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Preface

This booklet "Technical Appendices" complements the textbook "Risk and
Asset Allocation" - Springer Quantitative Finance, by Attilio Meucci.
This booklet can be downloaded from the book’s website:
www.symmys.com > Book > Downloads > Technical Appendices.
Each chapter of the booklet "Technical Appendices" refers to the respec-

tive chapter in the textbook "Risk and Asset Allocation".
This booklet cross references the formulas in the textbook. In order not to

generate confusion when referencing the formulas in this booklet versus the
formulas in the textbook, the numbering of the formulas in this booklet are
preceded by a "T".
Also notice that in the textbook the notation, say, "Appendix www.2.4"

refers to Chapter 2, Section 4 of this booklet (which is located on the web
at the above address). On the other hand the notation, say, "Appendix B.3"
refers to the mathematical Appendix B, Section 3, at the end of the textbook.
Any feedback on the "Technical Appendices", on "Risk and Asset Allo-

cation", as well as on the materials available at www.symmys.com are highly
appreciated: please visit this webiste to contact the author.

New York City, May 2007,
Attilio Meucci
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Technical appendix to Chapter 1

1.1 Distribution of functions of random variables

Consider a random variable Y defined as an invertible function g of a random
variable X as follows:

X 7→ Y ≡ g (X) . (T1.1)

We compute the representations of the distribution of Y in terms of the rep-
resentations of the distributions of X.

• Probability density function.

By the definition (1.3) of the pdf fY we have:

fY (y) dy = P {Y ∈ [y, y + dy]} = P {g (X) ∈ [y, y + dy]}
= P

©
X ∈

£
g−1 (y) , g−1 (y + dy)

¤ª
(T1.2)

=

Z g−1(y+dy)

g−1(y)

fX (x) dx,

where the second to last equality follows from the invertibility of the function
g. On the other hand, from a Taylor expansion we obtain:

g−1 (y + dy) = g−1 (y) +
1

g0 (g−1 (y))
dy. (T1.3)

Substituting (T1.3) in (T1.2) we obtain:

fY (y) dy =

Z g−1(y)+ 1
g0(g−1(y))

dy

g−1(y)

fX (x) dx (T1.4)

= fX
¡
g−1 (y)

¢ ¯̄̄̄ 1

g0 (g−1 (y))

¯̄̄̄
dy,

which yields the desired result:
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fY (y) =
fX
¡
g−1 (y)

¢
|g0 (g−1 (y))| . (T1.5)

• Cumulative distribution function.

By the definition (1.7) of the cumulative distribution function FY we have:

FY (y) ≡ P {Y ≤ y} = P {g (X) ≤ y}
= P

©
X ≤ g−1 (y)

ª
(T1.6)

= FX
¡
g−1 (y)

¢
,

where the second to last equality follows from the invertibility of the function
g, under the assumption that g is an increasing function of its argument. In
case g is a decreasing function of its argument we obtain similarly:

FY (y) ≡ P {Y ≤ y} = P {g (X) ≤ y}
= P

©
X ≥ g−1 (y)

ª
= 1− P

©
X ≤ g−1 (y)

ª
(T1.7)

= 1− FX
¡
g−1 (y)

¢
.

• Quantile.

Also the quantile of a transformed variable is particularly simple to com-
pute in terms of the quantile of the original variable. Indeed consider the
following series of identities that follow from the definition (1.7) of the cumu-
lative distribution function FY :

FY (g (QX (p))) = P {Y ≤ g (QX (p))} = P {X ≤ QX (p)} = p, (T1.8)

where the second to last equality follows from the invertibility of the function
g, under the assumption that g is an increasing function of its argument. By
applying the definition (1.17) of the quantile QY to the leftmost and rightmost
terms we obtain:

QY (p) = g (QX (p)) , (T1.9)

In the case where g is a decreasing function of its argument we obtain
similarly:

FY (g (QX (p))) = P {Y ≤ g (QX (p))} = P {X ≥ QX (p)} = 1− p. (T1.10)

By applying the definition (1.17) of the quantile QY to the leftmost and
rightmost terms we obtain:

QY (p) = g (QX (1− p)) . (T1.11)
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1.2 Distribution of positive affine transformations of
random variables

Consider as a special case of (T1.1) a generic positive affine transformation:

X 7→ Y ≡ g (X) ≡ m+ sX, (T1.12)

where s > 0.
In this case we have:

g−1 (y) =
y −m

s
, g0 (x) = s. (T1.13)

From (T1.5) the probability density function of the transformed variable
reads:

fY (y) =
1

s
fX

µ
y −m

s

¶
. (T1.14)

From (T1.6) the cumulative density function of the transformed variable
reads:

FY (y) = FX

µ
y −m

s

¶
, (T1.15)

From (T1.9) the quantile of the transformed variable reads:

QY (p) = m+ sQX (p) , (T1.16)

In the case of affine transformations we can also compute the characteristic
function of the transformed variable in terms of the original characteristic
function. Indeed from the definition (1.12) of the characteristic function:

φY (ω) ≡ E
©
eiωY

ª
= E

n
eiω(m+sX)

o
(T1.17)

= eiωm E
©
eisωX

ª
.

And therefore we obtain:

φY (ω) = eiωmφX (sω) . (T1.18)

1.3 Distribution of the exponential of random variables

Consider as a special case of (T1.1) the exponential transformation

X 7→ Y ≡ g (X) ≡ eX . (T1.19)

In this case we have:

g−1 (y) = ln (y) , g0 (x) = ex. (T1.20)
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From (T1.5) the probability density function of the transformed variable
reads:

fY (y) =
1

y
fX (ln (y)) . (T1.21)

From (T1.6) the cumulative density function of the transformed variable
reads:

FY (y) = FX (ln (y)) . (T1.22)

From (T1.9) the quantile of the transformed variable reads:

QY (p) = eQX(p). (T1.23)

1.4 Affine equivariance of standard summary statistics

The expected value (1.25) is an affine equivariant parameter of location, i.e.
it satisfies (1.22). Indeed

E {m+ sX} ≡
Z
R
(m+ sx) fX (x) dx (T1.24)

= m

Z
R
fX (x) dx+ s

Z
R
xfX (x) dx

≡ m+ sE {X} ,

The median (1.26) is an affine equivariant parameter of location, i.e. it
satisfies (1.22). Indeed, this is a specific case of (T1.16) which states that the
quantile, and thus in particular the median, is invariant with respect to any
invertible transformation:

Med {m+ sX} ≡ Qm+sX

µ
1

2

¶
= m+ sQX

µ
1

2

¶
(T1.25)

≡ m+ sMed {X} .

By the same argument, the range (1.37) is an affine equivariant parameter of
dispersion, i.e. it satisfies (1.32). Indeed if s is positive we obtain:

Ran {m+ sX} ≡ Qm+sX (p)−Qm+sX

¡
p
¢

= [m+ sQX (p)]−
£
m+ sQX

¡
p
¢¤

(T1.26)

= s
£
QX (p)−QX

¡
p
¢¤

≡ sRan {X}

The reader can derive from (T1.11) the proof in the case s < 0.
The mode (1.30) is an affine equivariant parameter of location, i.e. it sat-

isfies (1.22). From (T1.14) we know the density fY (y) and therefore:
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Mod {m+ sX} ≡ max
y∈R

{fm+sX (y)} = max
y∈R

½
1

s
fX

µ
y −m

s

¶¾
(T1.27)

= max
y∈R

½
fX

µ
y −m

s

¶¾
= m+ smax

x∈R
{fX (x)}

≡ m+ sMod {X} .

1.5 Expected value vs. median of symmetrical
distributions

If a probability density function is symmetrical around ex, the area underneath
the pdf on the half-line (−∞, ex] is the same as the area underneath the pdf
on the half-line [ex,+∞), and thus they must both equal 1/2. Thus from the
definition of cumulative density function (1.7) we have:

FX (ex) ≡ Z x

−∞
fX (x) dx =

1

2
. (T1.28)

In turn, from the definition of the median (1.26) this implies that the sym-
metry point ex is the median:

Med {X} ≡ QX

µ
1

2

¶
= ex. (T1.29)

On the other hand for the expected value (1.25) we have:

E {X} ≡
Z
R
xfX (x) dx = ex+ Z

R
(x− ex) fX (x) dx (T1.30)

= ex+ Z
R
ufX (ex+ u) du = ex.

The last inequality follows since due to (1.28) we can write:Z 0

−∞
ufX (ex+ u) du = −

Z +∞

0

ufX (ex− u) du, (T1.31)

and thus the last integral in (T1.30) is null.

1.6 Relation between characteristic function and
moments

Assume that the characteristic function of a random variable X is analyti-
cal, i.e. it can be recovered entirely from its Taylor expansion. Then we can
consider its expansion around the origin:
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φX (ω) = 1 + (iω)RM
X
1 + · · ·+

(iω)
k

k!
RMX

k + · · · . (T1.32)

In this expansion the generic coefficient RMX
k is defined in terms of the deriv-

atives of the characteristic function as follows:

RMX
k ≡ i−k

dkφX (ω)

dωk

¯̄̄̄
ω=0

. (T1.33)

By performing the derivatives on the definition (1.12) of the characteristic
function we obtain:

dk

dωk
{φX (ω)} ≡

dk

dωk

½Z
R
eiωxfX (x) dx

¾
(T1.34)

= ik
Z
R
eiωxxkfX (x) dx. (T1.35)

Therefore

dkφX (ω)

dωk

¯̄̄̄
ω=0

= ik
Z
R
xkfX (x) dx = ik E

©
Xk
ª
. (T1.36)

Substituting this in (T1.33) shows that RMX
k is the k-th raw moment defined

in (1.47):
RMX

k ≡ E
©
Xk
ª
. (T1.37)

Therefore any raw moment, and in particular the expected value of X, can
be easily computed by differentiating the characteristic function.
On the other hand, the generic central moment of order k defined in (1.48)

is a function of the raw moments of order up to k:

CMX
k =

kX
j=0

k! (−1)k−j

j! (k − j)!
RMX

j

¡
RMX

1

¢k−j
, (T1.38)

see e.g. Abramowitz and Stegun (1974) and Papoulis (1984). Therefore, after
a few algebraic manipulations it is straightforward to derive the expression of
any central moment. In particular, for the first moments we have:

CMX
2 = −

¡
RMX

1

¢2
+RMX

2 (T1.39)

CMX
3 = 2

¡
RMX

1

¢3 − 3 ¡RMX
1

¢ ¡
RMX

2

¢
+RMX

3

CMX
4 = −3

¡
RMX

1

¢4
+ 6

¡
RMX

1

¢2 ¡
RMX

2

¢
− 4RMX

1 RM
X
3 +RM

X
4

These expressions in turn allow to easily compute variance, standard devia-
tion, skewness and kurtosis.
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1.7 Histogram vs. pdf

Consider a set of T random i.i.d. variables

Xt
d
= X, t = 1, . . . T . (T1.40)

Consider the realizations of the above variables:

iT ≡ {x1, . . . , xT } . (T1.41)

Consider the empirical distribution Em(iT ) stemming from the realization iT ,
as defined in (1.119).
The Glivenko-Cantelli theorem (4.34) states that, under a few mild con-

ditions, the empirical distribution converges to the true distribution of X as
the number of observations T goes to infinity.

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

50

100

150

200

250

300

350

400
limit pdf

Fig. 1.1. Histogram vs. probability density function

In terms of the pdf, the Glivenko-Cantelli theorem reads:

fiT ≡
1

T

TX
t=1

δ(xt) −→
T→∞

fX . (T1.42)

Consider the histogram of the empirical pdf, where the width of all the bins
is ∆. Denoting #∆

i the number of points included in the generic i-th bin, the
following relation holds:

#∆
i ≡ T

Z xi+
∆
2

xi−∆
2

fiT (y) dy
∆→0−→
T→∞

fX (xi)T∆. (T1.43)

Therefore the histogram represents a regularized version of the true pdf,
rescaled by the factor T∆. In Figure 1.1 we show the case of the normal
distribution.
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Technical appendix to Chapter 2

2.1 Distribution of grades

We recall that the grade of X is defined as follows:

U ≡ FX (X) , (T2.1)

where FX is the cumulative distribution function (1.7) of the variable X. To
prove that

U ∼ U([0, 1]) , (T2.2)

the standard uniform distribution defined in (1.54), we have to show that:

P {U ≤ u} =

⎧⎨⎩ 0 if u ≤ 0
u if u ∈ [0, 1]
1 if u ≥ 1.

(T2.3)

We first observe that by the definition of the cumulative function (1.7) the
variable Y always lies in the interval [0, 1], therefore

P {U ≤ u} = 0 if u ≤ 0 (T2.4)

P {U ≤ u} = 1 if u ≥ 1.

As for the remaining cases, from the definition of the quantile function (1.17)
we obtain:

P {U ≤ u} = P {FX (X) ≤ u} = P {X ≤ QX (u)} (T2.5)

= FX (QX (u)) = u.

This proves (T2.2).
On the other hand, if (T2.2) holds, then for any random variable X we

have:
QX (U)

d
= X, (T2.6)
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where d
= means "has the same distribution as". Indeed:

P {QX (U) ≤ x} = P {U ≤ FX (x)} = P {FX (X) ≤ FX (x)} (T2.7)

= P {X ≤ x} .

2.2 Distribution of invertible functions of random
variables

Define a random variableY as an invertible, increasing function g of a random
variable X

X 7→ Y ≡ g (X) , (T2.8)

meaning that each entry yn ≡ gn (x) is a non-decreasing function of any of the
arguments (x1, . . . , xN ). We compute the representations of the distribution
of Y in terms of the representations of the distributions of X.

• Probability density function

From the definition of the pdf (2.4) we can write:

fY (y) dy ≡ P {g (X) ∈ [y,y+ dy]}
= P

©
X ∈

£
g−1 (y) ,g−1 (y+ dy)

¤ª
(T2.9)

=

Z
[g−1(y),g−1(y+dy)]

fX (x) dx.

On the other hand, from a first order Taylor expansion we obtain:

g−1 (y+ dy) ≈ g−1 (y) +
£
Jg
¡
g−1 (y)

¢¤−1
dy, (T2.10)

where the Jacobian Jg of a function g is defined as follows:

Jgmn (x) ≡
∂gm (x)

∂xn
. (T2.11)

Therefore,

fY (y) dy =

Z
[g−1(y),g−1(y)+[Jg(g−1(y))]−1dy]

fX (x) dx (T2.12)

= fX
¡
g−1 (y)

¢ ¯̄̄£
Jg
¡
g−1 (y)

¢¤−1 ¯̄̄
dy,

where the determinant accounts for the difference in volume between the in-
finitesimal parallelotope with sides dy and the infinitesimal parallelotope with
sides dx, see (A.34). Therefore using (A.83) we obtain the desired result:

fY (y) =
fX
¡
g−1 (y)

¢
|Jg (g−1 (y))| . (T2.13)
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Notice that to compute the probability density function of the variable Y,
we do not need to assume that the function g be increasing. Indeed, as long
as g is invertible, it suffices to replace the absolute value of the determinant
in (T2.12). Thus in this slightly more general case we obtain:

fY (y) =
fX
¡
g−1 (y)

¢q
|Jg (g−1 (y))|2

. (T2.14)

• Cumulative distribution function.

From the definition (2.9) of the cumulative distribution function FY we
have:

FY (y) ≡ P {Y ≤ y} = P {g (X) ≤ y}
= P

©
X ≤ g−1 (y)

ª
(T2.15)

= FX
¡
g−1 (y)

¢
.

2.3 Results on copulas

As an application of (T2.13), we consider the random variable U defined by
the following transformation

X 7→ U ≡ g (X) , (T2.16)

where g is defined component-wise in terms of the cdf FXn of the the generic
n-th component Xn:

gn (x1, . . . , xN ) ≡ FXn (xn) . (T2.17)

This is an invertible increasing transformation. From (1.17) the inverse of this
transformation is the component-wise quantile:

g−1n (u1, . . . , uN ) ≡ QXn
(un) , (T2.18)

By definition, the copula of X is the distribution of U
Since the probability density function is the derivative of the cumulative

distribution function, the Jacobian (T2.11) of the transformation reads:

J = diag (fX1 , . . . , fXN ) , (T2.19)

and thus from (A.42) its determinant is

|J| = fX1 · · · fXN . (T2.20)

Therefore from (T2.13) the probability density function of the copula reads:
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fU (u) =
fX (QX1

(u1) , . . . , QXN
(uN ))

fX1
(QX1

(u1)) · · · · · fXN
(QXN

(uN ))
. (T2.21)

As for the cumulative distribution function of the copula, from (T2.15) we
obtain:

FU (u1, . . . , uN ) = FX (QX1 (u1) , . . . , QXN (uN)) . (T2.22)

We now prove the invariance of the copula under a generic increasing
transformation:

X 7→ Y ≡ h (X) . (T2.23)

From (T2.22) the copulas of X and Y are the same if and only if the following
is true:

FY (QY1 (u1) , . . . , QYN (uN )) = FX (QX1 (u1) , . . . , QXN (uN )) . (T2.24)

Indeed, from (T2.15) we have:

FY (y1, . . . , yN ) = FX
¡
g−11 (y1) , . . . , g

−1
N (yN )

¢
. (T2.25)

On the other hand, the invariance property of the quantile (T1.9), reads in
this context as follows:

QY n (un) = gn (QXn (un)) . (T2.26)

Substituting (T2.26) in (T2.25) yields (T2.24).

2.4 Distribution of affine transformations of a random
variable

Consider a generic random variableX and the new random variableY defined
as an invertible affine transformation of X

X 7→ Y ≡ g (X) ≡m+BX, (T2.27)

where a is an N -dimensional vector and B is an invertible matrix.
In this case the Jacobian (T2.11) is

Jg ≡ B. (T2.28)

From (A.82) and (A.84) we see that

|Jg|2 = |B|2 = |B| |B0| =
¯̄
BB0

¯̄
. (T2.29)

Therefore according to (T2.14) the probability density function of Y reads:
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fY (y) =
fX
¡
B−1 (y −m)

¢q¯̄
BB0

¯̄ . (T2.30)

In the case of affine transformations we can also compute the characteristic
function of the transformed variable in terms of the original characteristic
function. Indeed from the definition (2.13) of the characteristic function:

φY (ω) ≡ E
n
eiω

0Y
o
= E

n
eiω

0(m+BX)
o

(T2.31)

= eiω
0m
E
n
ei(B

0ω)0X
o
.

And therefore we obtain:

φY (ω) = eiω
0mφX (B

0ω) . (T2.32)

Consider now the case where the affine transformation is not invertible,
i.e.

rank (B) 6= N ≡ dim (X) . (T2.33)

In particular, we consider linear combinations of random variables:

Ψ ≡ b0X. (T2.34)

The distribution of Ψ is the marginal distribution of any invertible affine
transformation that extends (T2.34):

Y ≡

⎛⎜⎜⎜⎝
Ψ
Y2
...
YN

⎞⎟⎟⎟⎠ ≡ BX, (T2.35)

For example, we can extend (T2.34) defining B as follows:

B ≡
µ

b1 (b2, . . . , bN )
0N−1 IN−1

¶
, (T2.36)

where 0N−1 is an (N − 1)-dimensional column vector of zeros and IN−1 is the
(N − 1)-dimensional identity matrix.
The probability density function of (T2.34) is obtained by integrating out

of (T2.30) the dependence on the ancillary variables (T2.35) as in (2.22):

fΨ (ψ) =

Z
RN−1

fY (ψ, y2, . . . , yN ) dy2 · · · dyN (T2.37)

=
1q¯̄
BB0

¯̄ Z
RN−1

fX
¡
B−1y

¢
dy2 · · · dyN .
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Nevertheless, it is in general very difficult to perform this last step, as it
involves a multiple integration. For instance, if b1 6= 0 we can choose the
extension B according to (T2.36) we obtain:

B−1 =

µ
1
b1
− (b2,...,bN)b1

0N−1 IN−1

¶
, (T2.38)

and thus from (T2.37) the probability density function of (T2.34) reads:

fΨ (ψ) =
1p
b21

Z
RN−1

fX

µ
ψ

b1
− b2

b1
y2 (T2.39)

− · · ·− bN
b1

yN , y2, . . . , yN

¶
dy2 · · · dyN .

On the other hand, the characteristic function of (T2.34) is obtained by
setting to zero in (T2.32) the dependence on the ancillary variables (T2.35)
as in (2.24):

φψ (ω) = φY (ω,0N−1) (T2.40)

= φX

µ
B0
µ

ω
0N−1

¶¶
.

For instance, if we choose the extension B according to (T2.36) we obtain
from (T2.40) that the characteristic function of (T2.34) reads:

φψ (ω) = φX (ωb) . (T2.41)

2.5 Affine equivariance of mode and modal dispersion

Consider a generic invertible affine transformation

Y = a+BX (T2.42)

of theN -dimensional random variableX as in (T2.27). From (T2.30) we derive
the vector of the first order derivatives of the pdf of Y in terms of the pdf of
X:

∂fY (y)

∂y
=
(B0)−1q¯̄
BB0

¯̄ ∂fX∂x
¯̄̄̄
x=B−1(y−a)

. (T2.43)

Deriving further, we obtain the matrix of the second order derivatives:

∂2fY (y)

∂y∂y0
=
(B0)−1q¯̄
BB0

¯̄ ∂2fX
∂x∂x0

¯̄̄̄
x=B−1(y−a)

B−1. (T2.44)
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By its definition (2.52), the mode Mod {X} is the maximum. Thus it is de-
termined by the following first order condition:

∂fX
∂x

¯̄̄̄
x=Mod{X}

= 0. (T2.45)

First we prove that the mode satisfies is affine equivariant, i.e. it satisfies
(2.51), which in this context reads:

Mod {a+BX} = a+BMod {X} , (T2.46)

Indeed, from (T2.43) and (T2.45) we obtain:

∂fY
∂y

¯̄̄̄
y=a+BMod{X}

=
(B0)−1q¯̄
BB0

¯̄ ∂fX∂x
¯̄̄̄
x=Mod{X}

= 0. (T2.47)

Since by the definition (T2.45) of mode we have

∂fY
∂y

¯̄̄̄
y=Mod{Y}

= 0, (T2.48)

The result (T2.46) follows.
Now we prove that the modal dispersion (2.65) satisfies is affine equivari-

ant, i.e. it satisfies (2.64) and it is symmetric and positive definite. From its
definition, the modal dispersion of a generic random variable X reads:

MDis {X} ≡ −
Ã
∂2 ln fX
∂x∂x0

¯̄̄̄
x=Mod{X}

!−1
.

= −
Ã

∂

∂x

∙
1

fX

∂fX
∂x0

¸¯̄̄̄
x=Mod{X}

!−1
(T2.49)

= −
Ã
1

fX

∂2fX
∂x∂x0

− 1

f2X

∂fX
∂x

∂fX
∂x0

¯̄̄̄
x=Mod{X}

!−1

= −fX (Mod {X})
∂2fX
∂x∂x0

¯̄̄̄−1
x=Mod{X}

,

Therefore from (T2.44) and (T2.46) we obtain:

MDis {Y} = −fY (Mod {Y})
∂2fY
∂y∂y0

¯̄̄̄−1
y=Mod{Y}

(T2.50)

= −fY (Mod {Y})

⎡⎣ (B0)−1q¯̄
BB0

¯̄ ∂2fX
∂x∂x0

¯̄̄̄
x=B−1(Mod{Y}−a)

B−1

⎤⎦−1

= −fY (Mod {Y})

⎡⎣ (B0)−1q¯̄
BB0

¯̄ ∂2fX
∂x∂x0

¯̄̄̄
x=Mod{X}

B−1

⎤⎦−1 .
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Using (T2.30) and (T2.46) this expression becomes:

MDis {Y} = −fX (Mod {X})q¯̄
BB0

¯̄
⎡⎣ (B0)−1q¯̄

BB0
¯̄ ∂2fX
∂x∂x0

¯̄̄̄
x=Mod{X}

B−1

⎤⎦−1(T2.51)
= −fX (Mod {X})B

"
∂2fX
∂x∂x0

¯̄̄̄
x=Mod{X}

#−1
B0.

Finally, using (T2.49) we obtain:

MDis {Y} = BMDis {X}B0. (T2.52)

This proves that the modal dispersion is affine equivariant.
It is immediate to check from the definition (2.65) that the modal dis-

persion is a symmetric matrix. Furthermore, the mode is a maximum for the
log-pdf, and therefore the matrix of the second derivatives of the log-pdf at
the mode is negative definite. Therefore, the modal dispersion is positive defi-
nite. Affine equivariance, symmetry and positivity make the modal dispersion
a scatter matrix.

2.6 Affine equivariance of expected value and covariance

Consider a generic affine transformation

X 7→ eY ≡ ea+ eBX, (T2.53)

where ea is a K-dimensional vector and eB is a non-invertible K ×N matrix.
First, we prove here the affine equivariance (2.51) of the expected value

under generic affine transformations, i.e.

E
nea+ eBXo = ea+ eBE {X} . (T2.54)

Adding (N −K) non-collinear rows B to eB, (N −K) elements a to ea and
denoting Y a set of (N −K) ancillary random variables as follows

Y ≡
µ eY
Y

¶
, a ≡

µea
a

¶
, B ≡

µ eB
B

¶
, (T2.55)

we extend the transformation (T2.53) to an invertible affine transformation
as in (T2.27):

X 7→ Y ≡ a+BX. (T2.56)

From the definition of expected value and using (T2.30) we obtain:
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E
nea+ eBXo ≡ Z

RK
eyfY (ey) dey = Z

RN
eyfY,Y (ey,y) deydy

=

Z
RN
eyfY (y) dy = Z

RN
eyfX ¡B−1 (y− a)¢q¯̄

BB0
¯̄ dy (T2.57)

=

Z
RN

³ea+ eBx´ fX (x)q¯̄
BB0

¯̄dy.
With the change of variable y ≡ a+Bx we obtain:

E
nea+ eBXo = Z

RN

³ea+ eBx´ fX (x)q¯̄
BB0

¯̄ |B| dx
= ea+ eBZ

RN
xfX (x) dx (T2.58)

= ea+ eBE {X} ,
which proves (T2.54).
Now we prove here the affine equivariance (2.64) of the covariance matrix

under generic affine transformations, i.e.

Cov
nea+ eBXo = eBCov {X} eB0. (T2.59)

From the definition of covariance (2.67) and the equivariance of the expected
value (T2.54) we obtain:

Cov
nea+ eBXo ≡ E½³ea+ eBX− Enea+ eBXo´³ea+ eBX− Enea+ eBXo´0¾

= E
neB (X− E {X}) (X− E {X})0 eB0o (T2.60)

= eBCov {X} eB0,
where the last equality follows from the linearity of the expectation operator
(B.56).
This proves that the covariance is an affine equivariant operator. It is

immediate to check from the definition (2.68) that the covariance matrix is
symmetric. Furthermore we proved in (B.68) that the covariance matrix is
positive. Alternatively, from the affine equivariance (T2.59) we obtain:

a0Cov {X}a = Cov {a0X} = Var {a0X} ≥ 0. (T2.61)

Affine equivariance, symmetry and positivity make the covariance a scatter
matrix.
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2.7 Regularized call and put option payoffs

The reader is advised to quickly review AppendixB.4 in the main text before
going through the sequel. From the definition (B.49) of regularization, the
regularized profile of the call option is the convolution of the exact profile
(2.36) with the approximate Dirac delta (B.18). Therefore, from the definition
of convolution (B.43) we obtain

C� (x) ≡
h
C ∗ δ(0)�

i
(x)

=
1√
2π�

Z +∞

−∞
max (y −K, 0) e−

1
2�2

(x−y)2dy

=
1√
2π�

Z +∞

K

(y −K) e−
1
2�2

(y−x)2dy (T2.62)

=
1√
2π�

Z +∞

K−x
(u+ x−K) e−

1
2�2

u2du

=
1√
2π�

Z +∞

K−x
ue−

1
2�2

u2du+
1√
2π�

(x−K)

Z +∞

K−x
e−

1
2�2

u2du

=
1√
2π�

Z +∞

K−x

d

du

h
−�2e−

1
2�2

u2
i
du+

(x−K)

2

⎡⎣ 2√
π

Z +∞

K−x√
2�2

e−z
2

dz

⎤⎦ ,
where in the last line we performed the change of variable u/

√
2�2 ≡ z. Using

the relation (B.78) between the complementary error function and the error
function, as well as (B.76), i.e. the fact that the error function is odd, we
obtain:

C� (x) =
(x−K)

2

µ
1 + erf

µ
x−K√
2�2

¶¶
+

�√
2π

e−
1
2�2

(x−K)2 . (T2.63)

Similarly, for the put option (2.113) we obtain:

P� (x) ≡
h
P ∗ δ(0)�

i
(x)

=
1√
2π�

Z +∞

−∞
−min (y −K, 0) e−

1
2�2

(x−y)2dy

= − 1√
2π�

Z K

−∞
(y −K) e−

1
2�2

(y−x)2dy (T2.64)

= − 1√
2π�

Z K−x

−∞
(u+ x−K) e−

1
2�2

u2du

= − 1√
2π�

Z K−x

−∞
ue−

1
2�2

u2du− 1√
2π�

(x−K)

Z K−x

−∞
e−

1
2�2

u2du

=
1√
2π�

Z K−x

−∞

d

du

h
�2e−

1
2�2

u2
i
du− (x−K)

2

"
2√
π

Z K−x√
2�2

−∞
e−z

2

dz

#
,
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where in the last line we performed the change of variable u/
√
2�2 ≡ z. Using

the definition of the error function (B.75) and the fact that it is an odd
function we obtain:

P� (x) = −
(x−K)

2

µ
1− erf

µ
x−K√
2�2

¶¶
+

�√
2π

e−
1
2�2

(x−K)2 . (T2.65)

2.8 The equation of the enshrouding rectangle

We prove that for a generic n = 1, . . . ,N the two hyperplanes described by
the following equation

xn = E {Xn} ± Sd {Xn} (T2.66)

are tangent to the ellipsoid.EE,Cov defined in (2.75).
First we consider its implicit representation

g (x) = 0, (T2.67)

where from (2.75) the function g is defined as follows:

g (x) ≡ (x− E)0 Cov−1 (x− E)− 1. (T2.68)

To find the tangency condition of the ellipsoid with the rectangle we compute
the gradient of the implicit representation of EE,Cov

∂g

∂x
= 2Cov−1 (x− E) . (T2.69)

Since the generic n-th side of the rectangle is perpendicular to the n-th axis,
when the gradient is parallel to the n-th axis the rectangle is tangent to
the ellipsoid. Therefore, to find the tangency condition we must impose the
following condition:

Cov−1 (x− E) = αδ(n), (T2.70)

where α is some scalar that we have to compute and δ(n) is the n-th element
of the canonical basis of RN , see (A.15). To compute α we substitute (T2.70)
in the implicit equation (T2.67) of the ellipsoid:

1 = (x− E)0 Cov−1 (x− E)

=
³
αCov δ(n)

´0
Cov−1

³
αCov δ(n)

´
(T2.71)

= α2Var {Xn} ,

so that
α = ± 1

Sd {Xn}
. (T2.72)
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Substituting (T2.72) back in (T2.70) and then again in (T2.67) yields

1 = (x− E)0Cov−1 (x− E) (T2.73)

= (x− E)0
µ
± 1

Sd {Xn}
δ(n)

¶
= ±xn − E {Xn}

Sd {Xn}
,

which proves (T2.66).

