

According to (3.79), the prices at the investment horizon of the securities in
our market are a function of the randomness in the market:

PT+τ = g (XT+τ,τ ) , (3.111)

where Xt,τ denotes the generic set of market invariants relative to the interval
τ that becomes known at time t.

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer

Attilio
Cross-Out