2.9 Chebyshev’s inequality

Consider a generic vector v and a generic symmetric and positive matrix U.
These define an ellipsoid Eqv,U as in (2.87). Therefore

q2P
n
X /∈ Eqv,U

o
=

Z
RN/Eqv,U

q2fX (x) dx (T2.74)

≤
Z
RN/Eqv,U

(x− v)0U−1 (x− v) fX (x) dx

≤
Z
Rn
(x− v)0U−1 (x− v) fX (x) dx

= E
©
(x− v)0U−1 (x− v)

ª
≡ a (v,U) .

Notice that we can re-write a (v,U) as follows:

a (v,U) = tr
¡
E
©
(X− v) (X− v)0

ª
U−1

¢
. (T2.75)

From this we obtain:

a (E,Cov) = tr
¡
CovCov−1

¢
= tr (IN ) = N . (T2.76)

Now we prove that the minimum of (T2.75) is (T2.76). In other words, among
all possible vectors v and symmetric, positive matrices U such that

|U| = |Cov {X}| (T2.77)

the minimum value of (T2.75) is achieved by the choice v ≡ E {X} and
U ≡ Cov {X}.
Consider an arbitrary vector u and a perturbation

v 7→ v+ ηu (T2.78)

If v minimizes (T2.75), in the limit η → 0 we must have:

0 = E
©
(X− (v + ηu))0U−1 (X− (v+ ηu))

ª
−E

©
(X− v)0U−1 (X− v)

ª
(T2.79)

≈ −2ηE
©
u0U−1 (x− v)

ª
= −2ηu0U−1 (E {X}− v) ,
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and therefore we must have
v ≡ E {X} (T2.80)

Now consider an arbitrary perturbation

U 7→ U (I+ �B) , (T2.81)

where I is the identity matrix and B is a matrix that preserves the volumes.
From (A.77) this means:

|U (I+ �B)| = |U| . (T2.82)

In the limit of small perturbations � → 0, from (A.122) that this condition
becomes:

tr (B) = 0. (T2.83)

If (E {X} ,U) minimize (T2.75), in the limit �→ 0 we must have

0 = E
n
(X− E {X})0 [U (I+ �B)]

−1
(X− E {X})

o
−E

©
(X− E {X})0U−1 (X− E {X})

ª
(T2.84)

= tr
³
Cov {X} [U (I+ �B)]

−1
´
− tr

¡
Cov {X}U−1

¢
≡ tr

¡
Cov {X} (I− �B)U−1

¢
− tr

¡
Cov {X}U−1

¢
= −� tr

¡
Cov {X}BU−1

¢
= −� tr

¡
BU−1Cov {X}

¢
To summarize, from (T2.83) and (T2.84) we must have:

tr (B) = 0⇒ tr
¡
BU−1 Cov {X}

¢
= 0, (T2.85)

which is only true if U is proportional to the covariance, i.e.

U = αCov {X} , (T2.86)

for some scalar α. Given the normalization (T2.77) we obtain the desired
result.

2.10 Relation between characteristic function and
moments

Assume that the characteristic function of a random variable X is analyti-
cal, i.e. it can be recovered entirely from its Taylor expansion. Then we can
consider its expansion around zero:
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φX (ω) = 1 + i
NX
n=1

ωnRM
X
n + · · · . (T2.87)

+
ik

k!

NX
n1,...,nk=1

(ωn1 · · ·ωnk)RMX
n1···nk + · · ·

In this expansion the generic coefficient RMX
n1···nk is defined in terms of the

derivatives of the characteristic function as follows:

RMX
n1···nk ≡ i−k

∂kφX (ω)

∂ωn1 · · · ∂ωnk

¯̄̄̄
ω=0

. (T2.88)

By performing the derivatives on the definition (2.13) of the characteristic
function we obtain:

∂k

∂ωn1 · · · ∂ωnk
{φX (ω)} ≡

∂k

∂ωn1 · · · ∂ωnk

½Z
RN

eiω
0xfX (x) dx

¾
(T2.89)

= ik
Z
RN

xn1 · · ·xnkeiω
0xfX (x) dx.

Therefore

∂kφX (ω)

∂ωn1 · · ·∂ωnk

¯̄̄̄
ω=0

= ik
Z
RN

xn1 · · ·xnkfX (x) dx (T2.90)

= ik E {Xn1 · · ·Xnk} .

Substituting this in (T2.88) shows that RMX
n1···nk is the k-th raw moment

defined in (2.91):
RMX

n1···nk ≡ E {Xn1 · · ·Xnk} . (T2.91)

Therefore any raw moment can be easily computed by differentiating the
characteristic function. In particular, from (T2.88) we obtain the expected
value, which is the raw moment of order one:

E {Xn} = RMX
n =

1

i

∂φX (ω)

∂ωn

¯̄̄̄
ω=0

. (T2.92)

On the other hand, the k-th central moment

CMX
n1···nk ≡ E {(Xn1 − E {Xn1}) · · · (Xnk − E {Xnk})} . (T2.93)

is a function of the raw moments of order up to k, a generalization of (T1.38).
Similarly k-th raw moment is a function of the central moments of order up to
k. These statements follow by expanding the products in (T2.93) and inverting
the ensuing triangular transformation. See also David and Barton (1962) for
an interesting approach based on differentiation.
In particular for the covariance matrix, which is the central moment of

order two, we obtain:
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Cov {Xm,Xn} = CMX
mn (T2.94)

= RMX
mn−RMX

mRM
X
n ,

where the second raw moment follows from (T2.88):

RMX
mn = −

∂2φX (ω)

∂ωm∂ωn

¯̄̄̄
ω=0

. (T2.95)

2.11 Results on the uniform distribution

Assume that the random variableX is uniformly distributed on the unit sphere
in RN :

X ∼ U(E0N ,IN ) . (T2.96)

The probability density function of X reads:

1

VN
IE0,I (x) , (T2.97)

where VN is the volume of the unit sphere in RN :

VN ≡
π
N
2

Γ
¡
N
2 + 1

¢ , (T2.98)

see Fang, Kotz, and Ng (1990), p. 74.
In Fang, Kotz, and Ng (1990), p. 75 we find the expression of the marginal

probability density function of the last (N −K) entries of (T2.96) which reads:

f (xK+1, . . . , xN ) =
Γ
¡
N+2
2

¢
Γ
¡
K+2
2

¢
π
N−K
2

Ã
1−

NX
n=K+1

x2n

!K
2

, (T2.99)

where Γ is the gamma function (B.80) and

NX
n=K+1

x2n ≤ 1. (T2.100)

Therefore, the marginal distribution is not uniform. Notice that (2.151), which
we computed explicitly, is a special case of (T2.99), as follows immediately
from (B.81) and (B.82).
To compute the characteristic function, using the result (2.9) in Fang,

Kotz, and Ng (1990) and (T2.99) the characteristic function of (T2.96) reads:
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φ (ω) ≡ E
n
eiω

0X
o
= E

n
ei
√
ω0ωXN

o
(T2.101)

=

Z +∞

−∞
ei
√
ω0ωxN f (xN ) dxN

=
Γ
¡
N+2
2

¢
Γ
¡
N+1
2

¢
π
1
2

Z +1

−1
cos
³√

ω0ωx
´ ¡
1− x2

¢N−1
2 dx

+i
Γ
¡
N+2
2

¢
Γ
¡
N+1
2

¢
π
1
2

Z +∞

−∞
sin
³√

ω0ωx
´ ¡
1− x2

¢N−1
2 dx.

The last term vanishes due to the symmetry of
¡
1− x2

¢
around the origin.

From (B.89) and (B.82) we have:

B

µ
1

2
,
N + 1

2

¶
=

Γ
¡
1
2

¢
Γ
¡
N+1
2

¢
Γ
¡
N+2
2

¢ =

√
πΓ

¡
N+1
2

¢
Γ
¡
N+2
2

¢ . (T2.102)

Therefore the characteristic function reads:

φ (ω) =
2

B
¡
1
2 ,

N+1
2

¢ Z +1

0

cos
³√

ω0ωx
´ ¡
1− x2

¢N−1
2 dx. (T2.103)

To compute the moments, we represent X as follows:

X = RU, (T2.104)

where from (2.259) R ≡ kXk and U ≡ X/ kXk are independent and U is
uniformly distributed on the surface of the unit ball E0N ,IN . Therefore from
(T2.207) we obtain:

E {X} = E {R}E {U} = 0. (T2.105)

Similarly:

Cov {X} = E
©
R2UU0ª = E©R2ªCov {U} . (T2.106)

From Fang, Kotz, and Ng (1990), p. 75, the pdf of R ≡ kXk reads:

fR (r) = NrN−1I[0,1] (r) , (T2.107)

where I is the indicator function (B.72). Therefore:

E
©
Rk
ª
=

Z 1

0

rkNrN−1dr = N

Z 1

0

rN+k−1dr =
N

N + k
. (T2.108)

Therefore, using (T2.208) we obtain:

Cov {X} = IN
N + 2

. (T2.109)

More in general, we can obtain any moment by applying (T2.212)
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CMX
m1···mk

= CMRU
m1···mk

= RMRU
m1···mk

= E {RUn1 · · ·RUnk} (T2.110)

= E
©
Rk
ª
E {Un1 · · ·Unk}

=
N

N + k
E {Un1 · · ·Unk} ,

and then using (T2.206).
With the transformation:

X 7→ Y ≡ µ+BX, (T2.111)

where BB0 ≡ Σ we obtain a variable Y that is uniformly distributed on the
ellipsoid Eµ,Σ:

Y ∼ U(Eµ,Σ) . (T2.112)

Therefore, the probability density function of the is obtained by applying
(T2.13) to (T2.97). Similarly, the characteristic function of the uniform dis-
tribution on the ellipsoid Eµ,Σ is obtained by applying (T2.32) to (T2.103).
Notice that there is a typo in Fang, Kotz, and Ng (1990). The expected value
of the uniform distribution on the ellipsoid Eµ,Σ is obtained by applying (2.56)
to (T2.105) and the covariance is obtained by applying (2.71) to (T2.109).

2.12 Results on the normal distribution

Characteristic function of the normal distribution

Consider a univariate standard normal variable:

X ∼ N(0, 1) . (T2.113)

Its characteristic function reads:

φ (ω) =
1√
2π

Z +∞

−∞
eiωxe−

x2

2 dx (T2.114)

=
1√
2π

Z +∞

−∞
e−

1
2(x

2−2iωx)dx

=
1√
2π

Z +∞

−∞
e−

1
2 [(x−iω)

2+ω2]dx

= e−
1
2ω

2 1√
2π

Z +∞

−∞
e−

1
2 (x−iω)

2

d (x− iω)

= e−
1
2ω

2

Consider now a set of N independent standard normal variables X. By defin-
ition, their juxtaposition is a standard N -dimensional normal random vector:
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X ∼ N(0, I) . (T2.115)

Therefore:

φ (ω) ≡ E
n
eiω

0X
o
=

NY
n=1

E
©
eiωnXn

ª
(T2.116)

=
NY
n=1

e−
1
2ω

2
n = e−

1
2ω

0ω.

With the transformation:

X 7→ Y ≡ µ+BX, (T2.117)

where BB0 ≡ Σ we obtain a generic multivariate normal random vector:

Y ∼ N(µ,Σ) . (T2.118)

The characteristic function of (T2.118) is obtained by applying (T2.32) to
(T2.116).

Probability density function of the copula of the bivariate normal
distribution

From (2.30), the pdf of the copula reads

fN (u1, u2) =
fNµ,Σ

³
QN
µ1,σ

2
1
(u1) ,QNµ2,σ22

(u2)
´

fN
µ1,σ

2
1

³
QN
µ1,σ

2
1
(u1)

´
fN
µ2,σ

2
2

³
QN
µ2,σ

2
2
(u2)

´ , (T2.119)

where Q is the quantile (1.70) of the marginal normal one-dimensional distri-
bution:

QNµ,σ2 (u) = µ+
√
2σ2 erf−1 (2u− 1) . (T2.120)

From the expression (2.170) of the two dimensional joint normal pdf fNµ,Σ we
obtain:

fNµ,Σ

³
QN
µ1,σ

2
1
(u1) , QNµ2,σ22

(u2)
´
=

¡
σ21σ

2
2

¡
1− ρ2

¢¢− 1
2

2π
e
− 1
2

z21−2ρz1z2+z
2
2

(1−ρ2) ,

(T2.121)
where

zi ≡
√
2 erf−1 (2ui − 1) . (T2.122)

On the other hand, from the expression (1.67) of the marginal pdf we obtain:

fN
µi,σ

2
i

³
QN
µi,σ

2
i
(ui)

´
=
¡
2πσ2

¢− 1
2 e−

z2i
2 . (T2.123)
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Therefore
fN (u1, u2) =

1p
1− ρ2

exp (gρ (u1, u2)) (T2.124)

where

gρ (u1, u2) ≡ −
µ
erf−1 (2u1 − 1)
erf−1 (2u2 − 1)

¶0Ãµ
1 ρ
ρ 1

¶−1
−
µ
1 0
0 1

¶!
µ
erf−1 (2u1 − 1)
erf−1 (2u2 − 1)

¶
(T2.125)

2.13 Results on the matrix-valued normal distribution

Assume:
X ∼ N(M,Σ,S) . (T2.126)

From the definition (2.180) of this distribution and the definition of the normal
pdf (2.156) we have:

f (X) ≡ f (vec (X)) ≡ (2π)−
NK
2 |SK ⊗ΣN |−

1
2 (T2.127)

e−
1
2 (vec(X)−vec(M))0(SK⊗ΣN)−1(vec(X)−vec(M))

From the property (A.102) of the Kronecker product we can write

|SK ⊗ΣN |−
1
2 = |SK |−

N
2 |ΣN |−

K
2 , (T2.128)

Furthermore, from the property (A.101) of the Kronecker product, we can
write

(SK ⊗ΣN)
−1 = S−1K ⊗Σ

−1
N .

Therefore (T2.127) can be written as follows:

f (X) = (2π)−
NK
2 |SK |−

N
2 |ΣN |−

K
2 (T2.129)

e−
1
2{(vec(X)−vec(M))0(S−1K ⊗Σ

−1
N )(vec(X)−vec(M))}.

On the other hand, defining

Y ≡ X−M, ΩN ≡ Σ−1N , ΦK ≡ S−1K , (T2.130)

and recalling the definition (A.96) of the Kronecker product, and the definition
(A.104) of the "vec" operator, the term in curly brackets in (T2.129) can be
written as follows:
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{· · · } ≡ vec (Y)0 (ΦK ⊗ΩN ) vec (Y)

≡
³
Y0
(1) · · ·Y0

(K)

´⎛⎜⎝ Φ11Ω · · · Φ1KΩ
...

. . .
...

ΦK1Ω · · · ΦKKΩ

⎞⎟⎠
⎛⎜⎝ Y(1)

...
Y(K)

⎞⎟⎠ (T2.131)

=
X
k

Y0
(k) (ΦkjΩ)Y(j)

=
X

n.m,k,j

YnkΦkjΩnmYmj

=
X

n.m,k,j

ΩmnYnkΦkjYmj

= tr
©
ΩYΦY0ª = tr©ΦY0ΩY

ª
Therefore (T2.129) can be written as follows:

f (X) ≡ (2π)−
NK
2 |ΣN |−

K
2 |SK |−

N
2 e−

1
2 tr{S−1K (X−M)0Σ−1N (X−M)}. (T2.132)

To prove the role of the matrices ΣN and SK , consider two generic N -
dimensional columns X(j) and X(k) among the K that compose the random
matrix X. The (m,n)-entry of the N ×N covariance matrix between the two
columns X(j) and X(k) can be written as follows:£

Cov
©
X(j),X(k)

ª¤
m,n

= Cov
n
X
(C)
(j−1)N+m,X

(C)
(k−1)N+n

o
= (SK ⊗ΣN )(j−1)N+m,(k−1)N+n (T2.133)

=

⎛⎜⎝ S11Σ · · · S1KΣ
...

. . .
...

SK1Σ · · · SKKΣ

⎞⎟⎠
(j−1)N+m,(k−1)N+n

= Sj,kΣm,n.

This proves that if
X ∼ N(M,Σ,S) (T2.134)

then
Cov

©
X(j),X(k)

ª
= Sj,kΣ. (T2.135)

On the other hand, from the following identities

f (X) ≡ (2π)−
NK
2 |ΣN |−

K
2 |SK |−

N
2 e−

1
2 tr{S−1K (X−M)0Σ−1N (X−M)}(T2.136)

= (2π)−
NK
2 |SK |−

N
2 |ΣN |−

K
2 e−

1
2 tr{Σ−1N (X−M)S−1K (X−M)0},

we see that if
X ∼ N(M,Σ,S) (T2.137)

then
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X0 ∼ N(M0,S,Σ) (T2.138)

Using (T2.135) and the fact that the columns of X0 are the rows of X we thus
obtain

Cov
n
X(m),X(n)

o
= ΣmnS. (T2.139)

2.14 Results on the matrix-valued Student t distribution

The generalization of the Student t distribution to matrix-variate random vari-
ables was studied by Dickey (1967). Our definition of the probability density
function (2.199) corresponds in the notation of Dickey (1967) to the following
special case:

p ≡ N, q ≡ K, m ≡ ν +N, Q ≡ νS, P ≡ Σ−1. (T2.140)

If
X ∼ St (ν,M,Σ,S) , (T2.141)

then

E {X} =M (T2.142)

Cov
©
X(j),X(k)

ª
=

ν

ν − 2SjkΣ (T2.143)

Cov
n
X(m),X(n)

o
=

ν

ν − 2ΣmnS. (T2.144)

We show here that the Student t distribution yields the normal distribution
when the degrees of freedom tend to infinity. In other words, we prove the
following result:

St (∞,M,Σ,S) = N (M,Σ,S) , (T2.145)

where the term on the left hand side is the matrix-variate Student t dis-
tribution (2.198) and the term on the right hand side is the matrix-variate
normal distribution (2.181). The above result immediately proves the specific
vector-variate case. Indeed, from (2.183) and (2.201) we obtain:

St (∞,m,Σ) = St (∞,m,Σ, 1) = N(M,Σ, 1) (T2.146)

= N(m,Σ) .

In turn, since the vector-variate pdf (2.188) case generalizes the one-dimensional
pdf (1.86) we also obtain

St
¡
∞,m, σ2

¢
= N

¡
m,σ2

¢
. (T2.147)

To prove (T2.145) we start using (A.122) in the definition (2.199) of the pdf
of a matrix-valued Student distribution St (ν,M,Σ,S). In the limit ν → ∞
we obtain:



T-30 Attilio Meucci - Risk and Asset Allocation

f (X) ≡ γ |Σ|−
K
2 |S|−

N
2

¯̄̄̄
IK + S

−1 (X−M)0 Σ
−1

ν
(X−M)

¯̄̄̄− ν
2

(T2.148)

≈ γ |Σ|−
K
2 |S|−

N
2

µ
1 +

1

ν
tr
¡
S−1 (X−M)0Σ−1 (X−M)

¢¶− ν
2

,

where γ is normalization constant (2.200), which we report here:

γ (ν) ≡ (νπ)−
NK
2

Γ
¡
ν+N
2

¢
Γ
¡
ν
2

¢ Γ
¡
ν−1+N

2

¢
Γ
¡
ν−1
2

¢ · · ·
Γ
¡
ν−K+1+N

2

¢
Γ
¡
ν−K+1

2

¢ . (T2.149)

Using the following limit (see e.g. Rudin (1976)):

ex = lim
n→∞

³
1 +

x

n

´n
, (T2.150)

we can then write

fStν→∞,µ,Σ,S (X) ≈ γ |Σ|−
K
2 |S|−

N
2 (T2.151)∙µ

1 +
1

ν
tr
¡
S−1 (X−M)0Σ−1 (X−M)

¢¶ν¸− 1
2

≈ γ |Σ|−
K
2 |S|−

N
2 e−

1
2 tr(S

−1(X−M)0Σ−1(X−M)).

Turning now to the normalization constant (T2.149), the following approx-
imation holds in the limit n → ∞, see e.g. Graham, Knuth, and Patashnik
(1994) or mathworld.com:

Γ

µ
n+

1

2

¶
≈
√
nΓ (n) . (T2.152)

Applying this result recursively we obtain in the limit n → ∞ the following
approximation:

Γ

µ
n+N

2

¶
≈
³n
2

´N
2

Γ
³n
2

´
. (T2.153)

Applying this to the normalization constant (T2.149) we obtain in the limit
ν →∞ the following approximation:

γ (ν →∞) ≈ (νπ)−
NK
2

³ν
2

´N
2 · · ·

µ
ν −K + 1

2

¶N
2

≈ (νπ)−
NK
2

³ν
2

´NK
2

(T2.154)

= (2π)
−NK

2 .

Thus in the limit ν →∞ the pdf of the matrix-variate Student t distribution
St (ν,M,Σ,S) reads:
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fStν→∞,µ,Σ,S (X)→ (2π)−
NK
2 |Σ|−

K
2 |S|−

N
2 (T2.155)h

etr(S
−1(X−M)0Σ−1(X−M))

i− 1
2

,

which is the pdf (2.182) of the matrix-variate normal distribution N(M,Σ,S).

2.15 Results on the Cauchy distribution

The logarithm of the Cauchy probability density function (2.209) reads:

ln fCaµ,Σ (x) = γ − N + 1

2
ln
¡
1 + (x− µ)0Σ−1 (x− µ)

¢
(T2.156)

The first order derivative of the log-Cauchy probability density function reads:

∂ ln fCaµ,Σ (x)

∂x
= − (N + 1)

Σ−1 (x− µ)
1 + (x− µ)0Σ−1 (x− µ)

. (T2.157)

Setting this expression to zero we obtain the mode:

Mod {X} = µ. (T2.158)

The Hessian of the log-Cauchy probability density function reads:

∂2 ln fCaµ,Σ (x)

∂x∂x0
= − (N + 1)

∂

∂x

(x− µ)0Σ−1

1 + (x− µ)0Σ−1 (x− µ)
(T2.159)

= − (N + 1)
1

1 + (x− µ)0Σ−1 (x− µ)
∂

∂x

£
(x− µ)0Σ−1

¤
− (N + 1)

∙
∂

∂x

1

1 + (x− µ)0Σ−1 (x− µ)

¸
(x− µ)0Σ−1

= − (N + 1)
Σ−1

1 + (x− µ)0Σ−1 (x− µ)

− (N + 1)− 2Σ−1 (x− µ) (x− µ)0Σ−1¡
1 + (x− µ)0Σ−1 (x− µ)

¢2 .
Evaluating this expression in the mode (T2.158) we obtain:

∂2fCaµ,Σ (x)

∂x∂x0

¯̄̄̄
¯
x=Mod{X}

= − (N + 1)Σ−1. (T2.160)

Therefore the modal dispersion (2.65) reads:

MDis {X} ≡ −

⎛⎝ ∂2fCaµ,Σ (x)

∂x∂x0

¯̄̄̄
¯
x=Mod{X}

⎞⎠−1 = 1

N + 1
Σ (T2.161)
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2.16 Results on log-distributions

Assume the distribution of the random variable X is known, and it is repre-
sented by its pdf fX or its characteristic function φX. Consider a new random
variable Y defined as follows:

Y ≡ eX, (T2.162)

where the exponential is defined component-wise. This is a transformation g
of the form (T2.8), which reads component-wise as follows:

gn (x1, . . . , xN ) ≡ exn . (T2.163)

The inverse transformation g−1 reads component-wise:

g−1n (y1, . . . , yN ) ≡ ln (yn) . (T2.164)

The Jacobian (T2.11) reads:

Jg = diag (ex1 , . . . , exN ) , (T2.165)

and thus from (A.42) its determinant reads:

|Jg| =
NY
n=1

exn . (T2.166)

We have to evaluate (T2.166) in x = g−1 (y). Therefore from (T2.164) we
obtain ¯̄

Jg
¡
g−1 (y)

¢¯̄
=

NY
n=1

yn (T2.167)

Therefore from (T2.13) the pdf of the lognormal distribution reads:

fY (y) =
fX (ln (y))QN

n=1 yn
. (T2.168)

Now we compute the raw moments (T2.91) of the log-variable Y:

RMY
n1···nk ≡ E {Yn1 · · ·Ynk} (T2.169)

= E
©
eXn1 · · · eXnk

ª
= E

©
eXn1+···+Xnk

ª
= E

©
exp

¡
iω0n1···nkX

¢ª
,

where the vector ω is defined in terms of the canonical basis (A.15) as follows:

ωn1···nk ≡
1

i

³
δ(n1) + · · ·+ δ(nk)

´
. (T2.170)

Comparing with (2.13), we realize that the last term in (T2.169) is the char-
acteristic function of X. Therefore we obtain:
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RMY
n1···nk = φX (ωn1···nk) .. (T2.171)

The central moments can be obtained from the raw moments as discussed in
Appendix www.2.10
In particular, if X is normally distributed:

X ∼ N(µ,Σ) , (T2.172)

then by definition Y is lognormally distributed:

Y ∼ LogN (µ,Σ) . (T2.173)

Therefore from (2.156) and (T2.168) we immediately obtain the pdf of the
lognormal distribution:

fLogNµ,Σ (y) =
(2π)

−N
2 |Σ|−

1
2QN

n=1 yn
e−

1
2 (ln(y)−µ)

0Σ−1(ln(y)−µ). (T2.174)

Furthermore, from (2.157) and (T2.171) we obtain the expression of the raw
moments of the lognormal distribution:

RMY
n1···nk = e

µ0 δ(n1)+···+δ(nk) (T2.175)

e
1
2 δ(n1)+···+δ(nk)

0
Σ δ(n1)+···+δ(nk) .

In particular the expected value, which is the first raw moment, reads

E {Yn} = RMY
n = eµn+

Σnn
2 . (T2.176)

The second raw moment reads:

E {YmYn} = RMY
mn = eµm+µn+

Σmm
2 +Σnn

2 +Σmn . (T2.177)

Therefore the covariance matrix reads:

Cov {Xm,Xn} = E {YmYn}− E {Ym}E {Yn} (T2.178)

= eµm+µn+
Σmm
2 +Σnn

2

¡
eΣmn − 1

¢
.

2.17 Results on the Wishart distribution

Relation between Wishart and gamma distribution

If W is Wishart distributed as in (2.223), then from (2.222) for any con-
formable matrix A we have:
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AWA0 = AX1X
0
1A

0 + · · ·+AXνX
0
νA

0

= Y0
1Y

0
1 + · · ·+YνY

0
ν (T2.179)

∼W
¡
ν;AΣA0¢ .

since
Yt ≡ AXt ∼ N

¡
0;AΣA0¢ . (T2.180)

In particular, we can reconcile the multivariate Wishart with the one-
dimensional gamma distribution by choosing A ≡ a0, a row vector. In that
case each term in the sum is normally distributed as follows:

Yt ≡ α0Xt ∼ N(0;α0Σα) . (T2.181)

Therefore from (1.106).

a0Wa ∼ Ga (ν,α0Σα) . (T2.182)

The pdf of the inverse-Wishart distribution

Assume as in (2.232) that the matrix Z has an inverse-Wishart distribution:

Z ∼ IW (ν,Ψ) . (T2.183)

By definition
Z ≡ g (W) ≡W−1, (T2.184)

where
W ∼W

¡
ν,Ψ−1

¢
. (T2.185)

Then from (T2.14) in Appendix www.2.2:

f IWν,Ψ (Z) =
fWν,Ψ−1

¡
g−1 (Z)

¢q
|Jg (g−1 (Z))|2

. (T2.186)

Using the following result in Magnus and Neudecker (1999) that applies to
any invertible N ×N matrix Q:¯̄̄̄

∂Q−1

∂Q

¯̄̄̄
= (−1)

N(N+1)
2 |Q|−(N+1) , (T2.187)

we derive:

f IWν,Ψ (Z) = |Z|
−(N+1)

fWν,Ψ−1
¡
Z−1

¢
(T2.188)

= |Z|−(N+1) 1
κ

¯̄
Ψ−1

¯̄− ν
2
¯̄
Z−1

¯̄ ν−N−1
2 e−

1
2 tr(ΨZ

−1)

=
1

κ
|Ψ|

ν
2 |Z|−

ν+N+1
2 e−

1
2 tr(ΨZ

−1).
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2.18 Results on elliptical distributions

The family of ellipsoids centered in µ with shape Σ are described by the
following implicit equations:

Ma(x,µ,Σ) = u, (T2.189)

where Ma is the Mahalanobis distance of the point x from µ through the
metric Σ, as defined in (2.61).and u ∈ (0,∞), see (A.73).
If the pdf fX is constant on those ellipsoids then it must be of the form:

fµ,Σ (x) = h
£
Ma2 (x,µ,Σ)

¤
, (T2.190)

where h is a positive function, such that the normalization condition (2.6) is
satisfied, i.e. Z

RN
h
£
Ma2 (x,µ,Σ)

¤
dx = 1. (T2.191)

Suppose we have determined such a function h. From (T2.30), changing µ
into a generic parameter eµ does not affect the normalization condition, and
therefore the ensuing pdf is still the pdf of an elliptical distribution centered ineµ. On the other hand, if we change Σ into a generic dispersion parameter eΣ,
in order to preserve the normalization condition we have to rescale (T2.190)
accordingly:

fµ,Σ (x) =

vuut¯̄̄eΣ¯̄̄
|Σ|h

h
Ma2

³
x, eµ, eΣ´i . (T2.192)

Therefore, it is more convenient to replace (T2.190) with the following speci-
fication:

fµ,Σ (x) =
1p
|Σ|

g
£
Ma2 (x,µ,Σ)

¤
, (T2.193)

in such a way that the same functional form g is viable for any location and
dispersion parameters (µ,Σ).
To summarize, the pdf of an elliptical distribution is of the form (T2.193),

where g is any positive function that satisfies:Z ∞
0

y
N−2
2 g (y) dy <∞, (T2.194)

see Fang, Kotz, and Ng (1990), p. 35.

Moments of elliptical distributions

First we follow Fang, Kotz, and Ng (1990) to compute the moments of a
random variable U uniformly distributed on the surface of the unit ball.
Consider a standard multivariate normal variable
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X ∼ N(0, IN ) . (T2.195)

We can write:
X = kXkU. (T2.196)

From (2.259) we have that kXk and U ≡ X/ kXk are independent and U
uniformly distributed on the surface of the unit ball. Then:

E

(
NY
i=1

X2si
i

)
= E

(
NY
i=1

(kXkUi)2si
)

(T2.197)

= E

(Ã
NY
i=1

kXk2si
!Ã

NY
i=1

U2sii

!)

= E
n
kXk2s

o
E

(
NY
i=1

U2sii

)
,

where

s ≡
NX
i=1

si. (T2.198)

Thus

E

(
NY
i=1

U2sii

)
=

QN
i=1 E

©
X2si
i

ª
E
n
kXk2s

o . (T2.199)

On the other hand, for a standard normal variable Xi we have:

E
©
X2si
i

ª
=
(2si)!

2sisi!
, (T2.200)

see e.g. mathworld.com and references therein. For a standard multivariate
normal variable X we have

E
n
kXk2s

o
= E

n¡
X2
1 + · · ·+X2

N

¢so
(T2.201)

= E {Y s} .

Therefore from (1.109) we see that (T2.201) is the s-th raw moment of
a chi-square distribution with N degrees of freedom and thus, see e.g.
mathworld.com and references therein, we have:

E
n
kXk2s

o
=

Γ
¡
N
2 + s

¢
2s

Γ
¡
N
2

¢ . (T2.202)

From (B.82) we have:
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Γ

µ
N

2
+ s

¶
= Γ

µ
N + 2s

2

¶
(T2.203)

=
(N + 2s− 2) (N + 2 (s− 1)) · · ·n0

√
π

2
N+2s−1

2

.

Defining:
x[s] ≡ x (x+ 1) · · · (x+ s− 1) (T2.204)

we can write (T2.202) as follows

E
n
kXk2s

o
= (N + 2 (s− 1)) · · · (N + 2)N (T2.205)

= 2s
µ
N

2
+ (s− 1)

¶
· · ·
µ
N

2
+ 1

¶
N

2

= 2s
µ
N

2

¶[s]
.

Substituting (T2.200) and (T2.205) in (T2.199) we obtain:

E

(
NY
i=1

U2sii

)
=

1¡
N
2

¢[s] NY
i=1

(2si)!

4sisi!
, (T2.206)

which is Formula (3.6) in Fang, Kotz, and Ng (1990).
In particular

E {U} = 0 (T2.207)

and

Cov {U} = IN
N
, (T2.208)

where IN is the N ×N identity matrix.
Consider now a generic elliptical random variable X with location para-

meter µ and scatter parameter Σ. To compute its central moments we write:

X ≡ µ+RAU, (T2.209)

where

AA0 ≡ Σ (T2.210)

U ≡ A−1 (X− µ)
kA−1 (X− µ)k

R ≡
°°A−1 (X− µ)°° .

From (2.259), R is independent of U, which is uniformly distributed on the
surface of the unit ball. Using (T2.207) we obtain:

E {X} = E {µ+RAU} = µ+E {R}AE {U} (T2.211)

= µ.
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Using (2.93) we obtain:

CMX
m1···mk

= CMµ+RAU
m1···mk

= CMARU
m1···mk

(T2.212)

=
NX

n1,...,nk=1

Am1n1 · · ·Amknk CM
RU
m1···mk

=
NX

n1,...,nk=1

Am1n1 · · ·Amknk RM
RU
m1···mk

=
NX

n1,...,nk=1

Am1n1 · · ·Amknk E {RUn1 · · ·RUnk}

= E
©
Rk
ª NX
n1,...,nk=1

Am1n1 · · ·Amknk E {Un1 · · ·Unk} .

Substituting (T2.206) in (T2.212) yields the desired result.

2.19 Results on stable distributions

Consider a normally distributed random variable:

X ∼ N(µ,Σ) . (T2.213)

Consider the spectral decomposition (A.70) of the covariance matrix:

Σ ≡ EΛ 1
2Λ

1
2E0, (T2.214)

where Λ is the diagonal matrix of the eigenvalues of S:

Λ ≡ diag (λ1, . . . , λN ) ; (T2.215)

and E is the juxtaposition of the eigenvectors of S:

E ≡
³
e(1)| · · · |e(N)

´
, (T2.216)

Define the N vectors
©
v(1), . . .v(N)

ª
as follows:³

v(1)| . . . |v(N)
´
≡ V ≡ EΛ 1

2 . (T2.217)

These vectors and their opposite belong to the surface of the ellipsoid E0,Σ
with shape parameter Σ centered in zero defined in (A.73). Indeedh

±v(m)
i0
Σ−1

h
±v(n)

i
=
h
v(m)

i0
Σ−1

h
v(n)

i
=
£
V0Σ−1V

¤
mn

(T2.218)

=
h³
Λ

1
2E0

´
EΛ−

1
2Λ−

1
2E0

³
EΛ

1
2

´i
mn

= [I]mn .
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Thus, in particular: h
±v(n)

i0
Σ−1

h
±v(n)

i
= 1. (T2.219)

Consider the following measure:

m ≡ 1
4

NX
n=1

³
δ(vn) + δ(−vn)

´
, (T2.220)

where δ(x) is the Dirac delta centered in x as defined in (B.16). Due to
(T2.219) this measure satisfies (2.284) and thus it is defined on the surface
of the ellipsoid. Also, it trivially satisfies (2.283) and thus it is symmetrical.
Furthermore,Z

RN
ss0m (s) ds ≡ 1

4

Z
RN
ss0

NX
n=1

³
δ(vn) + δ(−vn)

´
(s) ds (T2.221)

=
1

2

NX
n=1

vnv
0
n =

1

2
VV0 =

1

2
EΛ

1
2Λ

1
2E0

=
1

2
Σ

Therefore Z
RN
|ω0s|2m (s) ds =

Z
RN
(ω0s) (s0ω)m (s) ds (T2.222)

= ω0
µZ

RN
ss0m (s) ds

¶
ω

=
1

2
ω0Σω.

This shows that the characteristic function (2.157) of the normal distribution
can be written as

φNµ,Σ (ω) = eiµ
0ω− 1

2ω
0Σω (T2.223)

= eiµ
0ω exp

µ
−
Z
RN
|ω0s|2m (s) ds

¶
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3.1 Properties of the ATMF implied volatility

Substituting the definition (3.48) of the ATMF strike in the Black-Scholes
pricing formula (3.41) we obtain:

C
(Kt,E)
t = CBS

³
E − t,Kt, Ut, Z

(E)
t , σ

(K,E)
t

´
=
1

2
Ut

µ
1 + erf

µ√
E − t

2
σ
(K,E)
t

¶¶
(T3.1)

−1
2
Ut

µ
1 + erf

µ
−
√
E − t

2
σ
(K,E)
t

¶¶
= Ut erf

µ√
E − t√
8

σ
(K,E)
t

¶
Therefore

σ
(Kt,E)
t =

r
8

E − t
erf−1

Ã
C
(Kt,E)
t

Ut

!
(T3.2)

Using the following Maple command:
> taylor(RootOf(erf(y)=x,y),x=0, 3);
we can perform a third-order Taylor expansion of the inverse error function:

erf−1 (x) =
π1/2

2
x+

π3/2

24
x3 + · · · (T3.3)

Since the term in the argument of the inverse error function in (T3.2) is of
the order of a few percentage points, we can stop at the first order, obtaining
(3.51):

σ
(Kt,E)
t ≈

r
2π

E − t

C
(Kt,E)
t

Ut
. (T3.4)

Nevertheless, we could easily proceed to higher orders.
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3.2 Distribution of the sum of independent variables

Consider two variables XA and XB whose joint probability density function
is fXA,XB . Consider now the sum of these variables. The pdf of the sum is

fXA+XB (y) =

Z
R
fXA,XB (y− x,x) dx. (T3.5)

This result follows from:

fY (y) dy = P {Y ∈ [y,y + dy]} = P {XA +XB ∈ [y,y+ dy]}
= P {XA ∈ [y−XB ,y −XB + dy]} (T3.6)

=

µZ
R
fXA,XB (y− xB,xB) dxB

¶
dy.

If the variables X and Y are independent, the joint pdf is the product of the
marginal pdf:

fXA,XB (xA,xB) = fXA (xA) fXB (xB) (T3.7)

Therefore the pdf of the sum (T3.5) becomes

fXA+XB
(y) =

Z
R
fXA

(y − x) fXB
(x) dx. (T3.8)

We see that this is the convolution (B.43) of the marginal pdf:

fXA+XB
= fXA

∗ fXB
(T3.9)

This is the representation of the distribution of the sum of two independent
variables in terms of the probability density function.
Repeating the above argument we obtain that the sum of any number of

independent and identically distributed random variables reads:

fX1+···+XT = fX ∗ · · · ∗ fX, (T3.10)

where fX is the common pdf of each generic variable Xt.
The representation in terms of the characteristic function is much easier.

Indeed using the factorization (2.48) of the characteristic function of indepen-
dent variables we obtain:

φX1+···+XT
(ω) ≡ E

n
eiω

0(X1+···+XT )
o

= E
n
eiω

0X1 · · · eiω0XT

o
(T3.11)

= E
n
eiω

0X1

o
· · ·E

n
eiω

0XT

o
.

Therefore
φX1+···+XT

(ω) = (φX (ω))
T , (T3.12)
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where φX is the common characteristic function of each generic variable Xt.
This result is not surprising. Indeed, we recall that from (2.14) that the

characteristic function of a distribution is the Fourier transform see (B.34) of
the probability density function of that distribution. Therefore:

φX1+···+XT
= F [fX1+···+XT ] . (T3.13)

Therefore, using the expression of the pdf of the sum (T3.10) and the relation
between convolution and the Fourier transform (B.45) we obtain:

φX1+···+XT
= F [fX ∗ · · · ∗ fX] = (F [fX])T (T3.14)

= (φX (ω))
T ,

which is again (T3.12).
Formula (T3.12) also provides a faster way to compute the probability

density function. Indeed we only need to apply once the inverse Fourier trans-
form F−1 as defined in (B.40), if the distribution of X is known through its
characteristic function:

fX1+···+XT = F−1
h
(φX (ω))

T
i
. (T3.15)

In case the distribution of X is known through its pdf we only need to apply
once the inverse Fourier transform F−1 and once the Fourier transform F :

fX1+···+XT = F−1
h
(F [fX])T

i
. (T3.16)

3.3 The "square-root rule"

We recall from (3.64) the relation between the investment-horizon character-
istic function and the estimation interval characteristic function

φXT,τ
=
³
φXT,τ

´ τ
τ

. (T3.17)

The first derivative of the characteristic function reads:

∂φXT,τ
(ω)

∂ω
=

∂
³
φXT,τ

(ω)
´ τ
τ

∂ω
(T3.18)

=
τeτ ³φXT,τ

(ω)
´ τ
τ−1 ∂φXT,τ

(ω)

∂ω
.

The second derivative of the characteristic function reads:

∂2φXT,τ
(ω)

∂ω∂ω0
=

∂

∂ω

"
τeτ ³φXT,τ

(ω)
´ τ
τ−1 ∂φXT,τ

(ω)

∂ω0

#
(T3.19)

=
τeτ ³τeτ − 1´³φXT,τ

(ω)
´ τ
τ−2 ∂φXT,τ

(ω)

∂ω

∂φXT,τ
(ω)

∂ω0

+
τeτ ³φXT,τ

(ω)
´ τ
τ−1 ∂φXT,τ

(ω)

∂ω∂ω0
.



T-44 Attilio Meucci - Risk and Asset Allocation

From (T2.88), evaluating these derivatives in the origin and using

φX (0) ≡ E
n
eiX

00
o
= 1, (T3.20)

we obtain for the first raw moment:

E {XT,τ} = −i
∂φXT,τ

(0)

∂ω
=

τeτ
Ã
−i

∂φXT,τ
(0)

∂ω

!
; (T3.21)

and for the second raw moment:

E
©
XT,τX

0
T,τ

ª
= −

∂2φXT,τ
(0)

∂ω∂ω0
(T3.22)

= −τeτ ³τeτ − 1´ ∂φXT,τ
(0)

∂ω

∂φXT,τ
(0)

∂ω0
− τeτ ∂φXT,τ

(0)

∂ω∂ω0
.

Therefore for the covariance we obtain:

Cov {XT,τ} = E
©
XT,τX

0
T,τ

ª
− E {XT,τ}E {XT,τ}0

= −τeτ ³τeτ − 1´ ∂φXT,τ
(0)

∂ω

∂φXT,τ
(0)

∂ω0
(T3.23)

−τeτ ∂φXT,τ
(0)

∂ω∂ω0
+
³τeτ ´2 ∂φXT,τ

(0)

∂ω

∂φXT,τ
(0)

∂ω0

=
τeτ
Ã
∂φXT,τ

(0)

∂ω

∂φXT,τ
(0)

∂ω0
−

∂φXT,τ
(0)

∂ω∂ω0

!

=
τeτ
Ã
−
Ã
−i

∂φXT,τ
(0)

∂ω

!Ã
−i

∂φXT,τ
(0)

∂ω0

!
+

Ã
−
∂φXT,τ

(0)

∂ω∂ω0

!!

Using again (T2.88) in (T3.21) we obtain:

E {XT,τ} =
τeτ E {XT,τ} ; (T3.24)

Using again (T2.88) in (T3.23) we obtain:

Cov {XT,τ} =
τeτ ¡−E {XT,τ}E {XT,τ}0 +E

©
XT,τX

0
T,τ

ª¢
(T3.25)

=
τeτ (Cov {XT,τ}) .

The statement in the main text "More in general, a multiplicative relation
such as (T3.24) or (T3.25) holds for all the raw moments and all the central
moments, when they are defined" is incorrect: it only holds for the expected
value and the covariance.
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3.4 Results on regression dimension reduction

Regression in the general case

From the definition (3.116) of the generalized r-square and (3.120), the re-
gression factor loadings minimizes the following quantity:

M ≡ E
©
(X−BF)0 (X−BF)

ª
=
X
n,k,j

E {(Xn −BnkFk) (Xn −BnjFj)}

=
X
n

E
©
X2
n

ª
−
X
n,k

E {BnkFkXn} (T3.26)

−
X
n,j

E {XnBnjFj}+
X
n,k,j

E {BnkFkBnjFj}

=
X
n

E
©
X2
n

ª
− 2

X
n,k

Bnk E {XnFk}

+
X
n,k,j

BnjBnk E {FkFj} .

Therefore the first order conditions with respect to Bsl read:

0sl =
∂M

∂Bsl
(T3.27)

= 2 tr
©
E
©
XF0

ª
B0
ª
+ tr

©
BE

©
FF0

ª
B0
ª

= −2E {XsFl}+
∂

∂Bsl

⎛⎝X
n,k,j

BnjBnk E {FkFj}

⎞⎠
= −2E {XsFl}+ 2

X
k

Bsk E {FkFl} .

In matrix notation these equations read:

0N×K = −2E
©
XF0

ª
+ 2BE

©
FF0

ª
, (T3.28)

whose solution is:
Br = E

©
XF0

ª
E
©
FF0

ª−1
. (T3.29)

The residuals read:

U ≡ X−BrF (T3.30)

= X− E
©
XF0

ª
E
©
FF0

ª−1
F

= X− (Cov {X,F}− E {X}E {F0}) E
©
FF0

ª−1
F.

In general, the residuals do not have zero expected value:
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E {U} = E
n
X− E

©
XF0

ª
E
©
FF0

ª−1
F
o

(T3.31)

= E {X}− E
©
XF0

ª
E
©
FF0

ª−1
E {F} .

Furthermore, in general the residuals are correlated:

Cov {U,F} = E
©
UF0

ª
− E {U}E {F0} (T3.32)

= E
n³
X− E

©
XF0

ª
E
©
FF0

ª−1
F
´
F0
o

−E
n
X− E

©
XF0

ª
E
©
FF0

ª−1
F
o
E {F0}

= E
©
XF0

ª
− E

©
XF0

ª
E
©
FF0

ª−1
E
©
FF0

ª
−E {X}E {F0}+E

©
XF0

ª
E
©
FF0

ª−1
E {F}E {F0}

= E
©
XF0

ª
E
©
FF0

ª−1
E {F}E {F0}− E {X}E {F0} .

This expression is zero if
E {F} = 0. (T3.33)

Recalling (T3.29), we can also express the covariance of the residuals with the
factor as follows

Cov {U,F} = E
©
UF0

ª
− E {U}E {F0} (T3.34)

= E
n³
X− E

©
XF0

ª
E
©
FF0

ª−1
F
´
F0
o

−E
n
X− E

©
XF0

ª
E
©
FF0

ª−1
F
o
E {F0}

= E
©
XF0

ª
− E {X}E {F0}

+E
©
XF0

ª
E
©
FF0

ª−1 ¡
E {F}E {F0}− E

©
FF0

ª¢
= Cov {X,F}− E

©
XF0

ª
E
©
FF0

ª−1
Cov {F}

= Cov {X,F}−Br Cov {F} .

Regression with constant among factors

Assume one of the factors is a constant as in (3.126). Then the linear model
(3.119) becomes

X ≡ a+GF+U. (T3.35)

In order to maximize the generalized r-square (3.116) we have to minimize
the following expression:

M ≡ E
©
[X− (a+GF)]0 [X− (a+GF)]

ª
(T3.36)

= E {X0X}+ a0a+E {F0G0GF}
+2a0GE {F}− 2a0 E {X}− 2E {X0GF} .

We re-write (T3.36) emphasizing the terms containing a:
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M = · · ·+
X
j

(aj)
2
+ 2

X
j,k

ajGjk E {Fk}− 2
X
j

aj E {Xj} (T3.37)

Setting to zero the first order derivative with respect to aj we obtain

aj = E {Xj}−
X
k

Gjk E {Fk} (T3.38)

which in matrix notation yields

ar = E {X}−Gr E {F} (T3.39)

Now we re-write (T3.36) emphasizing the terms containing G:

M = · · ·+
X
jkl

E {FjGkjGklFl} (T3.40)

+2
X
jk

ajGjk E {Fk}− 2
X
jk

E {XjGjkFk}

=
X
jkl

E {FkGjkGjlFl}+ 2
X
jk

ajGjk E {Fk}− 2
X
jk

E {XjGjkFk}

Setting to zero the first order derivative with respect to Gjk and using (T3.38)
we obtain:

0 =
X
l

E {FkGjlFl}+ aj E {Fk}− E {XjFk} (T3.41)

=
X
l

E {FkGjlFl}+
Ã
E {Xj}−

X
l

Gjl E {Fl}
!
E {Fk}− E {XjFk}

=

ÃX
l

E {FkGjlFl}−
X
l

E {GjlFl}E {Fk}
!

− (E {XjFk}− E {Xj}E {Fk})
=
X
l

Cov {GjlFl, Fk}− Cov {Xj , Fk}

= Cov
n
[GF]j , Fk

o
− Cov {Xj , Fk} .

In matrix notation this expression reads:

GCov {F} = Cov {X,F} , (T3.42)

which implies
Gr = Cov {X,F}Cov {F}−1 . (T3.43)

Substituting (T3.38) and (T3.42) in (T3.35) we find the expression of the
recovered invariants:
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eXr ≡ E {X}+Cov {X,F}Cov {F}−1 (F− E {F}) . (T3.44)

The residuals read:

Ur ≡ X− eXr = X−GrF,

where
X ≡ X− E {X} , F ≡ F− E {F} . (T3.45)

Therefore the residuals have zero expected value.
The covariance of the residuals with the factors reads:

Cov {Ur,F} = E
n£
X−GrF

¤
F
0o

(T3.46)

= E
n
XF

0o−Gr E
n
FF

0o
= Cov {X,F}−Gr Cov {F}

Therefore using (T3.43) we obtain:

Cov {Ur,F} = Cov {X,F}− Cov {X,F}Cov {F}−1Cov {F} (T3.47)
= 0

The covariance of the residual reads:

Cov {Ur} = E
n£
X−GrF

¤ £
X−GrF

¤0o
(T3.48)

E
n
XX

0o− 2EnXF0oG0
r +Gr E

n
FF

0o
G0

r

= Cov {X,X}− 2Cov {X,F}G0
r +Gr Cov {F,F}G0

r

Therefore using (T3.43) we obtain:

Cov {Ur} = Cov {X,X}− Cov {X,F}Cov {F,F}−1 Cov {F,X} (T3.49)

PCA analysis of regression

First of all we consider a scale independent model. We recall from (1.35) that
the z-scores of the variables are defined as follows:

ZX ≡ D−1X (X− E {X}) (T3.50)

where
DX ≡ diag (Sd {X1} , . . . , Sd {XN}) . (T3.51)

Left-multiplying (T3.44) by D−1X we obtain the recovered z-score of the orig-
inal variable X:
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eZX ≡ D−1X ³eXr − E {X}
´

(T3.52)

= D−1X Cov {X,F}Cov {F}−1 (F− E {F})
= Cov

©
D−1X X,F

ª
Cov {F}−1 (F− E {F})

Consider the spectral decomposition (2.76) of the covariance of the factors:

Cov {F} ≡ EΛE0, (T3.53)

where E is the juxtaposition of the eigenvectors:

E ≡
³
e(1), . . . , e(K)

´
, (T3.54)

and satisfies EE0 = IK , the identity matrix; and Λ is the diagonal matrix of
the eigenvalues sorted in decreasing order:

Λ ≡ diag (λ1, . . . , λK) . (T3.55)

With the spectral decomposition we can always rotate the factors in such a
way that they are uncorrelated. Indeed the rotated factors E0F satisfy:

Cov {E0F} = E0Cov {F}E = E0EΛE0E = Λ, (T3.56)

which is diagonal. Now consider the z-scores of the rotated factors:

ZF ≡ Λ−
1
2E0 (F− E {F}) , (T3.57)

which are uncorrelated and have unit standard deviation:

Cov {ZF } = Λ−
1
2E0EΛE0EΛ−

1
2 = IK . (T3.58)

From (T3.52) the recovered z-score of the original variable X reads:

eZX = Cov
©
D−1X X,F

ª
EΛ−1E0 (F− E {F}) (T3.59)

= Cov
n
D−1X X,Λ−

1
2E0 (F− E {F})

oh
Λ−

1
2E0 (F− E {F})

i
= Cor {X,E0F}

h
Λ−

1
2E0 (F− E {F})

i
,

On the other hand, the generalized r-square defined in (3.116) reads in
this context:

R2
n
X, eXr

o
≡ R2

n
ZX , eZXo (T3.60)

≡ 1−
E

½³
ZX − eZX´0 ³ZX − eZX´¾
tr {Cov {ZX}}

= 1− a

N
.
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The term in the numerator can be written as follows:

a ≡ E
½³
ZX − eZX´0 ³ZX − eZX´¾ (T3.61)

= E

½h
D−1X

³
X− eX´i0D−1X ³

X− eX´¾
= E

½³
X− eX´0D−1X D−1X

³
X− eX´¾

= tr

µ
D−1X D−1X E

½³
X− eX´³X− eX´0¾¶

using (T3.49) this becomes:

a ≡ tr
³
D−1X D−1X

h
Cov {X,X}− Cov {X,F}Cov {F,F}−1Cov {F,X}

i´
= tr

¡
D−1X D−1X Cov {X,X}

¢
(T3.62)

− tr
³
D−1X D−1X Cov {X,F}Cov {F,F}−1Cov {F,X}

´
= tr (Cor {X,X})
− tr

³
D−1X D−1X Cov {X,F}Cov {F,F}−1Cov {F,X}

´
= N − tr

³
Cov

n
D−1X X,EΛ

1
2ZF

o
EΛ−1E0Cov

n
EΛ

1
2ZF ,D

−1
X X

o´
. = N − tr

¡
Cov

©
D−1X X,ZF

ª
Cov

©
ZF ,D

−1
X X

ª¢
N − tr (Cor {X,E0F}Cor {E0F,X})

Therefore the r-square (T3.60) reads:

R2
n
ZX , eZXo = 1− N − tr (Cor {X,E0F}Cor {E0F,X})

N
(T3.63)

=
1

N
tr (Cor {X,E0F}Cor {E0F,X}) .

3.5 Results on PCA dimension reduction

Recovered invariants as projection

The PCA-recovered invariants (3.160) read:

eXp ≡ a+GX, (T3.64)

where
a ≡ (IN −EKE

0
K) E {X} , (T3.65)

and
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G ≡ EKE
0
K . (T3.66)

Consider a generic point x in RN . Since the eigenvectors of the covariance
matrix are a basis of RN we can express x as follows:

x ≡ E {X}+
NX
n=1

αne
(n), (T3.67)

for suitable coefficients {α1, . . . , αN}, where e(n) denotes the n-th eigenvector.
To prove that (T3.64) represents the projection on the hyperplane of max-

imal variation generated by the first K principal axes we need to prove the
following relation:

a+Gx = E {X}+
KX
n=1

αne
(n). (T3.68)

By substituting (T3.65), (T3.66) and (T3.67) in the left hand side of the above
relation we obtain:

a+Gx ≡ (IN −EKE
0
K) E {X}

+EKE
0
K

Ã
E {X}+

NX
n=1

αne
(n)

!
(T3.69)

= E {X}+
NX
n=1

αnEKE
0
Ke

(n).

Therefore in order prove our statement it suffices to prove that if n ≤ K then
the following holds:

EKE
0
Ke

(n) = e(n), (T3.70)

and if n > K then the following holds:

EKE
0
Ke

(n) = 0. (T3.71)

Both statements follow from the definition (3.157) of EK , which implies:

EKE
0
Ke

(n) ≡
³
e(1)| · · · |e(K)

´⎛⎜⎝
£
e(1)

¤0
e(n)

...£
e(K)

¤0
e(n)

⎞⎟⎠ , (T3.72)

and the fact that E is orthonormal:

EE0 = IN , (T3.73)

where I is the identity matrix.
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Results on the residual

The residual of the PCA dimension reduction reads:

Up ≡ X− eXp ≡ (IN −EKE
0
K) (X− E {X}) (T3.74)

= RKR
0
K (X− E {X}) ,

where RK is the juxtaposition of the last (N −K) eigenvectors:

RK ≡
³
e(K+1)| · · · |e(N)

´
. (T3.75)

This matrix satisfies
RKR

0
KRKR

0
K = RKR

0
K . (T3.76)

Indeed, from (T3.73) and the definition of RK we obtain:

RKR
0
Ke

(n) ≡
³
e(K+1)| · · · |e(N)

´⎛⎜⎝
£
e(K+1)

¤0
e(n)

...£
e(N)

¤0
e(n)

⎞⎟⎠ . (T3.77)

Therefore, if n > K then:

RKR
0
Ke

(n) = e(n), (T3.78)

and if n ≤ K then:
RKR

0
Ke

(n) = 0. (T3.79)

Since the set of eigenvectors is a basis in RN , (T3.78) and (T3.79) prove
(T3.76).
Therefore the term in the numerator of the generalized r-square (3.116) of

the PCA dimension reduction reads:

M ≡ E
½³
X− eXp

´0 ³
X− eXp

´¾
= E

©
(X− E {X})0RKR

0
KRKR

0
K (X− E {X})

ª
(T3.80)

= E
©
(X− E {X})0RKR

0
K (X− E {X})

ª
= tr (Cov {R0

KX}) ,

On the other hand from the definition (T3.75) of RK we obtain:

E0RK =
³
δ(K+1)| · · · |δ(N)

´
, (T3.81)

where δ(n) is the n-th element of the canonical basis (A.15). Therefore

Cov {R0
KX} = R0

K Cov {X}RK

= R0
KEΛE

0RK (T3.82)

= diag (λK+1, . . . , λN )
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Substituting (T3.82) in (T3.80) we obtain:

M =
NX

n=K+1

λn. (T3.83)

The term in the denominator of the generalized r-square (3.116) is the
sum of all the eigenvalues. This follows from (3.149) and (A.67). Therefore,
the generalize r-square reads:

R2
n
X, eXp

o
= 1−

PN
n=K+1 λnPN
n=1 λn.

=

PK
n=1 λnPN
n=1 λn.

. (T3.84)

The residual (T3.74) clearly has zero expected value. Similarly, the factors

Fp ≡ E0K (X− E {X}) (T3.85)

have zero expected value. From (T3.78) and (T3.79) we obtain:

RKR
0
KE =

³
0| · · · |0|e(K+1)| · · · |e(N)

´
. (T3.86)

Similarly:

(E0EK) =
³
e(1)| · · · |e(K)

´
. (T3.87)

Therefore the covariance of the residuals with the factors reads:

Cov {Up,Fp} = E
©
UpF

0
p

ª
(T3.88)

= E
©
RKR

0
K (X− E {X}) (X− E {X})

0EK

ª
= RKR

0
K Cov {X}EK

= (RKR
0
KE)Λ (E

0EK)

=
³
0| · · · |0|e(K+1)| · · · |e(N)

´³
λ1e

(1)| · · · |λKe(K)
´

= 0N×K ,

where the last equality follows from EE0 = IN .

3.6 Spectral basis in the continuum

In order to better capture the analogies between the continuum and the dis-
crete case, we advise the reader to refer to Appendix B at the end of the book,
and in particular to the (rationale behind) Tables B.4, B.11 and B.20.
First of all, we consider a generic Toeplitz operator S defined on L2 (R),

i.e. an operator whose kernel representation S (x, y) vanishes fast enough at
infinity and satisfies:

S (x+ z, y) = S (x, y − z) . (T3.89)
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Suppose that the operator admits a one-dimensional eigenvalue/eigenfunction
pair, i.e. there exist a number λω and a function

S
h
e(ω)

i
= λωe

(ω), (T3.90)

where the function is unique up to a constant. Using Table B.4, the spectral
equation (T3.90) reads explicitly as follows:Z

R
S (x, y) e(ω) (y) dy = λωe

(ω) (x) . (T3.91)

First of all we determine the generic form of such an eigenfunction, if it exists.
Expanding in Taylor series the spectral basis and using the spectral equa-

tion we obtain

λωe
(ω) (x+ dx) =

Z
R
S (x+ dx, y) e(ω) (y) dy

=

Z
R
S (x, y − dx) e(ω) (y) dy (T3.92)

=

Z
R
[S (x, y)− ∂yS (x, y) dx] e

(ω) (y) dy.

On the other hand from another Taylor expansion we obtain:

λωe
(ω) (x+ dx) = λω

∙
e(ω) (x) +

de(ω)

dx
dx

¸
. (T3.93)

Therefore, integrating by parts and using the assumption that the matrix S
vanishes at infinity, we obtain the following identity:

λω
de(ω)

dx
= −

Z
R
(∂yS (x, y)) e

(ω) (y) dy (T3.94)

= −
Z
R
∂y

h
S (x, y) e(ω) (y)

i
dy +

Z
R
S (x, y) ∂ye

(ω) (y) dy

=

Z
R
S (x, y) ∂ye

(ω) (y) dy,

or, in terms of the (one-dimensional) derivative operator (B.25):

S
h
De(ω)

i
= λω

h
De(ω)

i
, (T3.95)

Therefore De(ω) is an eigenvector relative to the same eigenvalue as e(ω).
Now assume that the Toeplitz operator S is symmetric and positive. Sim-

ilarly to (A.51) the operator is symmetric if its kernel is symmetric across the
diagonal, i.e.

S (x, y) = S (y, x). (T3.96)
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Similarly to (A.52) the operator is positive if for any function v in its domain
the following is true:

hv, S [v]i ≡
Z
R
v (x)

Z
R
S (x, y) v (y) dydx ≥ 0. (T3.97)

In this case we can restate the spectral theorem in the continuum making
use of the formal substitutions in Tables B.4, B.11 and B.20: if the kernel
representation S of a linear operator satisfies (T3.96) and (T3.97), then the
operator admits an orthogonal basis of eigenfunctions.
In other words, then there exists a set of functions

©
e(ω) (·)

ª
ω∈R and a set

of positive values {λω}ω∈R such that (T3.90) holds, which is the equivalent of
(A.53) in the continuous setting of functional analysis.
Furthermore, the set of eigenfunctions satisfies the equivalent of (A.54)

and (A.56), i.e.D
e(ω), e(ψ)

E
≡
Z
R
e(ω) (x) e(ψ) (x)dx = 2πδ(ω) (ψ) , (T3.98)

where we chose a slightly more convenient normalization constant.
Consider the operator E represented by the following kernel:

E (y, ω) ≡ e(ω) (y) . (T3.99)

This is the equivalent of (A.62), i.e. it is a (rescaled) unitary operator, the
same way as (A.62) is a rotation. Indeed:

kEgk2 =
Z
R

µZ
R
e(ω) (x) g (ω) dω

¶µZ
R
e(ψ) (x) g (ψ) dψ

¶
dx

=

Z
R

Z
R

µZ
R
e(ω) (x) e(ψ) (x)dx

¶
g (ω) g (ψ)dψdω (T3.100)

= 2π

Z
R

Z
R
δ(ω) (ψ) g (ω) g (ψ)dψdω

= 2π

Z
R
g (ω) g (ω)dω = 2π kgk2

By means of the spectral theorem we can explicitly compute the eigen-
functions and the eigenvalues of a positive and symmetric Toeplitz operator.
First of all from (T3.90), (T3.95) and the fact that in the spectral theo-

rem to each eigenvalue corresponds only one eigenvector, we obtain that the
following relation must hold:

de(ω) (x)

dx
= gωe

(ω) (x) , (T3.101)

for some constant gω that might depend on ω. The general solution to this
equation is
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e(ω) (x) = Aωe
gωx. (T3.102)

To determine this constant, we compare the normalization condition (T3.98)
with (B.41) obtaining:

e(ω) (x) = eiωx. (T3.103)

To compute the eigenvalues of S we substitute (T3.103) in (T3.91) and we
re-write the spectral equation:

λωe
iωx =

Z
R
S (x, x+ z) eiω(x+z)dz = eiωx

Z
R
S (x, x+ z) eiωzdz (T3.104)

Now recall that S is Toeplitz and thus it is fully determined by its cross-
diagonal section:

S (x, x+ z) = S (0, z) ≡ h (z) , (T3.105)

where h is symmetric around the origin. Therefore we only need to evaluate
(T3.104) at x = 0, which yields:

λω =

Z
R
h (z) eiωzdz (T3.106)

In other words, the eigenvalues as a function of the frequency ω are the Fourier
transform of the cross-diagonal section of the kernel representation (T3.105)
of the operator:

λω = F [h] (ω) (T3.107)

In particular, if
h (z) ≡ σ2e−γ|z| (T3.108)

then

λω = σ2
Z
R
e−γ|z| cos (ωz) dz + iσ2

Z
R
e−γ|z| sin (ωz) dz

= 2σ2
Z +∞

0

e−γz cos (ωz) dz + 0 (T3.109)

=
2σ2γ

γ2 + ω2
.

3.7 Numerical Market Projection

Here we show how to perform the operations (3.65) by means of the fast
Fourier transform in the standard case where analytical results are not avail-
able. The idea draws on Albanese, Jackson, and Wiberg (2003), the proof
relies heavily on Xi Chen’s contribution.
Approximating the probability density function
Consider a random variable X with pdf fX . We approximate the pdf with

a histogram of N bins:
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fX (x) ≈
NX
n=1

fn1∆n
(x) , (T3.110)

The bins ∆1, . . . ,∆N are defined as follows. First of all, we define the bins’
width:

h ≡ 2a
N
, (T3.111)

where a is a large enough real number and N is an even larger integer number.
Now, consider a grid of equally spaced points:

ξ1 ≡ −a+ h

...

ξn ≡ −a+ nh (T3.112)
...

ξN−1 ≡ a− h.

Then for n = 1, . . . , N − 1 we define ∆n as the interval of length h that
surrounds symmetrically the point ξn:

∆n ≡
µ
ξn −

h

2
, ξn +

h

2

¸
. (T3.113)

For n = N we define the interval as follows:

∆N ≡
µ
−a,−a+ h

2

¸
∪
µ
a− h

2
, a

¸
. (T3.114)

This wraps the real line around a circle where the point −a coincides with the
point a.
As far as the coefficients fn in (T3.110) are concerned, for all n = 1, . . . , N

they are defined as follows:

fn ≡
1

h

Z
∆n

f (x) dx. (T3.115)

We collect the discretized pdf values fn into a vector fX .
Approximating the characteristic function
We need to compute the characteristic function:

φX (ω) ≡
Z
R
eiωxfX (x) dx. (T3.116)

Using (T3.110) and

1

h

Z
R
g (x) 1∆n (x) dx ≈ g (−a+ nh) , (T3.117)
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we can approximate the characteristic function as follows:

φX (ω) ≈
NX
n=1

fn

Z
R
eiωx1∆n

(x) dx (T3.118)

≈
NX
n=1

fnhe
iω(−a+nh) =

NX
n=1

fnhe
− 2πi

N
ωa
π (

N
2 −n).

In particular, we can evaluate the approximate characteristic function at
the points:

ωr ≡ − (r − 1)
π

a
, (T3.119)

obtaining:

φX (ωr) ≈
NX
n=1

fnhe
− 2πi

N (r−1)(n−N
2 )

=
NX
n=1

fnhe
− 2πi

N (r−1)neπi(r−1) (T3.120)

= eπi(r−1)he−
2πi
N (r−1)

NX
n=1

fne
− 2πi

N (r−1)ne
2πi
N (r−1)

= eπi(r−1)(1−
2
N )h

NX
n=1

fne
− 2πi

N (r−1)(n−1).

Finally, since N is supposed to be very large we can finally write:

φX (ωr) ≈ eπi(r−1)h
NX
n=1

fne
− 2πi

N (r−1)(n−1). (T3.121)

The discrete Fourier transform
Consider now the discrete Fourier transform (DFT), an invertible matrix

operation f 7→ p which is defined component-wise as follows:

pr (f) ≡
NX
n=1

fne
− 2πi

N (r−1)(n−1). (T3.122)

Its inverse, the inverse discrete Fourier transform (IDFT), is the matrix oper-
ation p 7→ f which is defined component-wise as follows:

fn (p) ≡
1

N

NX
r=1

pre
2πi
N (r−1)(n−1). (T3.123)
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Comparing (T3.121) with (T3.122) we see that the approximate cf is a simple
multiplicative function of the DFT of the discretized pdf f .

φX (ωr) ≈ eπi(r−1)hpr (fX) . (T3.124)

Now consider the random variable:

Y ≡ X1 + · · ·+XT , (T3.125)

where X1, . . . ,XT are i.i.d. copies of X. The cf of Y satisfies the identity
φY ≡ φTX , see (3.64). Therefore

φY (ωr) ≈ eπi(r−1)ThT (pr (fX))
T . (T3.126)

On the other hand, from (T3.124), the relation between the cf φY and the
discrete pdf fY is:

φY (ωr) ≈ eπi(r−1)hpr (fY ) , (T3.127)

Therefore
pr (fY ) ≈ eπi(r−1)(T−1)hT−1 (pr (fX))

T . (T3.128)

The values pr (fY ) can now be fed into the IDFT (T3.123) to yield the dis-
cretized pdf fY of Y as defined in (T3.125).
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Technical appendix to Chapter 4

4.1 Geometric interpretation of nonparametric
estimators

From (A.77) the volume of the ellipsoid Eµ,Σ is proportional to
p
|Σ|. There-

fore, defining Ω ≡ Σ−1, the optimization problem (4.48) becomes:³bµ, bΩ´ ≡ argmin
(µ,Ω)∈C

|Ω| , (T4.1)

where the constraints read:

C1 :
1

T

TX
t=1

(xt − µ)0Ω (xt − µ) = 1. (T4.2)

C2 : Ω symmetric, positive (T4.3)

We solve neglecting C2 and we check later that C2 is satisfied. The Lagrangian
reads:

L ≡ |Ω|− λ

"
1

T

TX
t=1

(xt − µ)0Ω (xt − µ)− 1
#

(T4.4)

The first order condition with respect to µ is

0N×1 =
∂L
∂µ

=
2

T

TX
t=1

Ω (xt − µ) (T4.5)

From which we see that the optimal bµ is the sample mean:
bµ ≡ 1

T

TX
t=1

xt ≡ bE. (T4.6)

As for the first order condition with respect to Ω, we see from (A.125) that if
A is symmetric, then the following identity holds:
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∂ ln |A|
∂A

= A−1. (T4.7)

Therefore

0N×N =
∂L
∂Ω

= Ω−1 − λ

T

TX
t=1

(xt − µ) (xt − µ)0 , (T4.8)

from which we see that the optimal bΩ satisfies
bΩ = Ã λ

T

TX
t=1

(xt − µ) (xt − µ)0
!−1

≡ 1

λ
dCov−1 (T4.9)

To compute the Lagrange multiplier λ we re-write the constraint (T4.2) as
follows:

1 = tr
hbΩdCovi = tr ∙ 1

λ
IN

¸
=

N

λ
, (T4.10)

from which λ = N .
To prove (4.53) we simply write the first order conditions, which read:

0N×K =
TX
t=1

−
³
xt − bBft´ f 0t . (T4.11)

The solution to this set of equations are the OLS factor loadings (4.52)

4.2 MLE estimators for elliptic variables

Location and dispersion

First of all we need two general results. Define

M2
t ≡ (xt − µ)

0
Ω (xt − µ) , (T4.12)

where Ω is a positive symmetric matrix and µ any vector. It is easy to check
the following:

∂M2
t

∂µ
= −2Ω (xt − µ) (T4.13)

∂M2
t

∂Ω
= (xt − µ) (xt − µ)0 (T4.14)

Now assume that the distribution of the invariants is elliptical:

X ∼ El (µ,Σ, g) , (T4.15)

To compute the MLE estimators bµ [iT ] and bΣ [iT ] we have to maximize the
likelihood function (4.66) over the following parameter set
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Θ ≡ RN × {symmetric, positive, N ×N matrices} . (T4.16)

First of all it is equivalent, though easier, to maximize the logarithm of the
likelihood function. Secondly we neglect the constraint that µ and Σ lie in Θ
and verify ex-post that the unconstrained solution belongs to Θ. Third, it is
easier to compute the ML estimators of µ and Ω ≡ Σ−1. The MLE estimator
of Σ is simply the inverse of the estimator of Ω by the invariance property
(4.70) of the ML estimators.
From (4.74) the log-likelihood reads:

ln (fθ (iT )) =
TX
t=1

ln fθ (xt) (T4.17)

=
T

2
ln |det (Ω)|+

TX
t=1

ln
£
g
¡
M2

t

¢¤
.

The first order conditions with respect to µ read:

0N×1 =
∂

∂µ
[ln (fθ (iT ))] (T4.18)

=
∂

∂µ

"
TX
t=1

ln fθ (xt)

#

=
∂

∂µ

"
TX
t=1

ln
£
g
¡
M2

t

¢¤#

=
TX
t=1

g0
¡
M2

t

¢
g (M2

t )

∂M2
t

∂µ
=

TX
t=1

wtΩ (xt − µ) ,

where we used (T4.13) and we defined:

wt ≡ −2
g0
¡
M2

t

¢
g (M2

t )
. (T4.19)

The solution to this equations is

bµ = PT
t=1wtxtPT
s=1ws

. (T4.20)

The first order conditions with respect to Ω reads

0N×N =
∂ ln (fθ (iT ))

∂Ω
=

∂
PT

t=1 ln fθ (xt)

∂Ω
(T4.21)

=
T

2

∂ ln |det (Ω)|
∂Ω

+
TX
t=1

g0
¡
M2

t

¢
g (M2

t )

∂M2
t

∂Ω

=
T

2
Ω−1 − 1

2

TX
t=1

wt (xt − µ) (xt − µ)0 ,
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where in the last row we used (T4.14) and the fact that from (A.125) for a
symmetric matrix Ω we have:

∂ ln |Ω|
∂Ω

= Ω−1. (T4.22)

Thus the solution to (T4.21) reads:

bΣ ≡ bΩ−1 = 1

T

TX
t=1

wt (xt − µ) (xt − µ)0 (T4.23)

This matrix is symmetric and positive definite, and thus the unconstrained
optimization is correct.

Explicit factors

Consider the following linear model with explicit-factors for the invariants:

X ≡ Bf +U. (T4.24)

Assume that the conditional distribution of the perturbations is elliptical:

Ut|ft ∼ El (0,Σ, g) . (T4.25)

From the property (2.270) of elliptical distribution this implies that the con-
ditional distribution of the invariants is elliptical with the same density gen-
erator

Xt|ft ∼ El (Bf t,Σ, g) . (T4.26)

To compute the MLE estimators bB [iT ] and bΣ [iT ], we proceed as for the
location-dispersion parameters. We define Ω ≡ Σ−1 and we maximize the
log-likelihood function:

ln (fθ (iT )) ≡
T

2
ln |det (Ω)|+

TX
t=1

ln
£
g
¡
M2

t

¢¤
, (T4.27)

where
M2

t ≡ (xt −Bf t)
0Ω (xt −Bf t) . (T4.28)

The first order conditions with respect to B read

0N×K =
∂

∂B
[ln (fθ (iT ))] (T4.29)

=
TX
t=1

g0
¡
M2

t

¢
g (M2

t )

∂M2
t

∂B

=
TX
t=1

wtΩ (xt −Bf t) f 0t ,
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where

wt ≡ −2
g0
¡
M2

t

¢
g (M2

t )
. (T4.30)

The solution to (T4.29) reads:

B =

"
TX
t=1

wtxtf
0
t

#"
TX
t=1

wtftf
0
t

#−1
(T4.31)

The first order conditions with respect to Ω follow like (T4.21) and yield
(4.93).

4.3 MLE estimators of location-dispersion (normal case)

Independence of sample mean and sample covariance

Assume:
Xt ∼ N(µ,Σ) . (T4.32)

Consider the following variables:

bµ ≡ 1

T

TX
t=1

Xt

U1 ≡ X1 − bµ (T4.33)
...

UT ≡ XT − bµ
The joint characteristic function of {U1, . . . ,UT , bµ} reads:

φ ≡ φU1,...,UT ,µ (ω1, . . . ,ωT , τ )

= E
n
ei(

T
t=1 ω

0
tUt+τ

0µ)
o

(T4.34)

= E
n
ei[

T
t=1 ω

0
t(Xt− 1

T
T
s=1Xs)+τ 0( 1T

T
t=1Xt)]

o
= E

n
ei(

T
t=1(ωt+ τ

T −
1
T

T
s=1 ωs)

0
Xt)
o

From the independence of the invariants we can factor the characteristic func-
tion as follows:

φ =
TY
t=1

E
n
ei(ωt+

τ
T −

1
T

T
s=1 ωs)

0
Xt

o
(T4.35)

=
TY
t=1

φXt

Ã
ωt −

1

T

TX
s=1

ωs +
τ

T

!
.
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Since Xt is normal (T4.32), from (2.157) we have

φXt
(ω) = eiµ

0ω− 1
2ω

0Σω. (T4.36)

Therefore:

φ = ei
T
t=1 µ

0(ωt− 1
T

T
s=1 ωs+

τ
T ) (T4.37)

e
T
t=1− 1

2(ωt−
1
T

T
s=1 ωs+

τ
T )

0
Σ(ωt− 1

T
T
s=1 ωs+

τ
T )

In the last expression a few terms simplify:
TX
t=1

µ0

Ã
ωt −

1

T

TX
s=1

ωs +
τ

T

!
= µ0τ (T4.38)

TX
t=1

Ã
ωt −

1

T

TX
s=1

ωs

!0
Σ
τ

T
= 0.

Therefore the joint characteristic function factors into the following product:

φU1,...,UT ,µ (ω1, . . . ,ωT , τ ) = ψ (ω1, . . . ,ωT )χ (τ ) , (T4.39)

where

ψ (ω1, . . . ,ωT ) ≡ e − 1
2(ωt−

1
T

T
s=1 ωs)

0
Σ(ωt− 1

T
T
s=1 ωs) (T4.40)

χ (τ ) ≡ eiµ
0τ− 1

2T τ
0Στ .

This proves the variables {U1, . . . ,UT } and bµ are independent. In particular
the sample covariance matrix

bΣ ≡ 1

T

TX
t=1

UtU
0
t (T4.41)

is independent of bµ.
Distribution and estimation error of the sample mean

From (T4.32) we obtain:

bµ− µ ∼ Nµ0, Σ
T

¶
, (T4.42)

and thus from (2.222) and (2.223):

(bµ− µ) (bµ− µ)0 ∼Wµ
1,
Σ

T

¶
. (T4.43)

Therefore from (2.227) the estimation error reads:

Err {bµ,µ} ≡ E©(bµ− µ)0 (bµ− µ)ª (T4.44)

= tr
¡
E
©
(bµ− µ) (bµ− µ)0ª¢

=
1

T
tr (Σ)
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Distribution and estimation error of the sample covariance

First of all we notice that the estimator of the covariance of X is the same as
the estimator of the covariance of Y ≡ X+ b for any b. Indeed defining

bν ≡ 1

T

TX
t=1

Yt (T4.45)

we easily verify that bµ = bν + b (T4.46)

and thus:

bΣY ≡ 1

T

TX
t=1

(Yt − bν) (Yt − bν) (T4.47)

=
1

T

TX
t=1

(Xt + b− (bµ+ b)) (Xt + b− (bµ+ b))0
=
1

T

TX
t=1

(Xt − bµ) (Xt − bµ)0
≡ bΣX

Therefore we can assume here that µ ≡ 0 in (T4.32).
Consider

W ≡ T bΣ+ T bµbµ0 (T4.48)

=
TX
t=1

XtX
0
t,

where the last equality follows from substitution of the definitions (T4.33)
and (T4.41) in (T4.48). From the above proved independence of bΣ and bµ
the characteristic function of W must be the product of the characteristic
function of T bΣ and the characteristic function of T bµbµ0. Therefore

φTΣ (Ω) =
φW (Ω)

φTµµ0 (Ω)
(T4.49)

On the one hand from (T4.32) and (2.223) we obtain that W is Wishart
distributed with the following parameters:

W ∼W(T,Σ) , (T4.50)

and thus from (2.226) its characteristic function reads:

φW (Ω) =
1

|I− 2iΣΩ|T/2
(T4.51)
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On the other hand, the characteristic function of T bµbµ0 reads:
φTµµ0 (Ω) ≡ E

n
ei tr([Tµµ

0]Ω)
o

= E
n
ei tr(µµ

0[TΩ])
o

(T4.52)

= φµµ0 (TΩ) =
1

|I− 2iΣΩ|1/2

Substituting (T4.51) and (T4.52) in (T4.49) we obtain

φTΣ (Ω) =
1

|I− 2iΣΩ|(T−1)/2
(T4.53)

which from (2.226) shows that

T bΣ ∼W(T − 1,Σ) . (T4.54)

In particular:

E
nbΣ [IT ]o−Σ = 1

T
E
n
T bΣ [IT ]o−Σ (T4.55)

=
T − 1
T
Σ−Σ

= − 1
T
Σ

Therefore the bias reads:

Bias2
³bΣ,Σ´ ≡ tr½³EnbΣ [IT ]o−Σ´2¾ (T4.56)

=
1

T 2
tr
©
Σ2
ª

As for the error, from its definition we obtain:

Err2µ,Σ

³bΣ,Σ´ ≡ E½tr ∙³bΣ [IT ]−Σ´2¸¾ (T4.57)

E

(X
m,n

[Σ [IT ]−Σ]mn

hbΣ [IT ]−Σi
nm

)
X
m,n

E

½hbΣ [IT ]−Σi2
mn

¾
=
X
m,n

E

½³ bΣmn −Σmn

´2¾
=
X
m,n

Err2µ,Σ

³ bΣmn, Σmn

´
=
X
m,n

h
Bias2µ,Σ

³ bΣmn, Σmn

´
+ Inef2µ,Σ

³ bΣmn

´i
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using (4.106) and (4.107) this becomes

Err2µ,Σ

³bΣ,Σ´ =X
m,n

µ
1

T 2
Σ2
mn +

T − 1
T 2

ΣmmΣnn +
T − 1
T 2

Σ2
mn

¶
=
1

T

X
m,n

Σ2
mn +

T − 1
T 2

X
m,n

ΣmmΣnn (T4.58)

=
1

T

µ
tr
¡
Σ2
¢
+

µ
1− 1

T

¶
[tr (Σ)]2

¶

4.4 MLE estimators of factor loadings (normal case)

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
We make the i.i.d. normal hypothesis:

Xt|ft ∼ N(Bf t,Σ) . (T4.59)

Notice that in the spirit of explicit factors models, the dependent variables Xt

are random variables, whereas the factors ft are considered observed numbers.
In other words, we derive all the distributions conditioned on knowledge of
the factors.
We derive here the joint distribution of the sample factor loadingsbB ≡ bΣXF

bΣ−1F , (T4.60)

where bΣXF ≡
1

T

TX
t=1

Xtf
0
t ,

bΣF ≡
1

T

TX
t=1

ftf
0
t ; (T4.61)

and the sample covariance

bΣ ≡ 1

T

TX
t=1

³
Xt − bBft´³Xt − bBft´0 . (T4.62)

Notice that the invariants X are random variables, whereas the factors f are
not.
From the normal hypothesis (T4.59) the joint pdf of the time series

IT ≡ {X1, . . . ,XT |f1, . . . , fT } (T4.63)

in terms of the factor loadings B and the dispersion parameter Ω ≡ Σ−1
reads:

f (iT ) = γ1 |Ω|
T
2 e−

1
2

T
t=1(xt−Bf t)

0Ω(xt−Bf t) (T4.64)

= γ1 |Ω|
T
2 e−

1
2 tr{Ω T

t=1(xt−Bft)(xt−Bft)
0}.
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The term in curly brackets can be written as

{· · · } = ΩA, (T4.65)

where:

A ≡
TX
t=1

(xt −Bf t) (xt −Bf t)0 (T4.66)

=
TX
t=1

h³
xt − bBft´+ ³bBft −Bf t´i h³xt − bBft´+ ³bBft −Bf t´i0

=
TX
t=1

³
xt − bBft´³xt − bBft´0 + ³bB−B´Ã TX

t=1

ftft

!³bB−B´0
+

TX
t=1

³
xt − bBft´³bBft −Bf t´0

T bΣ+ ³bB−B´T bΣF

³bB−B´0 + 0.
In this expression the last term vanishes, since:

TX
t=1

³
xt − bBft´³bBft −Bf t´0 = TX

t=1

xtf
0
t
bB0 + TX

t=1

bBftf 0tB0 (T4.67)

−
TX
t=1

xtf
0
tB

0 −
TX
t=1

bBftf 0t bB0
= T bΣXF

bB0 + bBT bΣFB
0 − T bΣXFB

0 − T bBbΣF
bB0

= T bΣXF
bΣ−1F bΣ0XF + T bΣXFB

0

−T bΣXFB
0 − T bΣXF

bΣ−1F bΣ0XF

= 0

Substituting (T4.66) in the curly brackets (T4.65) in (T4.64) we obtain

f (iT ) = γ1 |Ω|
T
2 e−

1
2 tr{TΩ[Σ+(B−B)ΣF (B−B)0]} (T4.68)

We can factor the above expression as follows:

f (iT ) = f
³
iT |bB, T bΣ´ f ³bB, T bΣ´ (T4.69)

where

f
³
iT |bB, T bΣ´ ≡ γ2

¯̄̄ bΣ¯̄̄−T−K−N−1
2

(T4.70)

and f
³bB, T bΣ´ factors as follows:
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f
³bB, T bΣ´ = f

³bB´ f ³T bΣ´ , (T4.71)

where

f
³bB´ ≡ γ2 |TΩ|

K
2

¯̄̄ bΣF

¯̄̄N
2

e−
1
2 tr{(TΩ)(B−B)ΣF (B−B)0} (T4.72)

and

f
³
T bΣ´ ≡ γ3 |Ω|

T−K
2

¯̄̄
T bΣ¯̄̄T−K−N−12

e−
1
2 tr(ΩTΣ). (T4.73)

Expression (T4.72) is of the form (2.182). Therefore the OLS factor loadings
are have a matrix-valued normal distribution:bB ∼ N³B, (TΩ)−1 , bΣ−1F ´

. (T4.74)

Since Ω ≡ Σ−1 this means:

bB ∼ NµB, Σ
T
, bΣ−1F ¶

. (T4.75)

Also, expression (T4.73) is the pdf (2.224) of a Wishart distribution, and thus:

T bΣ ∼W(T −K,Σ) . (T4.76)

Finally, from the factorization (T4.71) we see that T bΣ, and thus bΣ, is inde-
pendent of bB.
4.5 Shrinkage estimator of location

First we prove Stein’s lemma. Consider an N -dimensional normal variable

X ∼ N(µ, IN ) , (T4.77)

where IN is the N -dimensional identity matrix. Consider a smooth function
of N variables g. Then

E {g (X) (Xn − µn)} = E
½
∂g (X)

∂xn

¾
(T4.78)

From the definition of expected value for a normal distribution we have:

E {g (X) (Xn − µn)} =
Z
RN

g (x1, . . . , xn, . . . , xN ) (xn − µn)

(2π)−
N
2 e−

1
2 k(xk−µk)

2

dx (T4.79)

=

Z +∞

−∞
(xn − µn)G (xn)

e−
(xn−µn)2

2

√
2π

dxn,
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where we defined G as follows:

G (x) ≡
Z
RN−1

g (x1, . . . , x, . . . , xN ) (T4.80)

(2π)
−N−1

2 e−
1
2 k 6=n(xk−µk)

2

dx1 · · · dxn−1dxn+1 · · · dxN .

Notice that

dG (x) ≡
Z
RN−1

∂g (x)

∂xn
(2π)

−N−1
2 e−

1
2 k 6=n(xk−µk)

2

dx. (T4.81)

Replacing the variables in the integral (T4.79) as follows:

u ≡ G (xn) (T4.82)

v ≡ −e−
(xn−µn)2

2 , (T4.83)

we get

E {g (X) (Xn − θn)} =
1√
2π

Z +∞

−∞
udv (T4.84)

=
1√
2π

µ
uv|+∞−∞ −

Z +∞

−∞
vdu

¶
The first term vanishes. Replacing (T4.82) and (T4.83) in the second term
and using (T4.81) we obtain:

E {g (X) (Xn − θn)} = −
1√
2π

Z +∞

−∞
−e−

(xn−µn)2
2 (T4.85)Z

RN−1

∂g (x)

∂xn
(2π)−

N−1
2 e−

1
2 k 6=n(xk−µk)

2

dx

=

Z
RN

∂g (x)

∂xn
(2π)

−N
2 e−

1
2 k(xk−µk)

2

dx

= E

½
∂g (X)

∂xn

¾
and the result follows.

Consider now a set of T i.i.d. multivariate normal random variables

Xt ∼ N(µ,Σ) , (T4.86)

where the dimension of each random variable is:

N > 2. (T4.87)

Consider the following shrinkage estimator
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bδa ≡ µ1− a

(bµ− b)0 (bµ− b)
¶ bµ+ a

(bµ− b)0 (bµ− b)b, (T4.88)

where bµ is the sample mean
bµ ≡ 1

T

X
t

Xt ∼ N
µ
µ,
Σ

T

¶
; (T4.89)

where b is any constant vector; and where a is any scalar such that:

0 < a <
2

T
(tr (Σ)− 2λ1) , (T4.90)

where λ1 is the largest eigenvalue of the matrix Σ.
From the definition (4.134) of error, we have:

[Err (δ,µ)]2 = E
©
[δ − µ]0 [δ − µ]

ª
(T4.91)

= E

(∙bµ− µ− a (bµ− b)
(bµ− b)0 (bµ− b)

¸0 ∙bµ− µ− a (bµ− b)
(bµ− b)0 (bµ− b)

¸)

= [Err (bµ,µ)]2 + a2 E

½
1

(bµ− b)0 (bµ− b)
¾

−2aE
½
(bµ− b)0 (bµ− µ)
(bµ− b)0 (bµ− b)

¾
We proceed now to simplify the expression of the last expectation in (T4.91).
Consider the principal component decomposition (A.70) of the matrix Σ in
(T4.89):

Σ ≡ EΛE0 (T4.92)

and define the following vector of independent normal variables:

Y ≡
√
TΛ−

1
2E0bµ ∼ N(ν, I) , (T4.93)

where
ν ≡
√
TΛ−

1
2E0µ, c ≡

√
TΛ−

1
2E0b (T4.94)

Then the term in curly brackets in the last expectation in (T4.91) reads:

(bµ− b)0 (bµ− µ)
(bµ− b)0 (bµ− b) =

h√
TΛ−

1
2E0 (bµ− b)i0Λ h√TΛ− 1

2E0 (bµ− µ)ih√
TΛ−

1
2E0 (bµ− b)i0Λ h√TΛ− 1

2E0 (bµ− b)i
=
(Y − c)0Λ (Y − ν)
(Y − c)0Λ (Y − c)

(T4.95)

=
NX
j=1

gj (Y) (Yj − νj) ,
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where

gj (y) ≡
(Yj − cj)λj

(y − c)0Λ (y − c)
. (T4.96)

Applying the rules of calculus we compute:

∂gj (y)

∂yj
=

λj

(y− c)0Λ (y− c)
(T4.97)

+(yj − cj)λj
d

dyj

1

(y− c)0Λ (y− c)

=
λj

(y− c)0Λ (y− c)
−

2λ2j (y − cj)
2£

(y− c)0Λ (y− c)
¤2

=
λj (y− c)0Λ (y − c)− 2λ2j (y − cj)

2£
(y− c)0Λ (y− c)

¤2 ,

Therefore, using Stein’s lemma (T4.78), we obtain for the last expectation in
(T4.91):

E

½
(bµ− b)0 (bµ− µ)
(bµ− b)0 (bµ− b)

¾
=

NX
j=1

E {gj (Y) (Yj − νj)}

=
NX
j=1

E

½
∂gj (Y)

∂yj

¾
(T4.98)

=
NX
j=1

E

(
λj (Y − c)0Λ (Y − c)− 2λ2j (Yj − cj)

2£
(Y − c)0Λ (Y − c)

¤2
)

= E

(
tr (Λ)

(Y − c)0Λ (Y − c)
− 2 (Y − c)

0ΛΛ (Y − c)£
(Y − c)0Λ (Y − c)

¤2
)

Since from the definitions (T4.93)-(T4.94) we obtain

Y − c =
√
TΛ−

1
2E0 (bµ− b) , (T4.99)

we can simplify (T4.98) as follows:

E

½
(bµ− b)0 (bµ− µ)
(bµ− b)0 (bµ− b)

¾
= E

½
tr (Λ)

T

1

(bµ− b)0 (bµ− b) (T4.100)

− 2(bµ− b)EΛ 1
2Λ

1
2E0 (bµ− b)£

(bµ− b)0 (bµ− b)¤2
)

= E

½
1

(bµ− b)0 (bµ− b)
µ
Nλ

T
− 2

T

(bµ− b)Σ (bµ− b)
(bµ− b)0 (bµ− b)

¶¾
,

where
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λ ≡ tr (Λ)
N

(T4.101)

is the average of the eigenvalues.
From the relation (A.68) on the largest eigenvalue λ1 in (T4.92) we obtain:

(bµ− b)Σ (bµ− b)
(bµ− b)0 (bµ− b) ≤ λ1. (T4.102)

Therefore, substituting (T4.100) in (T4.91), using (T4.102) and recalling
(T4.90) we obtain the following relation for the error:

[Err (δ,µ)]
2
= [Err (bµ,µ)]2 +E½ a

(bµ− b)0 (bµ− b) (T4.103)µ
a− 2N

T
λ+

4

T

(bµ− b)Σ (bµ− b)
(bµ− b)0 (bµ− b)

¶¾
≤ [Err (bµ,µ)]2 +E(a

¡
a− 2

T

¡
Nλ− 2λ1

¢¢
(bµ− b)0 (bµ− b)

)
≤ [Err (bµ,µ)]2

In particular, the lowest upper bound is reached at

a ≡ 1

T

¡
Nλ− 2λ1

¢
. (T4.104)

4.6 Shrinkage estimator of covariance

The number of non-zero eigenvalues of the sample covariance bΣ is its rank.
Thus we want to prove:

rank
³bΣ´ < T (T4.105)

we re-write the definition of the sample covariance as follows

bΣ = 1

T
X0
T×N

µ
IT −

1

T
1T1

0
T

¶
XT×N , (T4.106)

where XT×N is the matrix of past observations, I is the identity matrix and 1
is a vector of ones. From this expression and the property (A.22) of the rank
operator we obtain

rank
³bΣ´ ≤ rankµIT − 1

T
1T1

0
T

¶
= T − 1. (T4.107)

We denote as λn (S) the n-th eigenvalue of the symmetric and positive
matrix S. We want to prove:
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λN

³bΣS
´

λ1

³bΣS
´ >

λN

³bΣ´
λ1

³bΣ´ . (T4.108)

We notice that the highest eigenvalue of the shrinkage estimator satisfies

λ1

³bΣS
´
< λ1

³bΣ´ . (T4.109)

To show this, we first prove that for arbitrary positive symmetric matrices A
and B and positive number α and β we have

λ1 (αA+ βB) ≤ αλ1 (A) + βλ1 (B) . (T4.110)

This is true because from (A.68) the largest eigenvalue of a matrix A satisfies:

λ1 (αA+ βB) = max
v0v=1

v0 (αA+ βB)v (T4.111)

≤ α max
v0v=1

v0Av+ β max
v0v=1

v0Bv

= αλ1 (A) + βλ1 (B)

Therefore

λ1

³bΣS
´
≡ λ1

³
(1− α) bΣ+ αbC´ (T4.112)

≤ (1− α)λ1

³bΣ´+ αλ1

³bC´
= λ1

³bΣ´− α
h
λ1

³bΣ´− λ1

³bC´i < λ1

³bΣ´ ,
where the last inequality follows from:

λ1

³bΣ´ > λ1

³bC´ ≡ 1

N

NX
n=1

λn

³bΣ´ . (T4.113)

Similarly for the least eigenvalue we have

λN

³bΣS
´
> λN

³bΣ´ , (T4.114)

which follows from the above argument and the reverse identities (A.69) and

λN

³bΣ´ < λN

³bC´ ≡ 1

N

NX
n=1

λn

³bΣ´ . (T4.115)

4.7 Influence functions of common estimators

Estimators as implicit functionals

Consider the estimator eθ [fiT ], which is an implicit functional of the empirical
pdf fiT defined by the following equation:
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0 =

Z
RN

ψ
³
x, eθ [h]´h (x) dx. (T4.116)

where h is a generic function. We consider the function h� ≡ (1− �) fX+�δ
(y).

Deriving in zero (T4.116) with respect to � we obtain

0 =
d

d�

¯̄̄̄
�=0

Z
RN

ψ
³
x, eθ [h�]´ h(1− �) fX (x) + �δ(y) (x)

i
dx

=

Z
RN

∂ψ (x,θ)

∂θ

¯̄̄̄
θ[fX]

deθ [h�]
d�

¯̄̄̄
¯
�=0

fX (x) dx (T4.117)

+

Z
RN

ψ
³
x, eθ [fX]´ h−fX (x) + δ(y) (x)

i
dx

=

Z
RN

∂ψ (x,θ)

∂θ

¯̄̄̄
θ[fX]

f (x) dx
deθ [h�]
d�

¯̄̄̄
¯
�=0

+ψ
³
y, eθ [fX]´

On the other hand, from the definition (4.185) of influence function we obtain:

IF
³
y, fX, bθ´ ≡ lim

�→0

1

�

³eθ [h�]− eθ [h0]´ = deθ [h�]
d�

¯̄̄̄
¯
0

. (T4.118)

Therefore

IF
³
y, fX, bθ´ = −"Z

RN

∂ψ (x,θ)

∂θ

¯̄̄̄
θ[fX]

f (x) dx

#−1
ψ
³
y, eθ [fX]´ .

(T4.119)

Estimators as explicit functionals

Sample estimators of the unknown quantity G [fX] are by definition explicit
functionals of the empirical pdf:eG [fiT ] ≡ G [fiT ] . (T4.120)

Therefore from its defintion (4.185) the influence function reads:

IF
³
y, fX, bG´ ≡ lim

�→0

1

�

³
G
h
(1− �) fX + �δ(y)

i
−G [fX]

´
, (T4.121)

where y is an arbitrary point. Now consider the function:

h� ≡ (1− �) fX + �δ(y). (T4.122)

The influence function can be written:

IF
³
y, fX, bG´ ≡ lim

�→0

1

�
(G [h�]−G [h0]) =

dG [h�]

d�

¯̄̄̄
0

. (T4.123)
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• Sample mean

Consider the functional associated with the sample mean bµ, which reads:
eµ [h] ≡ Z

RN
xh (x) dx. (T4.124)

From (T4.123) the influence function reads:

IF (y, f, bµ) ≡ deµ [h�]
d�

¯̄̄̄
0

. (T4.125)

First we compute:

eµ [h�] ≡ Z
RN
xh� (x) dx (T4.126)

=

Z
RN
x
³
(1− �) f (x) + �δ(y) (x)

´
dx

= (1− �)

Z
RN
xf (x) dx+ �y

= E {X}+ � (−E {X}+ y) .

From this and (T4.125) we derive:

IF (y, f, bµ) = −E {X}+ y. (T4.127)

• Sample covariance

Consider the fucntional associated with the sample covariance bΣ, which
reads: eΣ [h] ≡ Z

RN
(x− eµ [h]) (x− eµ [h])0 h (x) dx. (T4.128)

From (T4.123) the influence function reads:

IF
³
y, f, bΣ´ ≡ lim

�→0

1

�

³eΣ [h�]− eΣ [h0]´ = deΣ [h�]
d�

¯̄̄̄
¯
0

. (T4.129)

First we compute:

eΣ [h�] ≡ Z
RN
(x− eµ [h�]) (x− eµ [h�])0 h� (x) dx (T4.130)

=

Z
RN
(x− eµ [h�]) (x− eµ [h�])0 ³(1− �) f (x) + �δ(y) (x)

´
dx

= (1− �)

Z
RN
(x− eµ [h�]) (x− eµ [h�])0 f (x) dx

+� (y− eµ [h�]) (y − eµ [h�])0
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Deriving this expression with respect to � we obtain:

IF
³
y, f, bΣ´ = deΣ [h�]

d�

¯̄̄̄
¯
0

(T4.131)

= −
Z
RN
(x− eµ [h0]) (x− eµ [h0])0 f (x) dx

+(1− 0)
Z
RN

d

d�

¯̄̄̄
0

(x− eµ [h�]) (x− eµ [h�])0 f (x) dx
+(y − eµ [h0]) (y− eµ [h0])0
+0× d

d�

¯̄̄̄
0

(y− eµ [h�]) (y− eµ [h�])0
Using eµ [h0] = E {X} this means:

IF
³
y, f, bΣ´ = −Cov {X} (T4.132)

−
Z
RN
2
deµ [h�]
d�

¯̄̄̄
0

(x− E {X}) f (x) dx

+(y− E {X}) (y − E {X})0

Now using (T4.127) we obtain:

IF
³
y, f, bΣ´ = −Cov {X} (T4.133)

−2
Z
RN
(y − E {X}) (x− E {X})0 f (x) dx

+(y− E {X}) (y− E {X})0

The term in the middle is null:

Z ≡
Z
RN
(y− E {X}) (x− E {X})0 f (x) dx (T4.134)

= y

Z
RN
(x− E {X})0 f (x) dx− E {X}

Z
RN
(x− E {X})0 f (x) dx

= 0

Therefore:

IF
³
y, f, bΣ´ = −Cov {X}+ (y− E {X}) (y− E {X})0 (T4.135)

• OLS factor loadings

For the OLS factor loadings bB define z ≡ (x, f) the set of invariants and
factors. We have

G [fZ] =

∙Z
xf 0fZ (z) dz

¸ ∙Z
ff 0fZ (z) dz

¸−1
(T4.136)
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Consider a point w ≡
³ex,ef´. We have:

G
h
fZ + �

³
δ(w) − fZ

´i
= (A+ �B) (C+ �D)−1 , (T4.137)

where

A ≡
Z
xf 0fZdz = E

©
XF0

ª
(T4.138)

B ≡
Z
xf 0

³
δ(w) − fZ

´
dz = exef 0 − E©XF0ª

C ≡
Z
ff 0fZdz = E

©
FF0

ª
D ≡

Z
ff 0
³
δ(w) − fZ

´
dz = efef 0 − E©FF0ª

Since

(C+ �D)
−1
=
¡
C
¡
I+ �C−1D

¢¢−1
(T4.139)

=
¡
I+ �C−1D

¢−1
C−1

≈
¡
I− �C−1D

¢
C−1

we have

G
h
fZ + �

³
δ(w) − fZ

´i
≈ (A+ �B)

¡
C−1 − �C−1DC−1

¢
(T4.140)

≈ AC−1 + �
¡
BC−1 −AC−1DC−1

¢
.

Therefore

IF
³
y, fX, bB´ = lim

�→0

1

�

³
G
h
fZ + �

³
δ(w) − fZ

´i
−G [fZ]

´
=
¡
BC−1 −AC−1DC−1

¢
(T4.141)

=
hexef 0 − E©XF0ªiE©FF0ª−1
−E

©
XF0

ª
E
©
FF0

ª−1 hefef 0 − E©FF0ªiE©FF0ª−1
=
³exef 0 −Befef 0´E©FF0ª−1

4.8 Missing data: the E-M algorithm

Suppose we are at step u. The invariants are normally distributed with the
following parameters:

Xt ∼ N
³
µ(u),Σ(u)

´
(T4.142)
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Consider the first non-central moment of Xt conditional on the observa-
tions:

µ
(u)
t,n ≡ E

n
Xt,n|xt,obs(t),µ(u),Σ(u)

o
. (T4.143)

From (2.165), for the observed values we have:

µ
(u)
t,obs(t) = xt,obs(t); (T4.144)

and for the missing values we have:

µ
(u)
t,mis(t) = µ

(u)
mis(t) (T4.145)

+Σ
(u)
mis(t),obs(t)

³
Σ
(u)
obs(t),obs(t)

´−1 ³
xt,obs(t) − µ(u)obs(t)

´
.

Consider now the second non-central conditional moment:

S
(u)
t ≡ E

n
XtX

0
t|xt,obs(t),µ(u),Σ(u)

o
(T4.146)

This matrix consists of three sub-components:

S
(u)
t,obs(t),obs(t) ≡ E

n
Xt,obs(t)X

0
t,obs(t)|xt,obs(t),µ(u),Σ(u)

o
(T4.147)

= xt,obs(t)x
0
t,obs(t) =

h
µ
(u)
t,obs(t)

i h
µ
(u)
t,obs(t)

i0
;

S
(u)
t,mis(t),obs(t) ≡ E

n
Xt,mis(t)X

0
t,obs(t)|xt,obs(t),µ(u),Σ(u)

o
(T4.148)

= E
n
Xt,mis(t)|xt,obs(t),µ(u),Σ(u)

o
x0t,obs(t)

= µ
(u)
t,mis(t)x

0
t,obs(t) =

h
µ
(u)
t,mis(t)

i h
µ
(u)
t,obs(t)

i0
;

and

S
(u)
t,mis(t),mis(t) ≡ E

n
Xt,mis(t)X

0
t,mis(t)|xt,obs(t),µ(u),Σ(u)

o
(T4.149)

= E
n
Xt,mis(t)|xt,obs(t),µ(u),Σ(u)

o
E
n
Xt,mis(t)|xt,obs(t),µ(u),Σ(u)

o0
+Cov

n
Xt,mis(t)|xt,obs(t),µ(u),Σ(u)

o
=
h
µ
(u)
t,mis(t)

i h
µ
(u)
t,mis(t)

i0
+Σ

(u)
mis(t),mis(t)

−Σ(u)mis(t),obs(t)
³
Σ
(u)
obs(t),obs(t)

´−1
Σ
(u)
obs(t),mis(t).

In other words, defining the matrix C as

C
(u)
t,obs(t),mis(t) = 0, C

(u)
t,obs(t),obs(t) = 0, (T4.150)
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and otherwise

C
(u)
t,mis(t),mis(t) = Σ

(u)
mis(t),mis(t) (T4.151)

−Σ(u)mis(t),obs(t)
³
Σ
(u)
obs(t),obs(t)

´−1
Σ
(u)
obs(t),mis(t),

we can write
S
(u)
t =

h
µ
(u)
t

i h
µ
(u)
t

i0
+C

(u)
t (T4.152)

Now we can update the estimate of the unconditional first moment as the
sample mean of the conditional first moments:

µ(u+1) ≡ 1

T

TX
t=1

µ
(u)
t . (T4.153)

Similarly we can update the estimate of the unconditional second moment as
the sample mean of the conditional second moments:

S(u+1) ≡ 1

T

TX
t=1

S
(u)
t . (T4.154)

The estimate of the covariance then follows from (T2.94):

Σ(u+1) ≡ S(u+1) −
h
µ(u+1)

i h
µ(u+1)

i0
(T4.155)

≈ S(u+1) −
h
µ(u)

i h
µ(u)

i0
.

From the definition (T4.153) and (T4.154) this is equivalent to

Σ(u+1) ≡ 1

T

TX
t=1

³
µ
(u)
t − µ(u)

´³
µ
(u)
t − µ(u)

´0
+C

(u)
t . (T4.156)

With the above results we obtain the routine described in the text.
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Technical appendix to Chapter 5

5.1 Gamma approximation of the investor’s objective

Consider the generic second-order approximation (3.108) for the N prices of
the securities in terms of the underlying K-dimensional market invariants X,
which we report here:

P
(n)
T+τ ≈ g(n) (0) +X0 ∂xg

(n)
¯̄̄
x=0

+
1

2
X0 ∂2xxg

(n)
¯̄̄
x=0

X, (T5.1)

where n = 1, . . . , N . From (5.11) the market is an invertible affine transfor-
mation of the prices, i.e.

M (n) ≈ an +
NX

m=1

Bnmg
(m) (0) +

NX
m=1

BnmX
0 ∂xg

(m)
¯̄̄
x=0

(T5.2)

+
1

2

NX
m=1

BnmX
0 ∂2xxg

(m)
¯̄̄
x=0

X.

In turn, from (5.10) the objective is a linear combination of the market:

Ψα ≡
NX
n=1

αnM
(n) (T5.3)

≈
NX
n=1

αnan +
NX
n=1

αn

NX
m=1

Bnmg
(m) (0)

+
NX
n=1

αn

NX
m=1

Bnm

h
X0 ∂xg

(m)
¯̄̄
x=0

i
+
1

2

NX
n=1

αn

NX
m=1

Bnm

h
X0 ∂2xxg

(m)
¯̄̄
x=0

X
i
..
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In other words,

Ψα ≈ Ξα ≡ θα +∆
0
αX+

1

2
X0ΓαX, (T5.4)

where

θα ≡
NX
n=1

αnan +
NX

n,m=1

αnBnmg
(m) (0) .

∆α ≡
NX

n,m=1

αnBnm ∂xg
(m)
¯̄̄
x=0

. (T5.5)

Γα ≡
NX

n,m=1

αnBnm ∂2xxg
(m)
¯̄̄
x=0

Assume now that the K-dimensional invariants X be normally distributed
as in (5.29). Then we can compute explicitly the characteristic function of the
approximate objective (T5.4). Defining:

Z ≡ X− µ ∼ N(0,Σ) ,

from (T5.4) we have:

Ξα = θα +∆
0
α (µ+ Z) +

1

2
(µ+ Z)

0
Γα (µ+ Z) (T5.6)

= θα +∆
0
αµ+∆

0
αZ+

1

2
µ0Γαµ+ µ

0ΓαZ+
1

2
Z0ΓαZ

= bα +w
0
αZ+

1

2
Z0ΓαZ

where

bα ≡ θα +∆
0
αµ+

1

2
µ0Γαµ (T5.7)

wα ≡ ∆α + Γαµ (T5.8)

We performing the Cholesky decomposition of the covariance

Σ ≡ BB0 (T5.9)

and the principal component decomposition of the following symmetric ma-
trix:

B0ΓαB = EΛE
0, (T5.10)

where EE0 = I and Λ is the diagonal matrix of the eigenvalues. We define:

C ≡ BE (T5.11)

and we introduce the multivariate standard normal variable
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Y ≡ C−1Z ∼ N
³
0,E0B−1Σ (B0)

−1
E
´
= N(0, IK) . (T5.12)

Finally we define:
δ ≡ C0w. (T5.13)

In these terms and dropping the dependence on α from the notation, (T5.6)
becomes:

Ξα = b+w0CC−1Z+
1

2
Z0 (C0)

−1
C0ΓCC−1Z

= b+ δ0Y +
1

2
YE0B0ΓBEY (T5.14)

= b+ δ0Y +
1

2
YE0EΛE0EY

= b+
KX
k=1

µ
δkYk +

1

2
λkY

2
k

¶
,

As in Feuerverger and Wong (2000), we compute analytically the charac-
teristic function of Ξα:

φΞ (ω) ≡ E
©
eiΞω

ª
(T5.15)

=

Z
RN

e
iω b+ K

k=1 δkyk+
λk
2 y2k f (y) dy

where f is the standard normal density (2.156), which factors into the product
of the marginal densities:

f (y) =
KY
k=1

√
2πe−

1
2y

2
k (T5.16)

Therefore the characteristic function (T5.15) becomes

φΞ (ω) = eiωb
KY
k=1

G (δk, λk) , (T5.17)

where

G (δ, λ) ≡ 1√
2π

Z +∞

−∞
eiω[δy+

λ
2 y

2]e−
y2

2 dy (T5.18)

Since
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iωδy − 1− iωλ

2
y2 = −1− iωλ

2

Ã
y2 − iωδ

1−iωλ
2

y

!

= −1− iωλ

2

"
y − iωδ

21−iωλ2

#2
(T5.19)

+
1− iωλ

2

Ã
iωδ

21−iωλ2

!2

= −1− iωλ

2

∙
y − iωδ

1− iωλ

¸2
− (ωδ)2

2 (1− iωλ)
,

we obtain:

G (δ, λ) =
1√
2π

Z +∞

−∞
e−

1−iωλ
2 [y− iωδ

1−iωλ ]
2− (ωδ)2

2(1−iωλ) dy

=

r
1

1− iωλ
e−

(ωδ)2

2(1−iωλ) (T5.20)Z +∞

−∞

1q
2π

1−iωλ

e−
1−iωλ

2 [y− iωδ
1−iωλ ]

2

dy

=
1√

1− iλω
e−

δ2ω2

2(1−iλω) .

Substituting this back into (T5.17) we finally obtain the expression of the
characteristic function

φΞ (ω) =
eiωbqQK

k=1 (1− iωλk)
e
− 1
2

K
k=1

δ2kω
2

(1−iλkω) (T5.21)

= |IK − iωΛ|−
1
2 eiωbe−

1
2δ

0(I−iωΛ)−1δ

Notice that substituting (T5.10) and (T5.9) we obtain:

|IK − iωΛ| = |E (IK − iωΛ)E0| = |IK − iωB0ΓB|
=
¯̄̄
(B0)

−1
(IK − iωB0ΓB)B0

¯̄̄
D (T5.22)

= |IK − iωΓΣ| .

On the other hand, substituting (T5.13) and (T5.11) we obtain:

δ0 (I− iωΛ)
−1
δ = w0C (IK − iωΛ)

−1
C0w (T5.23)

= w0BE (IK − iωΛ)
−1
E0B0w

= w0B (E (IK − iωΛ)E0)
−1
B0w

Substituting again (T5.10) and (T5.9) this reads:
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δ0 (I− iωΛ)−1 δ = w0B (IK − iωB0ΓB)
−1
B0w (T5.24)

= w0BB0 (B0)
−1
(IK − iωB0ΓB)

−1
B0w

= w0BB0 (B0)
−1
(IK − iωB0ΓB)

−1
B0w

= w0Σ ((IK − iωB0ΓB)B0)
−1
B0w

= w0Σ (B0 − iωB0ΓΣ)
−1
B0w

= w0Σ (IK − iωΓΣ)−1 (B0)
−1
B0w

= w0Σ (IK − iωΓΣ)−1w

Therefore, substituting (T5.22) and (T5.24) in (T5.21) we obtain the charac-
teristic function of the approximate objective:

φΞ (ω) = |IK − iωΓΣ|−
1
2 eiωbe−

1
2w

0Σ(IK−iωΓΣ)−1w. (T5.25)

Finally, substituting (T5.7) and (T5.8) we obtain:

φΞ (ω) = |IK − iωΓΣ|−
1
2 eiω(θ+∆

0µ+ 1
2µ

0Γµ) (T5.26)

e−
1
2 (∆+Γµ)

0Σ(IK−iωΓΣ)−1(∆+Γµ).

To compute the moments of the approximate objective Ξα we use (T1.33).
In order to do this, we write the characteristic function as follows:

φΞα (ω) = v−
1
2 eu, (T5.27)

where

u (ω) ≡ iωb− 1
2
w0Σ (I− iωV)

−1
w (T5.28)

v (ω) ≡ |I− iωV| . (T5.29)

and
V ≡ ΓΣ. (T5.30)

To show how this works we explicitly compute the first three derivatives.
It is easy to implement this approach systematically up to any order with
by programming a software package such as Mathematica

R°
. The first three

derivatives of the characteristic function read:
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φ0Ξ (ω) = −
1

2
v−

3
2 v0eu + v−

1
2 euu0

φ00Ξ (ω) =
3

4
v−

5
2 (v0)

2
eu − 1

2
v−

3
2 v00eu

−v− 3
2 v0euu0 + v−

1
2 eu (u0)

2
+ v−

1
2 euu00

φ000Ξ (ω) = −
15

8
v−

7
2 (v0)

3
eu +

3

4
v−

5
2 2v0v00eu +

3

4
v−

5
2 (v0)

2
euu0 (T5.31)

+
3

4
v−

5
2 v0v00eu − 1

2
v−

3
2 v000eu − 1

2
v−

3
2 v00euu0

+
3

2
v−

5
2 (v0)

2
euu0 − v−

3
2 v00euu0 − v−

3
2 v0eu (u0)

2 − v−
3
2 v0euu00

−1
2
v−

3
2 v0eu (u0)

2
+ v−

1
2 eu (u0)

3
+ 2v−

1
2 euu0u00

−1
2
v−

3
2 v0euu00 + v−

1
2 euu0u00 + v−

1
2 euu000

These expressions depend on the first three derivatives of u and v, which we
obtain by applying the following generic rules that apply for any conformable
matricesM,A,B:

dM−1 (ω)

dω
=M−1

dM (ω)

dω
M−1 (T5.32)

d (AM (ω)B)

dω
= A

d (M (ω))

dω
B (T5.33)

d |A+ ωB|
dω

= |A+ ωB| tr
h
(A+ ωB)

−1
B
i
, (T5.34)

where (T5.32) follows from (A.126), (T5.33) follows from a term by term
expression of the product AMB and (T5.34) follows from (A.124).
Using these formulas in (T5.28) we obtain

u (ω) ≡ iωb− 1
2
w0Σ (I− iωV)

−1
w

u0 (ω) = ib− 1
2
w0Σ (I− iωV)

−1
[−iV] (I− iωV)

−1
w (T5.35)

u00 (ω) = −w0Σ (I− iωV)−1 [−iV] (I− iωV)−1 [−iV] (I− iωV)−1w

u000 (ω) = −3w0Σ (I− iωV)
−1
[−iV] (I− iωV)

−1

[−iV] (I− iωV)
−1
[−iV] (I− iωV)

−1
w

and
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v (ω) ≡ |I− iωΣ|
v (ω)0 = |I+ iωΣ| tr

h
(I+ iωΣ)−1 (iΣ)

i
v00 (ω) = |I+ iωΣ| tr

h
(I+ iωΣ)

−1
(iΣ)

i
tr
h
(I+ iωΣ)

−1
(iΣ)

i
+ |I+ iωΣ| tr

h
(I− iωΣ)−1 (−iΣ) (I− iωΣ)−1 (iΣ)

i
v000 (ω) = |I+ iωΣ|

³
tr
h
(I+ iωΣ)−1 (iΣ)

i´3
(T5.36)

+3 |I+ iωΣ| tr
h
(I+ iωΣ)−1 (iΣ)

i
tr
h
(I− iωΣ)

−1
(−iΣ) (I− iωΣ)

−1
(iΣ)

i
+ |I+ iωΣ| tr

h
(I− iωΣ)−1 [−iΣ] (I− iωΣ)−1 (−iΣ) (I− iωΣ)−1 (iΣ)

+ (I− iωΣ)−1 (−iΣ) (I− iωΣ)−1 [−iΣ] (I− iωΣ)−1 (iΣ)
i

Evaluating these derivatives in ω = 0 we obtain

u ≡ −1
2
w0Σw

u0 = i

µ
b+

1

2
w0ΣVw

¶
(T5.37)

u00 = w0ΣV2w

u000 = −i3w0ΣV3w

and

v ≡ 1
v0 = i tr (V) (T5.38)

v00 = − [tr (V)]2 + tr
¡
V2
¢

v000 = −i [tr (V)]3 + 3i tr (V) tr
¡
V2
¢
− 2i tr

¡
V3
¢

These values must be substituted in (T5.31) to yield the expressions of the
first three non-central moments as in Appendix www.1.6.
For example, the first moment is

E {Ξα} = i−1φ0Ξα (0) = i−1
µ
−1
2
v−

3
2 v0eu + v−

1
2 euu0

¶
(T5.39)

= e−
1
2w

0Σw

µµ
b+

1

2
w0ΣVw

¶
− 1
2
tr (V)

¶
.

Finally, the explicit dependence on allocation comes from substituting in the
final expression (T5.7), (T5.8) and (T5.30).
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5.2 Properties of generic indices of satisfaction

Consistence with weak dominance

We follow a personal communication by D. Tasche to see that estimability
and sensibility imply consistence with weak dominance.
Assume that Ψα weakly dominates Ψβ. From the definition (5.36), this

means that for all u ∈ (0, 1) the following inequality holds:

QΨα (u) ≥ QΨβ (u) . (T5.40)

We want to prove that if S is estimable and sensible, then

S (α) ≥ S (β) . (T5.41)

From the definition of estimability (5.52) the index must be a function of
the distribution of the objective, as represented, say, by the cdf:

S (α) = G [FΨα ] . (T5.42)

From (2.27) the random variable X defined below satisfies has the same dis-
tribution as the objective:

Xα ≡ QΨα (U)
d
= Ψα, U ∼ U([0, 1]) (T5.43)

Therefore both variables share the same cumulative distribution function:

FΨα (ψ) = FXα (ψ) , ψ ∈ R. (T5.44)

Thus
S (α) = G [FΨα ] = G [FXα ] . (T5.45)

A similar result holds for the second allocation:

S (β) = G
£
FΨβ

¤
= G

£
FXβ

¤
. (T5.46)

On the other hand, from (T5.40) in all scenariosXα ≥ Xβ, i.e.Xα strongly
dominates Xβ. Therefore, from the sensibility of S we must have

G [FXα ] ≥ G
£
FXβ

¤
. (T5.47)

This and (T5.45)-(T5.46) in turn imply the desired result:

S (α) = G [FXα ] ≥ G
£
FXβ

¤
= S (β) . (T5.48)
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Constancy

Assume that an index of satisfaction is translation invariant

Ψg ≡ 1⇒ S (α+ λg) = S (α) + λ; (T5.49)

and positive homogeneous

S (λα) = λS (α) , for all λ ≥ 0. (T5.50)

Then it displays the constancy feature. Indeed assume that b is a deterministic
allocation Ψb ≡ ψb then Indeed

S (α+ λb) = S
µ
ψb

µ
α

ψb
+ λ

b

ψb

¶¶
= ψbS

µ
α

ψb
+ λ

b

ψb

¶
(T5.51)

= ψb

∙
S
µ
α

ψb

¶
+ λ

¸
= S

µ
ψb

α

ψb

¶
+ λψb

= S (α) + λψb

In particular

S (λb) = S (0+ λb) = S (0) + λψb = λψb. (T5.52)

From the homogeneity S (0) ≡ 0. Therefore, setting λ ≡ 1 we obtain

S (b) = ψb, (T5.53)

which is the constancy property (5.62).

5.3 Properties of the certainty-equivalent

Consistence with stochastic dominance

To see that increasing utility implies consistence with weak dominance, with
a change of variable we write expected utility as follows:

E {u (Ψ)} =
Z +∞

−∞
u (ψ) fψ (ψ) dψ =

Z 1

0

u (QΨ (s)) ds. (T5.54)

Now, assume that the following inequality holds:

QΨα (s) ≥ QΨβ (s) , for all s ∈ (0, 1) . (T5.55)
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Then
E {u (Ψα)} ≥ E {u (Ψβ)} . (T5.56)

Due to (5.99) this also implies that

CE(α) ≥ CE(β) , (T5.57)

which shows that (5.109) holds true.

Positive homogeneity

From its definition
CE(α) ≡ u−1 (E {u (Ψα)}) , (T5.58)

the certainty-equivalent is positive homogeneous if it satisfies:

u−1 (E {u (Ψλα)}) = λu−1 (E {u (Ψα)}) . (T5.59)

Since from (5.16) the objective is positive homogeneous

Ψλα = λΨα, (T5.60)

we obtain an equation that does not depend on the allocation:

u−1 (E {u (λΨ)}) = λu−1 (E {u (Ψ)}) . (T5.61)

Assume the utility function is of the power type:

u (ψ) ≡ ψβ. (T5.62)

Then, using (T1.14) and the change of variable y ≡ λψ, we obtain:

E {u (λΨ)} =
Z
R
yβfλΨ (y) dy =

Z
R
yβ
1

λ
fΨ

³y
λ

´
dy (T5.63)

= λβ
Z
R
ψβfΨ (ψ) dψ = λβ E {u (Ψ)} .

Since the inverse of the power utility function (T5.62) reads:

u−1 (z) = z
1
β , (T5.64)

from (T5.63) we obtain:

u−1 (E {u (λΨ)}) = [E {u (λΨ)}]
1
β =

h
λβ E {u (Ψ)}

i 1
β

(T5.65)

= λ [E {u (Ψ)}]
1
β = λu−1 (E {u (Ψ)}) ,

which is (T5.61) and thus concludes the proof.



Technical Appendix to Chapter 5 T-93

Translation invariance

From its definition
CE(α) ≡ u−1 (E {u (Ψα)}) (T5.66)

the certainty-equivalent is translation invariant if it satisfies:

Ψb ≡ 1⇒ u−1 (E {u (Ψα+λb)}) = u−1 (E {u (Ψα)}) + λ. (T5.67)

Since from (5.17) the objective is additive

Ψα+λb = Ψα + λ, (T5.68)

we obtain an equation that does not depend on the allocation:

u−1 (E {u (Ψ + λ)}) = u−1 (E {u (Ψ)}) + λ. (T5.69)

Assume the utility function is exponential:

u = −e−βψ. (T5.70)

Then, using (T1.14) and the change of variable y ≡ ψ + λ we obtain:

E {u (Ψ + λ)} =
Z
−e−βyfΨ+λ (y) dy =

Z
−e−βyfΨ (y − λ) dy(T5.71)

= e−βλ
Z
−e−βψfΨ (ψ) dψ = e−βλ E {u (Ψ)} ,

On the other hand the inverse of the exponential utility function reads:

u−1 (z) = − ln (−z)
β

. (T5.72)

Therefore

u−1 (E {u (Ψ + λ)}) = − 1
β
ln (− [E {u (Ψ + λ)}]) (T5.73)

= − 1
β
ln
¡
e−βλ [−E {u (Ψ)}]

¢
= λ− 1

β
[ln ([−E {u (Ψ)}])]

= λ+ u−1 (E {u (Ψ)}) ,

which is (T5.69) and thus concludes the proof.
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Risk aversion/propensity

Since we only deal with increasing utility functions from (5.99) to prove risk
aversion we can prove equivalently the following implication:

Ψb = ψb, E {Ψf} = 0⇒ E {u (Ψb)} ≥ E {u (Ψb+f )} . (T5.74)

On the one hand, we have the following chain of identity.

E {u (Ψb)} = u (ψb) = u (E {Ψb}) (T5.75)

= u (E {Ψb + Ψf}) = u (E {Ψb+f}) ,
On the other hand, Jensen’s inequality states that for any random variable Ψ
the following is true if and only if u is concave:

u (E {Ψ}) ≥ E {u (Ψ)} . (T5.76)

Therefore if and only if u is concave we obtain the following result:

E {u (Ψb)} ≥ E {u (Ψb+f )} , (T5.77)

which proves (T5.74).
A similar proof links convexity of the utility function with risk propensity

and linearity of the utility function with risk neutrality.
To compute the risk premium in the case of small bets, from a second

order Taylor expansion and using the assumptions

Ψb = ψb, E {Ψf} = 0 (T5.78)

we obtain:

u (CE (b+ f)) ≡ E {u (Ψb+f )} = E {u (ψb + Ψf )} (T5.79)

≈ u (ψb) +
Var {Ψf}

2
u00 (ψb) ,

On the other hand from the definition of risk premium (5.85), which we report
here

RP(b, f) ≡ CE(b)− CE(b+ f) . (T5.80)

and the constancy of the certainty-equivalent

CE(b) = ψb (T5.81)

we obtain
CE(b+ f) = ψb −RP(b, f) , (T5.82)

where RP(b, f) is a small quantity. Therefore

u (CE (b+ f)) = u (ψb −RP(b, f)) (T5.83)

≈ u (ψb)− u0 (ψb)RP (b, f)

Thus from (T5.79) and (T5.83) we obtain:

RP(b, f) ≈ −u
00 (ψb)

u0 (ψb)

Var {Ψf}
2

. (T5.84)
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Dependence on allocation: approximation in terms of the moments
of the objective

To compute the approximate expression of the certainty-equivalent in terms
of the moments of the allocation we first expand the utility function around
an arbitrary value eψ:

u (ψ) = u
³eψ´+ u0

³eψ´³ψ − eψ´+ 1
2
u00
³eψ´³ψ − eψ´2 (T5.85)

+
1

3!
u000
³eψ´³ψ − eψ´3 + · · · .

Taking expectations and pivoting the expansion around the objective’s ex-
pected value eψ ≡ E {Ψ} (T5.86)

we obtain:

E {u (Ψ)} ≈ u (E {Ψ}) +
u00 (E {Ψ})

2
Var {Ψ} , (T5.87)

where the term in the first derivative cancels out. On the other hand, another
Taylor expansion yields:

u−1 (z + �) ≈ u−1 (z) +
1

u0 (u−1 (z))
�. (T5.88)

Substituting (T5.87) in (T5.88) we obtain:

u−1 (E {u (Ψ)}) ≈ u−1 (u (E {Ψ})) +
u00 (E {Ψ})

2u0 (u−1 (u (E {Ψ})))
Var {Ψ}(T5.89)

= E {Ψ}+
u00

2u0
(E {Ψ})Var {Ψ}

so that the first order approximation reads:

CE(α) ≈ E {Ψα}−
A(E {Ψα})

2
Var {Ψα} . (T5.90)

First order sensitivity analysis

To compute the marginal contribution of the allocation α to the certainty-
equivalent we use the chain rule of calculus. First we derive the following
result:

∂α E {u (Ψα)} = ∂α

∙Z
RN

u (ψα) fM (m) dm

¸
(T5.91)

=

Z
RN

∂α (ψα)u
0 (ψα) fM (m) dm

= E {∂α (Ψα)u0 (Ψα)}
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From this and the chain rule we obtain:

∂αCE(α) = ∂α
£
u−1 (E {u (Ψα)})

¤
(T5.92)

=
du−1

dz
(E {u (Ψα)}) ∂α E {u (Ψα)}

=
1

u0 (u−1 (E {u (Ψα)}))
∂α E {u (Ψα)}

=
E {u0 (Ψα) ∂α (Ψα)}

u0 (CE (α))
,

For example consider the case where the objective are the net gains:

Ψα ≡ α0 (PT+τ −PT ) . (T5.93)

Then the market vector (5.10) reads:

M ≡ PT+τ −PT , (T5.94)

and the partial derivative of the objective (T5.93) reads:

∂α (Ψα) =M. (T5.95)

Assume that the utility is the error function:

u (ψ) ≡ erf
µ

ψ√
2η

¶
. (T5.96)

Then the first derivative reads:

u0 (ψ) =

r
2

πη
e−

1
2ηψ

2

(T5.97)

Assume that the markets are normally distributed:

PT+τ ∼ N(µ,Σ) . (T5.98)

Then the market vector (5.10) is normally distributed:

M ∼ N(ν,Σ) , ν ≡ µ−PT . (T5.99)

Thus the numerator in (T5.92) reads:

E {u0 (Ψα) ∂α (Ψα)} =
r
2

πη
E

½
e
− 1
2η (α

0M)2 M

¾
(T5.100)

=

r
2

πη

|Σ|−
1
2

(2π)
N
2

Z
RN
me
− 1
2m

0 αα0
η m

e−
1
2 (m−ν)

0Σ−1(m−ν)dm

=

r
2

πη

|Σ|−
1
2

(2π)
N
2

Z
RN
me−

1
2D(m)dm,
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The term in the last exponential can be written as follows:

D (m) ≡ m0
µ
αα0

η

¶
m+ (m− ν)0Σ−1 (m− ν) (T5.101)

= (m− ξ)0Φ−1 (m− ξ) + ν0Σ−1ν − ξ0Φ−1ξ,

where

ξ ≡
∙
αα0

η
+Σ−1

¸−1
Σ−1ν, Φ ≡

∙
αα0

η
+Σ−1

¸−1
. (T5.102)

Therefore from (T5.92) we obtain:

∂αCE(α) =
E {u0 (Ψα) ∂α (Ψα)}

u0 (CE (α))
(T5.103)

=
|Σ|−

1
2

(2π)
N
2

e
η
2 CE(α)

2

Z
RN
me−

1
2D(m)dm

=
|Σ|−

1
2

(2π)
N
2

e
η
2 CE(α)

2

e−
1
2 [ν

0Σ−1ν−ξ0Φ−1ξ] (2π)
N
2

|Φ|−
1
2Z

RN
m
|Φ|−

1
2

(2π)
N
2

e−
1
2 (m−ξ)

0Φ−1(m−ξ)dm

= γ (α) ξ,

where from (T5.102) we obtain:

γ (α) ≡ |Σ|
− 1
2

|Φ|−
1
2

e
η
2 CE(α)

2

e−
1
2 [ν

0Σ−1ν−ξ0Φ−1ξ] (T5.104)

=
|Σ|−

1
2¯̄̄

1
ηαα

0 +Σ−1
¯̄̄ 1
2

e
η
2 CE(α)

2

e
− 1
2 ν0 Σ−1−Σ−1[ 1ηαα

0+Σ−1]
−1
Σ−1 ν

Using again (T5.102) and then (T5.99) we finally obtain:

∂αCE(α) = γ (α)

∙
1

η
αα0 +Σ−1

¸−1
Σ−1 (µ−PT ) , (T5.105)

Second-order sensitivity analysis

To compute the second derivative of the certainty-equivalent, first we derive
the following result:
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∂α {u0 (Ψα) ∂α0 (Ψα)} = ∂α

∙Z
RN

u0 (ψα) ∂α0 (ψα) fM (m) dm

¸
=

Z
RN

fM (m)
£
u0 (ψα) ∂

2
αα0 (ψα) (T5.106)

+ u00 (ψα) ∂α (ψα) ∂α0 (ψα)] dm

= E
©
u0 (Ψα) ∂

2
αα0 (Ψα) + u00 (Ψα) ∂α (Ψα) ∂α0 (Ψα)

ª
From this, (T5.92) and the chain rule of calculus we obtain:

∂2αα0 CE(α) = ∂α

∙
E {u0 (Ψα) ∂α0 (Ψα)}

u0 (CE (α))

¸
(T5.107)

= ∂α

∙
1

u0 (CE (α))

¸
E {u0 (Ψα) ∂α0 (Ψα)}

+
1

u0 (CE (α))
∂α {u0 (Ψα) ∂α0 (Ψα)}

=

"
− u00 (CE (α))

[u0 (CE (α))]2
E {u0 (Ψα) ∂α (Ψα)}

u0 (CE (α))

#
E {u0 (Ψα) ∂α0 (Ψα)}

+
E
©
u0 (Ψα) ∂

2
αα0 (Ψα) + u00 (Ψα) ∂α (Ψα) ∂α0 (Ψα)

ª
u0 (CE (α))

Since the market is linear in the allocation:

Ψα = α0M, (T5.108)

we obtain:

∂2αα0 CE(α) =
E
©
u00 (α0M)MM0ª− u00 (CE (α))ww0

u0 (CE (α))
(T5.109)

where

w ≡ E
½

u0 (α0M)

u0 (CE (α))
M

¾
(T5.110)

The denominator in (T5.109) is always positive. On the other hand, the nu-
merator in (T5.109) can take on any sign, depending on the local curvature
of the utility function. Therefore the convexity of the certainty-equivalent is
not determined.

5.4 Properties of the quantile-based index of satisfaction

Constancy

Assume that an allocation b gives rise to a deterministic objective ψb. Then
from (B.22) the probability density function of the objective is the Dirac delta
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centered at ψb and from (B.53) the cumulative distribution function is the
Heaviside function (B.74) with step at ψb, which is not invertible. Thus the
quantile is not defined.
Nonetheless, we can obtain the quantile using the smoothing technique

(1.20). Indeed from (B.18) the regularized pdf of the objective reads:

fΨb;� (ψ) ≡
³
δ(ψb) ∗ δ(0)�

´
(ψ) =

1√
2π�

e−
(ψ−ψb)

2

2�2 . (T5.111)

The respective regularized cdf reads:

FΨb;� (ψ) =
1√
2π�

Z ψ

−∞
e−

(x−ψb)
2

2�2 dx (T5.112)

=
1

2

Ã
2√
π

Z ψ−ψb√
2�

−∞
e−y

2

dy

!

=
1

2

µ
1 + erf

µ
ψ − ψb√

2�

¶¶
,

where we used the change of variable y ≡ (x− ψb) /
√
2�.

The regularized quantile of the objective is the inverse of the regularized
cumulative distribution function:

QΨb;� (s) ≡ F−1Ψb;�
(s) = ψb +

√
2� erf−1 (2s− 1) . (T5.113)

For small � the regularized quantile satisfies:

QΨb;� (s) ≈ ψb, for all s ∈ (0, 1) , (T5.114)

and the approximation becomes exact in the limit � → 0. Thus the quantile
(5.159) satisfies:

Ψb = ψb ⇒ Qc (b) ≡ QΨb (1− c) = ψb, (T5.115)

which is the constancy property (5.62) in this context.

Homogeneity, translation invariance, additive co-monotonicity

Consider the s-quantile of the variable X, defined implicitly as in (1.18) by

P {X ≤ QX} = s. (T5.116)

If h is an increasing function then (T5.116) is equivalent to the following
identity:

P {h (X) ≤ h (QX)} = s. (T5.117)

On the other hand, the s-quantile Qh(X) (s) of the variable h (X) is defined
implicitly by:
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P
©
h (X) ≤ Qh(X)

ª
= s (T5.118)

Since (T5.117) and (T5.118) hold for any s we obtain the general result for
any increasing function h:

Qh(X) (s) = h (QX (s)) (T5.119)

As special cases, consider h (X) ≡ λX, where λ > 0. Then (T5.119) implies

QλX (s) = λQX (s) . (T5.120)

Now consider h (X) ≡ X + λ. Then (T5.119) implies

QX+λ (s) = QX (s) + λ. (T5.121)

Finally consider h (X) ≡ X + g (X), where g is an increasing function Then
applying repeatedly (T5.119) we obtain:

QX+g(X) (s) = QX (s) + g (QX (s)) = QX (s) +Qg(X) (s) . (T5.122)

Expression (T5.120) and the positive homogeneity of the objective (5.16)
prove the positive homogeneity of the quantile-based index of satisfaction:

Qc (λα) ≡ QΨλα (1− c) = QλΨα (1− c) (T5.123)

= λQΨα (1− c) ≡ λQc (α) .

Expression (T5.121) and the additivity of the objective (5.17) prove the
translation-invariance of the quantile-based index of satisfaction:

Qc (α+ λb) ≡ QΨα+λb (1− c) = QΨα+λ (1− c) (T5.124)

= QΨα (1− c) + λ ≡ Qc (α) + λ.

Expression (T5.122) and the additivity of the objective (5.17) prove the ad-
ditive co-monotonicity of the quantile-based index of satisfaction:

Qc (α+ δ) ≡ QΨα+δ (1− c) = QΨα+Ψδ (1− c) (T5.125)

= QΨα (1− c) +QΨδ (1− c)

≡ Qc (α) + Qc (δ) .

Cornish-Fisher expansion

The Cornish-Fisher expansion (5.179) states that the quantile of the objective
Ψα can be approximated in terms of the quantile z (s) of the standard normal
distribution and the first three moments as follows:

QΨα (s) ≈
∙
E {Ψα}−

CM3 {Ψα}
6Var {Ψα}

¸
(T5.126)

+Sd {Ψα} z (s) +
CM3 {Ψα}
6Var {Ψα}

z2 (s) ,
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where CM3 is the third central moment. Using (T1.39) to express the central
moments in terms of the raw moments we obtain the approximate expression
of the quantile of the objective:

Qc (α) ≡ QΨα (1− c) ≈ QΨα (1− c) (T5.127)

≈ A (α) +B (α) z (1− c) + C (α) z2 (1− c)

where

A ≡ E {Ψα}−
E
©
Ψ3α
ª
− 3E

©
Ψ2α
ª
E {Ψα}+ 2E {Ψα}3

6
³
E {Ψ2α}− E {Ψα}

2
´

B ≡
q
E {Ψ2α}− E {Ψα}

2 (T5.128)

C ≡ E
©
Ψ3α
ª
− 3E

©
Ψ2α
ª
E {Ψα}+ 2E {Ψα}3

6
³
E {Ψ2α}− E {Ψα}

2
´

To obtain the explicit analytical expression of these coefficients as functions
of the allocation α we use the derivatives of the characteristic function of the
objective as discussed in Appendix www.5.1.

First-order sensitivity analysis

The following proof is adapted from Gourieroux, Laurent, and Scaillet (2000).
From the definition of quantile (1.18), the quantile-based index of satisfaction
(5.159) is defined implicitly as follows:

1− c = P {Ψα ≤ Qc (α)} = P {α0M ≤ Qc (α)} (T5.129)

Defining
Xn ≡

X
j 6=n

αjMj (T5.130)

we see that Q(α) is defined implicitly as follows in terms of the joint pdf f
of (Xn,Mn):

1− c = P {Xn + anMn ≤ Q} (T5.131)

=

Z "Z Q−αnmn

−∞
f (xn,mn) dxn

#
dmn.

Since in general

∂

∂a

Z g(a)

−∞
f (x) dx = lim

δa→0

1

δa

Z g(a)+ dg
da δa

g(a)

f (x) dx (T5.132)

= f (g (a))
dg (a)

da
,
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differentiating both sides of (T5.131) with respect to αn we obtain:

0 =

Z
f (Q−αnMn,mn)

µ
∂Q

∂αn
−mn

¶
dmn (T5.133)

or

∂Q

∂αn
=

R
mnf (Q−αnMn,mn) dmnR
f (Q−αnMn,mn) dmn

(T5.134)

= E {Mn|Xn = Q(α)− αnMn}

Therefore, substituting back the definition (T5.130) we obtain

∂Q(α)

∂α
= E {M|α0M = Q(α)} (T5.135)

Second-order sensitivity analysis

Consider now a small perturbation of the allocation α in the direction of the
j-th security:

β = α+ �δ(j). (T5.136)

We derive the second derivatives from the definition

∂2ij Q(α) ≡ lim
�→0

1

�
[∂iQ(β)− ∂iQ(α)] . (T5.137)

From (T5.135) and (T5.136) we see that

∂iQ(β) = E
n
Mi|α0M+ �Mj = Q

³
α+ �δ(j)

´o
(T5.138)

≈ E {Mi|α0M+ �Mj = Q(α) + �∂j Q(α)}
= E {Mi|α0M−Q(α) + � [Mj − ∂j Q(α)] = 0}
= E {Mi|α0M−Q(α) + � [Mj − E {Mj |α0M = Q(α)}] = 0}

In other words, defining the variables

Z ≡ α0M−Q(α) , Y ≡Mj − E {Mj |Z = 0} , X ≡Mi (T5.139)

we can write:
∂iQ(β) ≈ E {X|Z + �Y = 0} . (T5.140)

Also notice that in this notation

∂iQ(α) = E {X|Z = 0} (T5.141)

Consider the joint pdf f of (X,Y,Z). The conditional expectation in (T5.140)
can be computed in terms of the conditional pdf, which reads:
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f (x, y|Z + �Y = 0) = f (x, y|z = −�y) = f (x, y,−�y)R
f (x, y,−�y) dxdy . (T5.142)

Therefore (T5.140) becomes:

∂iQ(β) ≈
R R

xf (x, y,−�y) dxdyR R
f (x, y,−�y) dxdy (T5.143)

≈
R R

xf (x, y, 0) dxdy − �
R R

xy∂zf (x, y, 0) dxdyR R
f (x, y, 0) dxdy − �

R R
y∂zf (x, y, 0) dxdy

=

∙Z Z
xf (x, y, 0) dxdy − �

Z Z
xy∂zf (x, y, 0) dxdy

¸
∙µZ Z

f (x, y, 0) dxdy

¶µ
1− �

R R
y∂zf (x, y, 0) dxdyR R
f (x, y, 0) dxdy

¶¸−1
≈
∙Z Z

xf (x, y, 0) dxdy − �

Z Z
xy∂z [ln f (x, y, 0)] f (x, y, 0) dxdy

¸
µZ Z

f (x, y, 0) dxdy

¶−1
∙
1 + �

R R
y∂z [ln f (x, y, 0)] f (x, y, 0) dxdyR R

f (x, y, 0) dxdy

¸
≈
R R

xf (x, y, 0) dxdyR R
f (x, y, 0) dxdy

− �

R R
xy∂z [ln f (x, y, 0)] f (x, y, 0) dxdyR R

f (x, y, 0) dxdy

+�

R R
y∂z [ln f (x, y, 0)] f (x, y, 0) dxdyR R

f (x, y, 0) dxdy

R R
xf (x, y, 0) dxdyR R
f (x, y, 0) dxdy

Thus

∂iQ(β) ≈ E {X|Z = 0}− � [E {XY ∂z [ln f (X,Y, 0)] |Z = 0}
− E {X|Z = 0}E {Y ∂z [ln f (X,Y, 0)] |Z = 0}]

= E {X|Z = 0}− � [Cov {X,Y ∂z [ln f (X,Y, 0)] |Z = 0}] (T5.144)

= E {X|Z = 0}− � [Cov {X,Y ∂z [ln f (X,Y |0) + ln fZ (0)] |Z = 0}]
= E {X|Z = 0}− � [Cov {X,Y ∂z [ln f (X,Y |0)] |Z = 0}
+ ∂z [ln fZ (0)] Cov {X,Y |Z = 0}] (T5.145)

On the other hand
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∂z [Cov {X,Y |Z = z}] = ∂z [E {XY |Z = z}− E {X|Z = z}E {Y |Z = z}]

= ∂z

∙Z Z
xyf (x, y|z) dxdy (T5.146)

−
Z Z

xf (x, y|z) dxdy
Z Z

yf (x, y|z) dxdy
¸

=

Z Z
xy∂zf (x, y|z) dxdy

−E {Y |Z = z} ∂z [E {X|Z = z}]

−E {X|Z = z}
Z Z

y∂zf (x, y|z) dxdy

=

Z Z
xy∂z [ln f (x, y|z)] f (x, y|z) dxdy

−E {Y |Z = z} ∂z [E {X|Z = z}]

−E {X|Z = z}
Z Z

y∂z [ln f (x, y|z)] f (x, y|z) dxdy

= E {XY ∂z [ln f (X,Y |z)] |Z = z}
−E {X|Z = z}E {Y ∂z [ln f (X,Y |z)] |Z = z}
−E {Y |Z = z} ∂z [E {X|Z = z}]

= Cov {X,Y ∂z [ln f (X,Y |z)] |Z = z}
−E {Y |Z = z} ∂z [E {X|Z = z}] ,

which shows that

Cov {X,Y ∂z [ln f (X,Y |z)] |Z = z} = ∂z [Cov {X,Y |Z = z}] (T5.147)

+E {Y |Z = z} ∂z [E {X|Z = z}]

Therefore (T5.144) becomes

∂iQ(β) ≈ E {X|Z = 0} (T5.148)

−� [∂z [Cov {X,Y |Z = 0}] + E {Y |Z = 0}∂z [E {X|Z = 0}]
+ ∂z [ln fZ (0)] Cov {X,Y |Z = 0}]

In this expression, from (T5.139)

E {Y |Z = 0} = E {Mj − E {Mj |Z = 0} |Z = 0} = 0 (T5.149)

Therefore

∂iQ(β) ≈ E {X|Z = 0}− � [∂z [Cov {X,Y |z = 0}] (T5.150)

+ ∂z [ln fZ (0)] Cov {X,Y |z = 0}]

and finally, from (T5.141) we obtain
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∂2ij Q(α) ≡ −∂z [Cov {X,Y |z = 0}] (T5.151)

−∂z [ln fZ (0)] Cov {X,Y |z = 0}

Substituting again the definitions (T5.139) in this formula we obtain:

∂2Q(α)

∂α0∂α
= −∂z [Cov {M,M− E {M|α0M = Q(α)} |z = 0}] (T5.152)

−∂ ln fZ (0)
∂z

Cov {M,M− E {M|α0M = Q(α)} |z = 0}

= −∂z [Cov {M|z = 0}]−
∂ ln fZ (0)

∂z
Cov {M|z = 0}

= − ∂ Cov {M|α0M = z}
∂z

¯̄̄̄
z=Q(α)

−∂ ln fα
0M (Q (α))

∂z
Cov {M|α0M = Q(α)}

To discuss the sign of the second derivative in the normal case we need the
following result:

Σ

µ
I− αα0Σ

α0Σα

¶
≥ 0⇔ β0Σβ ≥ β0Σαα0Σβ

α0Σα
(T5.153)

⇔ hα,αi hβ,βi ≥ |hα,βi|2

where
hα,βi ≡ α0Σβ. (T5.154)

The last row in (T5.153) is true because of the Cauchy-Schwartz inequality
(A.8).

5.5 Properties of spectral indices of satisfaction

Spectral representation

We consider weighted averages of the expected shortfall for different confidence
levels. From the definition (5.207) of expected shortfall this means

Spc (α) ≡
Z 1

0

ESc (α)w (c) dc (T5.155)

=

Z 1

0

1

1− c

∙Z 1−c

0

QΨα (s) ds

¸
w (c) dc,

where

w (c) ≥ 0,
Z 1

0

w (c) dc = 1. (T5.156)
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Equivalently:Z 1

0

ESc (α)w (c) dc =

Z 1

0

∙Z c

0

QΨα (s) ds

¸
w (c)

c
dcZ 1

0

∙Z c

0

QΨα (s)
w (c)

c
ds

¸
dc (T5.157)Z 1

0

QΨα (s)

∙Z 1

s

w (c)

c
dc

¸
dsZ 1

0

QΨα (s)φ (s) ds,

where

φ (s) ≡
Z 1

s

w (x)

x
dx (T5.158)

On the one hand, from

φ0 (s) = −w (s)
s

(T5.159)

we obtain: Z 1

0

[sφ (s)]0 ds =

Z 1

0

φ (s) ds+

Z 1

0

sφ0ds (T5.160)

=

Z 1

0

φ (s) ds−
Z 1

0

w (s) ds.

On the other hand, from (T5.158) we obtain φ (1) = 0 and thusZ 1

0

[sφ (s)]
0
ds = sφ (s)|10 = 0. (T5.161)

Therefore Z 1

0

φ (s) ds = 1. (T5.162)

Finally, from (T5.159) we also obtain φ0 ≤ 0.

Spectral indices of satisfaction and risk aversion

Consider a fair game, i.e. an allocation f such that

E {Ψf} = 0 (T5.163)

Then a fortiori, for any s ∈ (0, 1) the following is true:

E {Ψf |Ψf ≤ QΨf (s)} ≤ 0 (T5.164)

Thus from the definition of expected shortfall (5.208) for any confidence level
ESc (α) ≤ 0. Since the expected shortfall generates the spectral indices of
satisfaction, the satisfaction derived from any fair game is negative whenever
satisfaction is measured with a spectral index.
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Cornish-Fisher expansion

The Cornish-Fisher expansion (5.179) states that the quantile of the approx-
imate objective Ξα can be approximated in terms of the quantile z (s) of the
standard normal distribution and the first three moments as follows:

QΞα (s) ≈
∙
E {Ξα}−

CM3 {Ξα}
6Var {Ξα}

¸
(T5.165)

+Sd {Ξα} z (s) +
CM3 {Ξα}
6Var {Ξα}

z2 (s) ,

where CM3 is the third central moment. Using (T1.39) to express the central
moments in terms of the raw moments we obtain the approximate expression
of the quantile of the objective:

QΨα (s) ≈ QΞα (s) ≈ A (α) +B (α) z (s) + C (α) z2 (s) (T5.166)

where (A,B,C) are defined in (5.181). To obtain the explicit analytical ex-
pression of these coefficients as functions of the allocation α we use the deriv-
atives of the characteristic function of the objective as discussed in Appendix
www.5.1. To obtain the spectral index of satisfaction we apply (T5.166) to its
definition (5.223), obtaining:

Spcφ (α) ≡
Z 1

0

φ (s)QΨα (s) ds (T5.167)

≈ A (α) +B (α)

Z 1

0

φ (s) z (s) ds+ C (α)

Z 1

0

φ (s) z2 (s) ds.

Extreme value theory

Define the variable
Z ≡ Qc (α)− Ψα. (T5.168)

and (5.182) we obtain

1− LQc(α) (z) = 1− P {Ψα −Qc (α) ≤ −z|Ψα ≤ Qc (α)}
= 1− P {Qc (α)− Ψα ≥ z|Ψα ≤ Qc (α)} (T5.169)

= P {Qc (α)− Ψα ≤ z|Ψα ≤ Qc (α)}
= P {Z ≤ z|Z ≥ 0} .

This is the cdf of Z conditioned on Z ≥ 0. If the confidence level c is high,
from (5.184) this cdf is approximated by Gξ,v. Thus

E {Z|Z ≥ 0} ≈
Z ∞
0

z
dGξ,v (z)

dz
dz =

v

1− ξ
, (T5.170)
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where the last result can be found in Embrechts, Klueppelberg, and Mikosch
(1997). On the other hand, from the definition (5.208) of expected shortfall
we derive

ESc (α) = E {Ψα|Ψα ≤ Qc (α)} (T5.171)

= Qc (α) + E {Ψα −Qc (α) |Ψα ≤ Qc (α)}
= Qc (α)− E {Z|Z ≥ 0}

Therefore and the result follows.

First-order sensitivity analysis

We compute the expression of the first derivative of the expected shortfall.
The result for a generic spectral measure follows from (T5.155) and the defi-
nition (T5.159) of the weights in terms of the spectrum. Here we adapt from
Bertsimas, Lauprete, and Samarov (2004). First we define:

Xn ≡
X
j 6=n

αjMj . (T5.172)

From the definition (5.208) of expected shortfall we obtain

∂ ESc (α)

∂αn
=

∂

∂αn

∙
1

1− c

Z +∞

−∞

Z +∞

−∞
(x+ αnm) Ix≤Qc−αnm (x,m)

fXn,Mn
(x,m) dxdm] (T5.173)

=
1

1− c

Z +∞

−∞

∂

∂αn

Z Qc−αnm

−∞
(x+ αnm) fXn,Mn (x,m) dxdm

Using (T5.132) this becomes

∂ ESc (α)

∂αn
=

1

1− c

Z +∞

−∞

µ
∂Qc (α)

∂αn
−m

¶
(T5.174)

Qc (α) fXn,Mn (Qc (α)− αnm,m) dm

+
1

1− c

Z +∞

−∞

Z Qc−αnm

−∞
mfXn,Mn (x,m) dxdm

On the other hand:

0 =
∂ (1− c)

∂αn
=

∂

∂αn

Z +∞

−∞

Z Qc−αnm

−∞
fXn,Mn

(x,m) dxdm (T5.175)Z +∞

−∞

µ
∂Qc (α)

∂αn
−m

¶
fXn,Mn (Qc (α)− αnm,m) dm.

Therefore
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∂ ESc (α)

∂αn
=

1

1− c

Z +∞

−∞

Z Qc−αnm

−∞
mfXn,Mn (x,m) dxdm (T5.176)

=
1

1− c

Z Z
Ψα≤Qc

mfXn,Mn
(x,m) dxdm

which is the desired result.

Second-order sensitivity analysis

Now we compute the expression of the second derivative of the expected short-
fall. The result for a generic spectral measure follows from (T5.155) and the
definition (T5.159) of the weights in terms of the spectrum. We adapt the
proof from Rau-Bredow (2002). In the notation (T5.172) the second deriva-
tive is:

∂2 ESc (α)

∂αn∂α0
=

∂

∂αn
E {M0|Xn + αnMn ≤ Qc (α)} (T5.177)

=
∂

∂αn

∙Z
m0fM (m|Xn + αnMn ≤ Qc (α)) dm

¸
.

In this expression the conditional density reads:

fM (m|Xn + αnMn ≤ Qc) =

R Qc−αnmn

−∞ fXn,M (x,m) dxR R Qc−αnmn

−∞ fXn,M (x,m) dxdm
(T5.178)

=

R Qc−αnmn

−∞ fXn,M (x,m) dxR
xn+αnmn≤Qc

fXn,M (x,m) dxdm

=

R Qc−αnmn

−∞ fXn,M (x,m) dx

1− c
.

Therefore using (T5.132) we obtain:

∂2 ESc (α)

∂αn∂α0
=

1

1− c

"Z
m0 ∂

∂αn

Z Qc−αnmn

−∞
fXn,M (x,m) dxdm

#
(T5.179)

=
1

1− c

∙Z
m0
∙
∂Qc (α)

∂αn
−mn

¸
fXn,M (Qc (α)− αnmn,m) dm

¸
Using Bayes’ rule

fXn,M (Q−αnmn,m) = fXn+αnmn,M (Q,m) (T5.180)

= fM|Xn+αnmn
(m|Xn + αnmn = Q) fXn+αnmn (Q)

and recalling that Xn + αnmn = Ψα, the above expression becomes
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∂2 ESc (α)

∂αn∂α0
=

1

1− c

½Z
m0
µ
∂Qc (α)

∂αn
−mn

¶
(T5.181)

fM|Ψα (m|Ψα = Qc (α)) fΨα (Qc (α)) dm
ª

=
fΨα (Qc (α))

1− c

∂Qc (α)

∂αn
E {M0|Ψα = Qc (α)}

−fΨα (Qc (α))

1− c
E {MnM

0|Ψα = Qc (α)}

Recalling (5.188) and using vector notation we obtain

∂2 ESc (α)

∂α∂α0
=

fΨα (Qc (α))

1− c
E {M|α0M = Qc (α)}E {M0|α0M = Qc (α)}

−fΨα (Qc (α))

1− c
E
©
MM0|α0M = Qc (α)

ª
(T5.182)

= −fΨα (Qc (α))

1− c
Cov {M|α0M = Qc (α)}

5.6 A note on extreme value theory (EVT)

To estimate the parameters ξ and v using the MATLAB function gpfit pro-
ceed as follows. Define the excess as the following random variable

Z ≡ eψ − Ψα|Ψα ≤ eψ. (T5.183)

Notice that the cdf of Z satisfies

FZ (z) ≡ P {Z ≤ z} (T5.184)

= P
neψ − Ψα ≤ z|Ψα ≤ eψo

= P
n
Ψα ≥ eψ − z|Ψα ≤ eψo

= 1− P
n
Ψα ≤ eψ − z|Ψα ≤ eψo

≡ 1− Lψ (z) ,

where in the last row we used (5.182). From (5.183) we obtain:

FZ (z) ≈ Gξ,v (z) . (T5.185)

The function xi_v=gpfit(Excess), attempts to fit (T5.185), where Excess
are the realizations of the random variable (T5.183).
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Technical appendix to Chapter 6

6.1 Maximum achievable certainty-equivalent with
exponential utility

From the expression (6.21) of the satisfaction index, which we report here:

CE(α) ≡ ξ0α− 1

2ζ
α0Φα, (T6.1)

and the constraint (6.24) we obtain the Lagrangian:

L ≡ ξ0α− 1

2ζ
α0Φα− λ (α0pT − wT ) . (T6.2)

We neglect in the Lagrangian the second constraint (6.26), which from (6.22)
and (6.24) reads:

ξ0α− erf−1 (c)
√
α0Φα ≥ (1− γ)wT . (T6.3)

We verify ex-post that the constraint is automatically satisfied.
From the first-order conditions on the Lagrangian we obtain:

α = ζΦ−1ξ + γΦ−1pT , (T6.4)

where γ is a suitable scalar.
To compute γ we notice that the maximization of (T6.2) is the same as

(6.70), where the objective is given byM ≡ PT+τ and the constraint is (6.94),
with d ≡ pT and c ≡ wT . Thus the solution must be of the form (6.97).
Recalling the definitions (6.99) of αMV and (6.100) of αSR respectively, and
defining the scalar

θ ≡ e− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

(T6.5)

we rewrite (6.97) as follows:
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α = θ
wTΦ

−1ξ

P0TΦ
−1ξ

+ (1− θ)
wTΦ

−1pT
P0TΦ

−1pT
. (T6.6)

By comparing (T6.4) with (T6.6) we obtain:

θ =
ζ

wT
P0TΦ

−1ξ (T6.7)

and thus

γ = (1− θ)
wT

P0TΦ
−1PT

=
wT − ζP0TΦ

−1ξ

P0TΦ
−1PT

. (T6.8)

Substituting this expression back into (T6.4) we obtain the optimal allocation:

α∗ = ζΦ−1ξ +
wT − ζP0TΦ

−1ξ

P0TΦ
−1PT

Φ−1PT . (T6.9)

Notice that the optimal allocation (T6.9), lies on the efficient frontier. i.e. on
the hyperbola in Figure 6.11, which in our context becomes Figure 6.1.
When the risk propensity ζ is zero we obtain the minimum variance port-

folio αMV . As the risk propensity ζ tends to infinity, the solution departs
from the "belly" of the hyperbola along the upper branch of the hyperbola,
passing through the maximum Sharpe ratio portfolio αSR.
The VaR constraint (T6.3) is satisfied automatically if two the confidence

required c is not too high and the margin γ is not too small. Indeed consider
the following equation:

ξ0α− erf−1 (c)
√
α0Φα = (1− γ)wT . (T6.10)

This is a straight line through the origin in Figure 6.1. If erf−1 (c) is not larger
than the maximum Sharpe ratio, i.e. the slope of the line through the origin
and the portfolio αSR, and if γ is large enough, then all the portfolios above
the straight line on the frontier satisfy the VaR constraint. These portfolios
correspond to the choice (6.7) for suitable choices of the extremes.
To compute the maximum achievable index of satisfaction, we replace

(T6.9) in (T6.1):
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CE(α∗) ≡
∙
ξ0α∗ − 1

2ζ
α∗0Φα∗

¸
= ξ0

µ
ζΦ−1ξ +

w − ζP0TΦ
−1ξ

P0TΦ
−1PT

Φ−1PT

¶
− 1
2ζ

µ
ζΦ−1ξ +

w − ζP0TΦ
−1ξ

P0TΦ
−1PT

Φ−1PT

¶0
Φµ

ζΦ−1ξ +
w − ζP0TΦ

−1ξ

P0TΦ
−1PT

Φ−1PT

¶
= ζξ0Φ−1ξ +

µ
w − ζP0TΦ

−1ξ

P0TΦ
−1PT

¶
ξ0Φ−1PT (T6.11)

−ζ
2
ξ0Φ−1ξ − 1

2ζ

µ
w − ζP0TΦ

−1ξ

P0TΦ
−1PT

¶2
P0TΦ

−1PT

−1
2

µ
w − ζP0TΦ

−1ξ

P0TΦ
−1PT

¶
P0TΦ

−1ξ

Therefore

CE(α∗) =
ζ

2
ξ0Φ−1ξ +

1

2

µ
w − ζP0TΦ

−1ξ

P0TΦ
−1PT

¶
ξ0Φ−1PT (T6.12)

− 1
2ζ

¡
w − ζP0TΦ

−1ξ
¢2

P0TΦ
−1PT

6.2 Results on constrained optimization

QCQP as special case of SOCP

From the spectral decomposition, the original quadratic programming prob-
lem:

z∗ ≡ argmin
z

n
z0S(0)z+ 2u

0
(0)z+ v(0)

o
, (T6.13)

s.t.
½
Az = a
z0S(j)z+ 2u

0
(j)z+ v(j) ≤ 0,

for j = 1, . . . , J . can be written equivalently as follows:

z∗ ≡ argmin
z

½°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°°2 + v(0) − u(0)S−1(0)u(0)
¾
(T6.14)

s.t.

(
Az = a°°°Λ1/2(j) E

0
(j)z+Λ

−1/2
(j) E0(j)u(j)

°°°2 ≤ u(j)S−1(j)u(j) − v(j),
.

for j = 1, . . . , J . This problem in turn is equivalent to:
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z∗ ≡ argmin
z

½°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°°2¾ (T6.15)

s.t.

(
Az = a°°°Λ1/2(j) E

0
(j)z+Λ

−1/2
(j) E0(j)u(j)

°°°2 ≤ u(j)S−1(j)u(j) − v(j),

for j = 1, . . . , J . Introducing a new variable t this problem is equivalent to:

(z∗, t∗) ≡ argmin
(z,t)

{t} (T6.16)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az = a°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°° ≤ t°°°Λ1/2(1) E
0
(1)z+Λ

−1/2
(1) E0(1)u(1)

°°° ≤qu(1)S−1(1)u(1) − v(1)
...°°°Λ1/2(J)E

0
(J)z+Λ

−1/2
(J) E

0
(J)u(J)

°°° ≤qu(J)S−1(J)u(J) − v(J)

6.3 Feasible set and MV efficient frontier

To solve
α (v) ≡ argmax

α0d=c,Var{Ψα}=v
E {Ψα} , (T6.17)

we first compute the feasible set in the space of moments of the objective
function (v, e) = (Var {Ψα} ,E {Ψα}).
We consider the general case where E {M} and d are not collinear. First

we prove that any level of expected value e ∈ R is attainable. This is true if
for any value e there exists an α such that:

e = E {Ψα} = α0 E {M} (T6.18)

c = α0d. (T6.19)

In turn, this is true if we can solve the following system for an arbitrary value
of e: µ

E {Mj} E {Mk}
bj bk

¶µ
αj
αk

¶
=

µ
e−

P
n6=j,k αn E {Mk}

c−
P

n6=j,k αnbn

¶
. (T6.20)

Since E {M} and d are not collinear we can always find two indices (j, k) such
that the matrix on the left-hand side of (T6.20) is invertible. Therefore, we
can fix arbitrarily e and all the entries of α that appear on the right hand
side of (T6.20) and solve for the remaining two entries on the left-hand side
of (T6.20).
Now we prove that if a point (v, e) is feasible, so is any point (v + γ, e),

where γ is any positive number. Indeed, if we make any of the entries on
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the right hand side of (T6.20) go to infinity and solve for the remaining two
entries on the left-hand side of (T6.20) the variance of the ensuing allocations
satisfies the constraints and tends to infinity. For continuity, all the points
between (v, e) and (+∞, e) are covered.
Therefore the feasible set can only be bounded on the left of the (v, e)

plane. To find out if that boundary exists, we fix a generic expected value e and
compute the minimum variance achievable that satisfies the affine constraint.
Therefore, we minimize the following unconstrained Lagrangian:

L (α, λ, µ) ≡ Var {Ψα}− λ (α0d− c)− µ (E {Ψα}− e) . (T6.21)

= α0Cov {M}α− λ (α0d− c)− µ (α0 E {M}− e) .

The first-order conditions yield:

0 =
∂L
∂α

= 2Cov {M}α− λd− µE {M} (T6.22)

in addition to the two constraints

0 =
∂L
∂λ

= α0d− c (T6.23)

0 =
∂L
∂µ

= α0 E {M}− e,

From (T6.22) the solution reads

α =
λ

2
Cov {M}−1 d+ µ

2
Cov {M}−1 E {M} . (T6.24)

The Lagrange multipliers can be obtained as follows: First, we define four
scalar constants:

A ≡ d0Cov {M}−1 d B ≡ d0Cov {M}−1 E {M}
C ≡ E {M}0Cov {M}−1 E {M} D ≡ AC −B2 (T6.25)

Left-multiplying the solution (T6.24) by d0 and using the first constraint in
(T6.23) we obtain:

c = d0α =
λ

2
d0Cov {M}−1 d (T6.26)

+
µ

2
d0Cov {M}−1 E {M}

=
λ

2
A+

µ

2
B.

Similarly, left-multiplying the solution (T6.24) by E {M}0 and using the sec-
ond constraint in (T6.23) we obtain:
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e = E {M}0α =
λ

2
E {M}0Cov {M}−1 d (T6.27)

+
µ

2
E {M}0 Cov {M}−1 E {M}

=
λ

2
B +

µ

2
C

Now we can invert (T6.27) and (T6.26) obtaining:

λ =
2cC − 2eB

D
, µ =

2eA− 2cB
D

(T6.28)

Finally, left-multiplying (T6.22) by α0 we obtain:

0 = 2α0Cov {M}α− λα0d− µα0 E {M}
= 2Var {Ψα}− λc− µe (T6.29)

= 2

µ
Var {Ψα}−

cC − eB

D
c− eA− cB

D
e

¶
.

This shows that the boundary v (e) ≡ Var {Ψα} exists. Collecting the terms
in e we obtain its equation:

v =
A

D
e2 − 2cB

D
e+

c2C

D
, (T6.30)

which shows that the feasible set is bounded on the left by a parabola. In
the space of the coordinates (d, e) = (Sd {Ψα} ,E {Ψα}) the parabola (T6.30)
becomes a hyperbola:

d2 =
A

D
e2 − 2cB

D
e+

c2C

D
, (T6.31)

The allocations α that give rise to the boundary parabola (T6.30) are obtained
from (T6.24) by substituting the Lagrange multipliers (T6.28):

α =
cC − eB

D
Cov {M}−1 d+ eA− cB

D
Cov {M}−1 E {M}

=
(cC − eB)A

D

Cov {M}−1 d
d0 Cov {M}−1 d

(T6.32)

+
(eA− cB)B

D

Cov {M}−1 E {M}
d0Cov {M}−1 E {M}

If c 6= 0 we can write (T6.32) as:

α = (1− γ (α))αMV + γ (α)αSR, (T6.33)

where the scalar γ is defined as:
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γ (α) ≡ (E {Ψα}A− cB)B

cD
(T6.34)

and (αMV ,αSR) are two specific portfolios defined as follows:

αMV ≡
cCov {M}−1 d
d0Cov {M}−1 d

(T6.35)

αSR ≡
cCov {M}−1 E {M}
d0Cov {M}−1 E {M}

. (T6.36)

Portfolio (T6.35) corresponds to the case γ = 0. From the expression for
γ in (T6.34) and from the expression for the Lagrange multipliers in (T6.28)
we see that αMV is the allocation that corresponds to the case where the La-
grange multiplier µ is zero in (T6.24). From the original Lagrangian (T6.21), if
µ = 0 the ensuing allocation is the minimum-variance portfolio. From (T6.30),
or by direct computation we derive the coordinates of αMV in the space of
moments:

vMV ≡ Var {ΨαMV } =
c2

A
, eMV ≡ E {ΨαMV } =

cB

A
. (T6.37)

Portfolio (T6.36) corresponds to the case γ = 1. This is the allocation on
the feasible boundary that corresponds to the highest Sharpe ratio. Indeed, by
direct computation we derive the coordinates of αSR in the space of moments:

vSR ≡ Var {ΨαSR} =
c2C

B2
, eSR ≡ E {ΨαSR} =

cC

B
, (T6.38)

On the other hand the highest Sharpe ratio is the steepness of the straight
line tangent to the hyperbola (T6.31), which we obtain by maximizing its
analytical expression as a function of the expected value:

SR (e) ≡ e

d (e)
=

eq
A
De2 − 2cB

D e+ c2C
D

. (T6.39)

The first-order conditions with respect to e show that the maximum of the
Sharpe ratio is reached at (T6.38).
It is immediate to check that the ratio e/v is the same for both portfolio

(T6.37) and portfolio (T6.38), and thus the two allocations lie on the same
radius from the origin in the (v, e) plane.
As for the expression of the scalar γ in (T6.34), since

E {ΨαSR}− E {ΨαMV } =
cC

B
− cB

A
=

cD

AB
(T6.40)

we can simplify it as follows:
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γ ≡ (E {Ψα}A− cB)B

cD
=
E {Ψα}AB

cD
− B2

D

=
E {Ψα}

E {ΨαSR}− E {ΨαMV }
−
¡
cB
A

¢¡
cD
AB

¢ (T6.41)

=
E {Ψα}− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

,

which shows that the upper (lower) branch of the boundary parabola is
spanned by the positive (negative) values of γ.
To consider the case c = 0 we take the limit c → 0 in the above re-

sults. The boundary (T6.30) of the feasible set in the coordinates (v, e) =
(Var {Ψα} ,E {Ψα}) is still a parabola:

v =
A

D
e2; (T6.42)

whereas in the space of coordinates (s, e) = (Sd {Ψα} ,E {Ψα}) the boundary
degenerates from the hyperbola (T6.31) into two straight lines:

d (e) = ±
r

A

D
e. (T6.43)

As for the allocations that generate this boundary, taking the limit c → 0 in
(T6.33) and recalling the definitions (T6.34), (T6.35) and (T6.36) we obtain:

α = lim
c→0

[αMV + γ (α) (αSR −αMV )] (T6.44)

= lim
c→0

[γ (α) (αSR −αMV )]

= E {Ψα}
Cov {M}−1

D
(AE {M}−Bd)

= ζ (α)Cov {M}−1 (AE {M}−Bd) ,

where the scalar ζ is defined as follows

ζ (α) ≡ E {Ψα}
D

. (T6.45)

The upper (lower) branch of the boundary parabola is spanned by the positive
(negative) values of ζ.
With the geometry of the feasible set at hand, we can move on to compute

the mean-variance curve (T6.17): fixing a level of variance v and maximizing
the expected value in the feasible set means hitting the upper branch of the
parabola (T6.30). Therefore if c 6= 0 the mean-variance curve reads:

α ≡ (1− γ)αMV + γαSR, γ > 0. (T6.46)

if c = 0 the mean-variance curve reads:

α ≡ ζ
Cov {M}−1 (E {M}− d)
d0Cov {M}−1 E {M}

, ζ sign (B) > 0. (T6.47)
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6.4 The effect on the MV efficient frontier of market
correlations

In the case of N = 2 assets the (N − 1)-dimensional affine constraint (6.94)
determines a line

α1 =
c

b1
− α2

b2
b1
, (T6.48)

which corresponds to the feasible set. Defining

α ≡ α2, ec ≡ c

b1
, eb ≡ b2

b1
(T6.49)

The investor’s objective reads

Ψα = α1M1 + α2M2

=
³ec− αeb´M1 + αM2 (T6.50)

= ecM1 + α
³
M2 −ebM1

´
.

Its expected value reads

e ≡ E {Ψα} = ecE {M1}+ α
³
E {M2}−ebE {M1}

´
. (T6.51)

For the standard deviation we have the general expression:

d2 ≡ [Sd {Ψα}]2 = α0 Cov {M}α (T6.52)

=
³ec− αeb´2 [Sd {M1}]2 + α2 [Sd {M2}]2

+2α
³ec− αeb´ ρSd {M1}Sd {M2} ,

where ρ ≡ Cor {M1,M2}.
From (T6.51) and (T6.52) we derive the coordinates of a full allocation in

the first asset, which corresponds to α = 0:

e(1) = ecE {M1} , d(1) = ecSd {M1} ; (T6.53)

and a full allocation in the second asset, which corresponds to α = ec/eb:
e(2) =

eceb E {M2} , d(2) =
eceb Sd {M2} . (T6.54)

Without loss of generality, we make the assumption:

e(1) < e(2), d(1) < d(2) (T6.55)

In this notation we can more conveniently re-express the expected value
(T6.51) of a generic allocation as follows:
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e = e(1) +
αebec ³e(2) − e(1)

´
. (T6.56)

As for the standard deviation (T6.52) we obtain:

d2 =

Ã
1− αebec

!2 h
d(1)

i2
+

Ã
αebec
!2 h

d(2)
i2

(T6.57)

+2

Ã
1− αebec

!
ρ
αebec d(1)d(2),

If ρ = 1, (T6.57) simplifies to:

d2 =

"Ã
1− αebec

!
d(1) +

αebec d(2)

#2
, (T6.58)

which as long as

α ≥ − d(1)

d(2) − d(1)
eceb (T6.59)

in turn simplifies to

d =

Ã
1− αebec

!
d(1) +

αebec d(2). (T6.60)

This expression coupled with (T6.56) yield the allocation curve in the case
ρ = 1:

e = e(1) +
³
d− d(1)

´ e(2) − e(1)

d(2) − d(1)
, (T6.61)

which is a line through the coordinates of the two securities. When the allo-
cation α is such that (T6.59) holds as an equality, we obtain a zero-variance
portfolio whose expected value from (T6.56) reads:

e = e(1) − d(1)
e(2) − e(1)

d(2) − d(1)
< e(1). (T6.62)

Notice from (T6.59) that this situation corresponds to a negative position in
the second asset.
If ρ = −1, (T6.57) simplifies to

d2 =

"Ã
1− αebec

!
d(1) − αebec d(2)

#2
, (T6.63)

which as long as

α ≥ d(1)

d(1) + d(2)
eceb (T6.64)
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in turn simplifies to

d = −d(1) + αebec ³d(1) + d(2)
´
. (T6.65)

This expression coupled with (T6.56) yield the allocation curve in the case
ρ = −1:

e = e(1) +
³
d+ d(1)

´ e(2) − e(1)

d(2) + d(1)
. (T6.66)

When the allocation α is such that (T6.64) holds as an equality, we obtain a
zero-variance portfolio whose expected value from (T6.56) reads:

e = e(1) + d(1)
e(2) − e(1)

d(1) + d(2)
> e(1). (T6.67)

Notice that in this situation from (T6.64) the allocation in the second asset
is positive and from (T6.48) so is the allocation in the first asset:

α1 = ecµ1− d(1)

d(1) + d(2)

¶
. (T6.68)

6.5 The geometry of total-return- and
benchmark-allocation

Total return efficient allocations in the plane of relative
coordinates

Here we show that the efficient frontier is a translation of the relative frontier
in the plane of expected variance / expected value of relative returns. From
(6.193) the generic portfolio (6.175) on the efficient frontier satisfies:

Var {Ψα} =
A

D
E {Ψα}2 −

2wB

D
E {Ψα}+

w2C

D
(T6.69)

which can be re-written as follows:

Var
©
Ψα−β

ª
−Var {Ψβ}+ 2Cov {Ψα, Ψβ} =

A

D

¡
E
©
Ψα−β

ª
+E {Ψβ}

¢2
(T6.70)

−2wB
D

¡
E
©
Ψα−β

ª
+E {Ψβ}

¢
+

w2C

D

Expanding the products and rearranging, we obtain

Var
©
Ψα−β

ª
= −2Cov {Ψα, Ψβ}+

A

D
E
©
Ψα−β

ª2
+E

©
Ψα−β

ª ∙2A
D
E {Ψβ}−

2wB

D

¸
(T6.71)

+
A

D
E {Ψβ}2 −

2wB

D
E {Ψβ}+

w2C

D
+Var {Ψβ}
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From (6.194), (6.99) and (6.100) we obtain for a generic allocation α:

E {Ψα}− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

=
E {Ψα}− wE{PT+τ}0 Cov{PT+τ}−1PT

P0
T Cov{PT+τ}

−1PT

wE{PT+τ}0 Cov{PT+τ}−1 E{PT+τ}
P0
T Cov{PT+τ}

−1 E{PT+τ}
− wE{PT+τ}0 Cov{PT+τ}−1PT

P0
T Cov{PT+τ}

−1PT

=
E {Ψα}− wB

A
wC
B −

wB
A

=

¡
E {Ψα}− wB

A

¢
BA

wD

=
(E {Ψα−β}+E {Ψβ})BA− wB2

wD
(T6.72)

Using this result, from (6.175) and the budget constraint β0PT = w the
covariance reads:

Cov {Ψβ, Ψα} = β0Cov {PT+τ} (T6.73)µ
αMV +

E {Ψα}− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

(αSR −αMV )

¶
=

wβ0PT

A
+

E {Ψα}− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

µ
wβ0 E {PT+τ}

B
− wβ0PT

A

¶
=

w2

A
+

¡
E
©
Ψα−β

ª
+E {Ψβ}

¢
BA− wB2

D

µ
E {Ψβ}

B
− w

A

¶
Substituting (T6.72) in (T6.73) we obtain:

Var
©
Ψα−β

ª
= −2

"
w2

A
+

¡
E
©
Ψα−β

ª
+E {Ψβ}

¢
BA− wB2

D

µ
E {Ψβ}

B
− w

A

¶#

+
A

D
E
©
Ψα−β

ª2
+E

©
Ψα−β

ªµ2A
D
E {Ψβ}−

2wB

D

¶
+
A

D
E {Ψβ}2 −

2wB

D
E {Ψβ}+

w2C

D
+Var {Ψβ}

= −2w
2

A
−
2E

©
Ψα−β

ª
BA

D

µ
E {Ψβ}

B
− w

A

¶
(T6.74)

−2E {Ψβ}BA
D

µ
E {Ψβ}

B
− w

A

¶
+
2wB2

D

µ
E {Ψβ}

B
− w

A

¶
+
A

D
E
©
Ψα−β

ª2
+E

©
Ψα−β

ªµ2A
D
E {Ψβ}−

2wB

D

¶
+
A

D
E {Ψβ}2 −

2wB

D
E {Ψβ}+

w2C

D
+Var {Ψβ}

The first-degree terms in E
©
Ψα−β

ª
cancel, and other terms simplify to yield

the following expression:
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Var
©
Ψα−β

ª
=

A

D
E
©
Ψα−β

ª2
+ w2

µ
C

D
− 2

A
− 2B

2

DA

¶
(T6.75)

−A

D
E {Ψβ}2 +

2wB

D
E {Ψβ}+Var {Ψβ}

From the definition of D in (6.194)this simplifies further into:

Var
©
Ψα−β

ª
=

A

D
E
©
Ψα−β

ª2 − w2C

D
− A

D
E {Ψβ}2 (T6.76)

+
2wB

D
E {Ψβ}+Var {Ψβ}

or

Var
©
Ψα−β

ª
=

A

D
E
©
Ψα−β

ª2
+ δβ (T6.77)

where

δβ ≡ Var {Ψβ}−
A

D
E {Ψβ}2 +

2wB

D
E {Ψβ}−

w2C

D
. (T6.78)

Since the benchmark is not necessarily mean-variance efficient from (6.193)
we have that δβ ≥ 0 and the equality holds if and only if the benchmark is
mean-variance efficient.

Benchmark-relative efficient allocation in the plane of absolute
coordinates

From the equation of the relative frontier (6.199) which we re-write here

Var {Ψα−β} =
A

D
E {Ψα−β}2 , (T6.79)

and the linearity of the objective Ψα−β = Ψα − Ψβ we obtain

Var {Ψα} = 2Cov {Ψα, Ψβ}−Var {Ψβ} (T6.80)

+
A

D

³
E {Ψα}2 +E {Ψβ}2 − 2E {Ψα}E {Ψβ}

´
,

From (6.194), (6.99) and (6.100) we obtain for a generic allocation α:

E {Ψα}− E {Ψβ}
E {ΨαSR}− E {ΨαMV }

=
E {Ψα}− E {Ψβ}

wE{PT+τ}0 Cov{PT+τ}−1 E{PT+τ}
P0
T Cov{PT+τ}

−1 E{PT+τ}
− wE{PT+τ}0 Cov{PT+τ}−1PT

P0
T Cov{PT+τ}

−1PT

=
E {Ψα}− E {Ψβ}

wC
B −

wB
A

=
(E {Ψα}− E {Ψβ})BA

wD
(T6.81)
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Using this result, from (6.190) and the budget constraint β0PT = w the
covariance reads:

Cov {Ψβ, Ψα} = β0Cov {PT+τ}
µ
β +

E {Ψα}− E {Ψβ}
E {ΨαSR}− E {ΨαMV

} (αSR −αMV )

¶
= Var {Ψβ} (T6.82)

+
E {Ψα}− E {Ψβ}

E {ΨαSR}− E {ΨαMV }

µ
wβ0 E {PT+τ}

B
− wβ0PT

A

¶
= Var {Ψβ}+

(E {Ψα}− E {Ψβ})BA
D

µ
E {Ψβ}

B
− w

A

¶
Substituting this into (T6.80) and simplifying we obtain:

Var {Ψα} =
A

D
E {Ψα}2 −

2Bw

D
E {Ψα}+

w2C

D
+ δβ, (T6.83)

where δβ is defined in (T6.78).

6.6 Formulation of MV in terms of returns

If the investor has a positive initial budget WT > 0, then maximizing
E {WT+τ} in the original mean-variance problem (6.68) is equivalent to max-
imizing E {WT+τ} /WT . On the other hand, as Var {WT+τ} spans all the real
numbers v, so does Var {WT+τ} /W 2

T . Therefore, given that initial wealthWT

is not a random variable and given the definition of linear return on wealth
(6.81), the original mean-variance problem (6.68) is equivalent to the following
expression:

α (v) ≡ argmax
α∈C,Var{LWT,τ}=v

E
©
LWT,τ

ª
. (T6.84)

To solve (T6.84) we notice that the linear return on wealth is a function of
relative weights and linear returns on securities:

1 + LWT,τ ≡
WT+τ

WT
=

PN
n=1 αnP

(n)
T+τ

WT
(T6.85)

=
NX
n=1

αnP
(n)
T

WT

P
(n)
T+τ

P
(n)
T

=
NX
n=1

wn

³
1 + L

(n)
T,τ

´
= 1 +w0LT,τ ,

where we have used the budget constraint α0PT = WT and the following
identity:

NX
n=1

wn =
NX
n=1

αnP
(n)
T

α0PT
= 1. (T6.86)



Technical Appendix to Chapter 6 T-125

Therefore for the expected value we have:

E
©
LWT,τ

ª
= E {w0LT,τ} = w0 E {LT,τ} (T6.87)

Similarly, for the variance we obtain:

Var
©
LWT,τ

ª
= Var {w0LT,τ} = w0Cov {LT,τ}w (T6.88)

Therefore, due to (T6.87) and (T6.88) problem (T6.84) reads:

α (v) ≡ argmax
α∈C,w0(α) Cov{LT,τ}w(α)=v

w0 (α) E {LT,τ} , (T6.89)

where w as a function of α is obtained by inverting (6.86). On the other
hand, it is easier to convert the constraints C that hold for α into constraints
that hold for w (for ease of exposition we keep denoting them as C) and then
maximize (T6.89) with respect to w:

w (v) ≡ argmax
w∈C,w0 Cov{LT,τ}w=v

w0 E {LT,τ} , (T6.90)

The original mean-variance curve is simply α (v) ≡ α (w (v)) obtained from
(6.86).
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Technical appendix to Chapter 7

7.1 Mahalanobis square distance of normal variables

Consider a generic multivariate normal random variable:

X ∼ N(µ,Σ) . (T7.1)

Consider the spectral decomposition (3.149) of the covariance matrix:

Σ ≡ EΛE0, (T7.2)

where Λ is the diagonal matrix of the respective eigenvalues sorted in decreas-
ing order:

Λ ≡ diag (λ1, . . . , λN ) . (T7.3)

and the matrix E is the juxtaposition of the eigenvectors, which represents a
rotation:

E ≡
³
e(1), . . . , e(N)

´
. (T7.4)

Now consider the new random variable:

Y ≡ Λ− 1
2E0 (X− µ) . (T7.5)

From (2.163) we obtain
Y ∼ N(0, I) . (T7.6)

Therefore from (1.106) and (1.109) it follows:

NX
n=1

Y 2
n ∼ χ2N . (T7.7)

On the other hand
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NX
n=1

Y 2
n = Y

0Y (T7.8)

=
h
Λ−

1
2E0 (X− µ)

i0 h
Λ−

1
2E0 (X− µ)

i
= (X− µ)0EΛ−1E0 (X− µ)
= (X− µ)0Σ−1 (X− µ) .

Therefore for the Mahalanobis distance (2.61) of the variableX from the point
µ through the metric Σ we obtain:

Ma2 (X,µ,Σ) ≡ (X− µ)0Σ−1 (X− µ) ∼ χ2N . (T7.9)

From the definition (1.7) of cumulative distribution function:

Fχ2N (q) ≡ P
©
Ma2 (X,µ,Σ) ≤ q

ª
(T7.10)

= P
©
(X− µ)0Σ−1 (X− µ) ≤ q

ª
.

By applying the quantile function (1.17) to both sides of the above equality
we obtain:

p = P
n
(X− µ)0Σ−1 (X− µ) ≤ (qpN )

2
o
, (T7.11)

where qpN is the square root of the quantile of the chi-square distribution with
N degrees of freedom relative to a confidence level p:

qpN ≡
q
Qχ2N

(p). (T7.12)

Therefore, from the definition of the ellipsoid:

Eqµ,Σ ≡
©
x such that (x− µ)0Σ−1 (x− µ) ≤ q2

ª
(T7.13)

we obtain:
P
n
X ∈ Eq

p
N

µ,Σ

o
= p. (T7.14)

7.2 NIW location-dispersion: posterior distribution

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
By the NIW (normal-inverse-Wishart) assumption (7.20)-(7.21) on the

prior
Ω ≡ Σ−1 ∼W

³
ν0, (ν0Σ0)

−1
´

(T7.15)

and
µ|Ω ∼ N

³
µ0, (T0Ω)

−1
´
. (T7.16)
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Thus from (2.156) and (2.224) the joint prior pdf of µ and Ω is

fpr (µ,Ω) = fpr (µ|Ω) fpr (Ω) (T7.17)

= γ1 |Ω|
1
2 e−

1
2 (µ−µ0)

0(T0Ω)(µ−µ0)

|Σ0|
ν0
2 |Ω|

ν0−N−1
2 e−

1
2 tr(ν0Σ0Ω).

As for the pdf of current information (7.13), from (4.102) the sample mean
is normally distributed bµ ∼ N³µ, [TΩ]−1´ (T7.18)

and from (4.103) the distribution of the sample covariance is

T bΣ ∼W(T − 1,Σ) (T7.19)

and these variables are independent. Therefore from (2.156) and (2.224) the
pdf of current information from time series f (iT |µ,Ω) as summarized by
iT ≡

³bµ, T bΣ´ conditioned on knowledge of the parameters (µ,Ω) reads:
f (iT |µ,Ω) = γ2 |Ω|

1
2 e−

1
2 (µ−µ)

0(TΩ)(µ−µ) (T7.20)

|Ω|
T−1
2

¯̄̄ bΣ¯̄̄T−N−22

e−
1
2 tr(TΩΣ)

Thus, after trivial regrouping and simplifications, the joint pdf of current
information and the parameters reads:

f (iT ,µ,Ω) = f (iT |µ,Ω) fpr (µ,Ω) = (T7.21)

γ3e
− 1
2{(µ−µ0)0(T0Ω)(µ−µ0)+(µ−µ)0(TΩ)(µ−µ)}¯̄̄ bΣ¯̄̄T−N−22 |Σ0|

ν0
2 |Ω|

T+ν0−N
2

e−
1
2 tr(TΣΩ+ν0Σ0Ω)

After expanding and rearranging, the terms in the curly brackets in the second
row can be re-written as follows:

{· · · } = (µ− µ1)
0
T1Ω (µ− µ1) + tr (ΦΩ) (T7.22)

where

T1 ≡ T0 + T

µ1 ≡
T0µ0 + T bµ
T0 + T

(T7.23)

Φ ≡ TT0
T0 + T

(bµ− µ0) (bµ− µ0)0
Therefore, defining
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Σ1 ≡
T bΣ+ ν0Σ0 +Φ

ν1
, (T7.24)

where ν1 is a number yet to be defined, we can re-write the joint pdf (T7.21)
as follows:

f (iT ,µ,Ω) = γ3e
− 1
2 (µ−µ1)

0T1Ω(µ−µ1) (T7.25)¯̄̄ bΣ¯̄̄T−N−22 |Σ0|
ν0
2 |Ω|

T+ν0−N
2 e−

1
2 tr(ν1Σ1Ω)

At this point we can perform the integration over (µ,Ω) to find the marginal
pdf f (iT )

f (iT ) =

Z
f (iT ,µ,Ω) dµdΩ

= γ4

Z ½Z
γ5 |Ω|

1
2 e−

1
2 (µ−µ1)

0T1Ω(µ−µ1)dµ

¾
(T7.26)¯̄̄ bΣ¯̄̄T−N−22 |Σ0|

ν0
2 |Ω|

T+ν0−N−1
2 e−

1
2 tr(ν1Σ1Ω)dΩ

= γ4

Z ¯̄̄ bΣ¯̄̄T−N−22 |Σ0|
ν0
2 |Ω|

T+ν0−N−1
2 e−

1
2 tr(ν1Σ1Ω)dΩ,

where we have used the fact that the term in curly brackets is the integral of
a normal pdf (2.156) over the entire space and thus sum to one. Defining now

ν1 ≡ T + ν0 (T7.27)

we write (T7.26) as follows:

f (iT ) = γ6

¯̄̄ bΣ¯̄̄T−N−22 |Σ0|
ν0
2 |Σ1|−

ν1
2½Z

γ7 |Σ1|
ν1
2 |Ω|

ν1−N−1
2 e−

1
2 tr(ν1Σ1Ω)dΩ

¾
(T7.28)

= γ6

¯̄̄ bΣ¯̄̄T−N−22 |Σ0|
ν0
2 |Σ1|−

ν1
2 ,

where we have used the fact that the term in curly brackets is the integral of
a Wishart pdf (2.224) over the entire space and thus sum to one.
Finally, we obtain the posterior pdf (7.15) by dividing the joint pdf (T7.25)

by the marginal pdf (T7.28):

fpo (µ,Ω) ≡
f (iT ,µ,Ω)

f (iT )

γ7 |Ω|
1
2 e−

1
2 (µ−µ1)

0T1Ω(µ−µ1) (T7.29)

|Σ1|
ν1
2 |Ω|

ν1−N−1
2 e−

1
2 tr(ν1Σ1Ω)
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From (2.156) and (2.224) we see that this means:

µ|Ω ∼ N
³
µ1, [T1Ω]

−1
´

(T7.30)

and
Ω ∼W

³
ν1, (ν1Σ1)

−1
´
. (T7.31)

In other words,

µ|Σ ∼ N
µ
µ1,
Σ−1

T1

¶
(T7.32)

and

Σ−1 ∼W
µ
ν1,
Σ−11
ν1

¶
. (T7.33)

7.3 NIW location-dispersion: mode and modal dispersion

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
We consider the notation for the NIW (normal-inverse-Wishart) assump-

tions (7.32)-(7.33) on the posterior, although of course the proof applies ver-
batim to the prior, or any NIW distribution. Thus assume

Σ−1 ≡ Ω ∼W
³
ν1, (ν1Σ1)

−1
´
. (T7.34)

and
µ|Ω ∼ N

³
µ1, [T1Ω]

−1
´

(T7.35)

The parameter in this context are

θ ≡
¡
µ0, vech [Ω]0

¢0
. (T7.36)

From (2.156) and (2.224) the joint NIW (normal-inverse-Wishart) probability
density function of µ and Ω reads:

f (θ) = f (µ|Ω) f (Ω) (T7.37)

= γ1 |Ω|
ν1−N

2 e−
1
2 tr(ν1Σ1Ω)e−

T1
2 (µ−µ1)

0Ω(µ−µ1)

To determine the mode of this distribution

eθ ≡ µeµ0, vech heΩi0¶0 (T7.38)

we impose the first-order conditions on the logarithm of the joint probability
density function (T7.37).
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ln f ≡ γ2 +
ν1 −N

2
ln |Ω|− 1

2
tr
©
ν1Σ1Ω+ T1 (µ− µ1) (µ− µ1)

0Ω
ª
.

(T7.39)
Computing the first variation and using (A.124) we obtain:

d ln f ≡ −1
2
tr
©¡
− (ν1 −N)Ω−1 + ν1Σ1 + T1 (µ− µ1) (µ− µ1)

0¢ dΩª
− tr

©
T1 (µ− µ1)

0Ωdµ
ª
. (T7.40)

Therefore
d ln f ≡ tr {GΩdΩ}+ tr {Gµdµ} , (T7.41)

where

GΩ ≡
1

2

£
(ν1 −N)Ω−1 − ν1Σ1 − T1 (µ− µ1) (µ− µ1)

0¤ (T7.42)

Gµ ≡ −T1 (µ− µ1)
0
Ω (T7.43)

Using (A.120) and the duplication matrix (A.113) to get rid of the redundan-
cies of dΩ in (T7.41) we obtain:

d ln f = vec [G0
Ω]
0
DN vech [dΩ] + vec

£
G0
µ

¤0
vec [dµ] (T7.44)

Therefore from (A.116) and (A.118) we obtain:

∂ ln f

∂µ
= vec

£
G0
µ

¤
= −T1Ω (µ− µ1) . (T7.45)

Similarly, from (A.116) and (A.118) we obtain:

∂ ln f

∂ vech [Ω]
= D0

N vec [G
0
Ω] (T7.46)

=
1

2
D0
N vec

£
(ν1 −N)Ω−1 − ν1Σ1 − T1 (µ− µ1) (µ− µ1)

0¤ .
Applying the first-order conditions to (T7.45) and (T7.46) we obtain the mode
of the location parameter: eµ ≡ µ1 (T7.47)

and the mode of the dispersion parameter:eΩ−1 = ν1
ν1 −N

Σ1. (T7.48)

To compute the modal dispersion we differentiate (T7.40). Using (A.126)
the second differential reads:

d (d ln f) = −1
2
tr
©¡
(ν1 −N)Ω−1 (dΩ)Ω−1 + 2T1dµ (µ− µ1)

0¢
dΩ
ª

− tr {T1dµ0Ωdµ}− tr
©
T1 (µ− µ1)

0 dΩdµ
ª

(T7.49)

= −ν1 −N

2
tr
©
Ω−1 (dΩ)Ω−1dΩ

ª
−T1dµ0Ωdµ− 2T1 tr

©
(µ− µ1)

0
dΩdµ

ª
.
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The first term can be expressed using (A.107), (A.106) the duplication matrix
(A.113) to get rid of the redundancies of dΩ as follows:

tr
©
Ω−1 (dΩ)Ω−1dΩ

ª
= vec [dΩ]0 vec

£
Ω−1 (dΩ)Ω−1

¤
= vec [dΩ]

¡
Ω−1 ⊗Ω−1

¢
vec [dΩ] (T7.50)

= vec [dΩ]
¡
Ω−1 ⊗Ω−1

¢
vec [dΩ]

= vech [dΩ]D0
N

¡
Ω−1 ⊗Ω−1

¢
DN vech [dΩ] .

We are interested in the Hessian evaluated in the mode, where (T7.47) holds
and thus the last term in (T7.49) cancels:

d (d ln f)|µ,Ω = −
(ν1 −N)

2
vech [dΩ]D0

N

³eΩ−1 ⊗ eΩ−1´DN vech [dΩ]

−T1dµ0 eΩdµ. (T7.51)

Therefore from (A.117) and (A.121) and substituting back (T7.48) we obtain:

∂2 ln f

∂µ∂µ0

¯̄̄̄
µ,Ω

= −T1
ν1 −N

ν1
Σ−11 (T7.52)

∂2 ln f

∂ vech [Ω] ∂µ0

¯̄̄̄
µ,Ω

= 0(N(N+1)/2)2×N2 (T7.53)

∂2 ln f

∂ vech (Ω) ∂ vech (Ω)
0

¯̄̄̄
µ,Ω

= −1
2

ν21
ν1 −N

D0
N (Σ1 ⊗Σ1)DN (T7.54)

Finally the modal dispersion reads:

MDis {θ} ≡
Ã
− ∂2 ln f

∂ (µ, vech (Ω)) ∂ (µ, vech (Ω))0

¯̄̄̄
µ,Ω

!−1
(T7.55)

=

µ
Sµ 0N2×(N(N+1)/2)2

0(N(N+1)/2)2×N2 SΣ

¶
,

where

Sµ ≡
1

T1

ν1
ν1 −N

Σ1 (T7.56)

SΣ ≡
2

ν1

ν1 −N

ν1
[D0

N (Σ1 ⊗Σ1)DN ]
−1 . (T7.57)

7.4 IW dispersion: mode and modal dispersion

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
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We consider the notation for the IW (inverse-Wishart) assumptions (7.33)
on the posterior, although of course the proof applies verbatim to the prior,
or any IW distribution. Thus assume

Σ ∼ IW (ν1, ν1Σ1) . (T7.58)

From (2.233) the probability density function of Σ reads:

f (Σ) =
1

κ
|ν1Σ1|

ν1
2 |Σ|−

ν1+N+1
2 e−

1
2 tr(ν1Σ1Σ

−1). (T7.59)

To determine the mode of this distribution we impose the first-order conditions
on the logarithm of the joint probability density function (T7.59).

ln f ≡ γ2 −
ν1 +N + 1

2
ln |Σ|− 1

2
tr
©
ν1Σ1Σ

−1ª . (T7.60)

Computing the first variation and using (A.124) and (A.126):

d ln f = −ν1 +N + 1

2
tr
¡
Σ−1dΣ

¢
+
1

2
tr
©
ν1Σ1Σ

−1 (dΣ)Σ−1
ª

(T7.61)

= tr

µ
1

2

¡
ν1Σ

−1Σ1Σ
−1 − (ν1 +N + 1)Σ−1

¢
dΣ

¶
where

G ≡ 1
2

¡
ν1Σ

−1Σ1Σ
−1 − (ν1 +N + 1)Σ−1

¢
. (T7.62)

Using (A.120) and the duplication matrix (A.113) to get rid of the redundan-
cies of dΣ we obtain:

d ln f = vec [G0]
0
DN vech [dΣ] (T7.63)

Therefore from (A.116) and (A.118) we obtain:

∂ ln f

∂ vech [Σ]
= D0

N vec [G
0] (T7.64)

=
1

2
D0
N vec

£
ν1Σ

−1Σ1Σ
−1 − (ν1 +N + 1)Σ−1

¤
.

Applying the first-order conditions to (T7.64) we obtain the mode:

ModiT ,eC =
ν1

ν1 +N + 1
vech [Σ1] . (T7.65)

To compute the modal dispersion we differentiate (T7.61). Using (A.126)
we obtain:
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d (d ln f) = −1
2
tr
¡
ν1Σ

−1 (dΣ)Σ−1Σ1Σ
−1dΣ

¢
−1
2
tr
¡
ν1Σ

−1Σ1Σ
−1 (dΣ)Σ−1dΣ

¢
(T7.66)

+
1

2
tr
¡
(ν1 +N + 1)Σ−1 (dΣ)Σ−1dΣ

¢
= −ν1 tr

¡
(dΣ)Σ−1 (dΣ)Σ−1Σ1Σ

−1¢
+
ν1 +N + 1

2
tr
¡
(dΣ)Σ−1 (dΣ)Σ−1

¢
Using (A.107) and (A.106) and the duplication matrix (A.113) to get rid of
the redundancies of dΣ we can write:

a ≡ tr
¡
(dΣ)Σ−1 (dΣ)Σ−1

¢
= vec [dΣ]0 vec

£
Σ−1 (dΣ)Σ−1

¤
(T7.67)

= vec [dΣ]
0 ¡
Σ−1 ⊗Σ−1

¢
vec [dΣ]

= vech [dΣ]
0
D0
N

¡
Σ−1 ⊗Σ−1

¢
DN vech [dΣ] .

Similarly, using (A.107) and (A.106) and the duplication matrix (A.113) to
get rid of the redundancies of dΣ we can write:

b ≡ tr
¡
(dΣ)Σ−1 (dΣ)Σ−1Σ1Σ

−1¢
= vec [dΣ]

0
vec

£
Σ−1 (dΣ)Σ−1Σ1Σ

−1¤ (T7.68)

= vec [dΣ]
0 ¡¡
Σ−1Σ1Σ

−1¢⊗Σ−1¢ vec [dΣ]
= vech [dΣ]0D0

N

¡¡
Σ−1Σ1Σ

−1¢⊗Σ−1¢DN vech [dΣ] .

Therefore, substituting (T7.67) and (T7.68) in (T7.66) we obtain

d (d ln f) = −ν1b+
ν1 +N + 1

2
a

= vech [dΣ]
0
H vech [dΣ] , (T7.69)

where

H ≡ −ν1D0
N

¡¡
Σ−1Σ1Σ

−1¢⊗Σ−1¢DN (T7.70)

+
ν1 +N + 1

2
D0
N

¡
Σ−1 ⊗Σ−1

¢
DN

We are interested in the Hessian evaluated in the mode, where (T7.65)
holds, i.e. in the point

Σ ≡ ν1
ν1 +N + 1

Σ1. (T7.71)

In this point
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d (d ln f)|Mod = vech [dΣ]
0
H|Mod vech [dΣ] , (T7.72)

where

H|Mod ≡ −ν1
µ
ν1 +N + 1

ν1

¶3
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN (T7.73)

+
ν1 +N + 1

2

µ
ν1 +N + 1

ν1

¶2
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

= −1
2

(ν1 +N + 1)3

ν21
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN .

Therefore

∂2 ln f [Σ]

∂ vech [Σ] ∂ vech [Σ]0

¯̄̄̄
Mod

= −1
2

(ν1 +N + 1)
3

ν21
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

(T7.74)
From the definition of modal dispersion (2.65)

MDis ≡ −
µ

∂2 ln f [Σ]

∂ vech [Σ] ∂ vech [Σ]
0

¯̄̄̄
Mod

¶−1
(T7.75)

=
2ν21

(ν1 +N + 1)3
¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1

7.5 NIW location-dispersion: marginal distribution of
location

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
We consider the notation for the NIW (normal-inverse-Wishart) assump-

tions (7.20)-(7.21) on the prior, although of course the proof applies verbatim
to the posterior, or any NIW distribution. Thus we assume:

Ω ≡ Σ−1 ∼W
³
ν0, (ν0Σ0)

−1
´

(T7.76)

and
µ|Ω ∼ N

³
µ0, (T0Ω)

−1
´
, (T7.77)

From (2.156) and (2.224) the joint prior pdf of µ and Ω is

f (µ,Ω) = f (µ|Ω) f (Ω) (T7.78)

= γ1 |Ω|
1
2 e−

1
2 (µ−µ0)

0(T0Ω)(µ−µ0)

|Σ0|
ν0
2 |Ω|

ν0−N−1
2 e−

1
2 tr(ν0Σ0Ω),
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To determine the unconditional pdf of µ we have to compute the marginal in
(T7.78). Defining

Σ2 ≡ ν0Σ0 + T0 (µ− µ0) (µ− µ0)
0 (T7.79)

we obtain

f (µ) ≡
Z

f (µ,Ω) dΩ

=

Z
γ1 |Σ0|

ν0
2 |Ω|

ν0−N
2 e−

1
2 tr(Σ2Ω)dΩ (T7.80)

= γ2 |Σ0|
ν0
2 |Σ2|−

ν0+1
2½Z

γ3 |Σ2|
ν0+1
2 |Ω|

ν0−N
2 e−

1
2 tr(Σ2Ω)dΩ

¾
= γ2 |Σ0|

ν0
2 |Σ2|−

ν0+1
2 ,

where we have used the fact that the term in curly brackets is the integrals
of the Wishart pdf (2.224) over the entire space and thus it sums to one.
Thus substituting again (T7.79) we obtain that the marginal pdf (T7.80)

reads:

f (µ) = γ2 |Σ0|
ν0
2
¯̄
ν0Σ0 + T0 (µ− µ0) (µ− µ0)

0¯̄− ν0+1
2 , (T7.81)

From (A.91) we obtain the following identity:

|Σ|
ν0
2 |Σ+ vv0|−

ν0+1
2 = |Σ|

ν0
2
£
|Σ|

¯̄
I+Σ−1vv0

¯̄¤− ν0+1
2 (T7.82)

= |Σ|
1
2
¯̄
I+Σ−1vv0

¯̄− ν0+1
2

= |Σ|−
1
2
¡
1 + v0Σ−1v

¢− ν0+1
2

Applying this result to

v ≡ (µ− µ0)
p
T0 (T7.83)

Σ ≡ ν0Σ0, (T7.84)

we reduce (T7.81) to the following expression:

f (µ) = γ4

¯̄̄̄
Σ0
T0

¯̄̄̄− 1
2

¯̄̄̄
¯1 + 1

ν0
(µ− µ0)

0
µ
Σ0
T0

¶−1
(µ− µ0)

¯̄̄̄
¯
− ν0+1

2

. (T7.85)

By comparison with (2.188) we see that this is a multivariate Student t dis-
tribution with the following parameters:

µ ∼ St
µ
ν0,µ0,

Σ0
T0

¶
. (T7.86)
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7.6 NIW factor loadings-dispersion: posterior
distribution

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
By the NIW (normal-inverse-Wishart) assumptions (4.129)-(7.59) on the

prior we have:

Ω ≡ Σ−1 ∼W
³
ν0, (ν0Σ0)

−1
´

(T7.87)

and

B|Σ ∼ N
µ
B0,
Σ

T0
,Σ−1F,0

¶
, (T7.88)

or, in terms of Ω ≡ Σ−1:

B|Ω ∼ N
³
B0, (T0Ω)

−1 ,Σ−1F,0

´
. (T7.89)

Thus from (2.182) and (2.224) the joint prior pdf of B and Ω is:

fpr (B,Ω) = fpr (B|Ω) fpr (Ω)
= γ1 |Ω|

K
2 |ΣF,0|

N
2 e−

1
2 tr{(T0Ω)(B−B0)ΣF,0(B−B0)

0} (T7.90)

|Σ0|
ν0
2 |Ω|

ν0−N−1
2 e−

1
2 tr(ν0Σ0Ω),

The current information conditioned on the parameters B and Ω is sum-
marized by the OLS factor loadings and sample covariance.

iT ≡
nbB, bΣo . (T7.91)

In (4.129) we showed that bB is distributed as follows:

bB ∼ NµB, Σ
T
, bΣ−1F ¶

, (T7.92)

and in (4.130) we showed that T bΣ is distributed as follows:
T bΣ ∼W(T −K,Σ) . (T7.93)

Furthermore, we showed that bB and T bΣ are independent. Therefore, from
(2.182) and (2.224) we have

f (iT |B,Ω) = f
³bB|B,Ω´ f ³T bΣ|B,Ω´

= γ2 |TΩ|
K
2

¯̄̄ bΣF

¯̄̄N
2

e−
1
2 tr{(TΩ)(B−B)ΣF (B−B)0} (T7.94)

|Ω|
T−K
2

¯̄̄
T bΣ¯̄̄T−K−N−12

e−
1
2 tr(ΩTΣ).
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Thus, after trivial regrouping and simplifications, the joint pdf of current
information and the parameters reads:

f (iT ,B,Ω) = f (iT |B,Ω) fpr (B,Ω) (T7.95)

= γ3

¯̄̄ bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,0|

N
2 |Σ0|

ν0
2 |Ω|

T+K+ν0−N−1
2

e−
1
2 tr{Ω(B−B0)T0ΣF,0(B−B0)

0+Ω(B−B)TΣF (B−B)
0}

e−
1
2 tr(Ω(TΣ+ν0Σ0))

We show below that the terms in curly brackets in (T7.95) can be re-written
as follows:

{· · · } = T1Ω (B−B1)ΣF,1 (B−B1)0 +ΩΦ, (T7.96)

where

T1 ≡ T0 + T (T7.97)

ΣF,1 ≡
T0ΣF,0 + T bΣF

T1
(T7.98)

B1 ≡
³
B0T0ΣF,0 + bBT bΣF

´³
T0ΣF,0 + T bΣF

´−1
(T7.99)

Φ ≡ B0T0ΣF,0B
0
0 + bBT bΣF

bB0 (T7.100)

−
³
B0T0ΣF,0 + bBT bΣF

´³
T0ΣF,0 + T bΣF

´−1 ³
T0ΣF,0B

0
0 + T bΣF

bB0´ .
Indeed, defining D ≡ T0ΣF,0 and C ≡ T bΣF we can write the expression in
curly brackets (T7.96) as ΩA, where

A ≡ (B−B0)D (B−B0)0 +
³
B− bB´C³B− bB´0

= BDB0 +B0DB
0
0 − 2BDB00 +BCB0 + bBCbB0 − 2BCbB0

= B (D+C)B0 +B0DB
0
0 − 2BDB00 + bBCbB0 − 2BCbB0 (T7.101)

= B (D+C)B0 +B1 (D+C)B
0
1 − 2B (D+C)B01

+B0DB
0
0 − 2BDB00 + bBCbB0 − 2BCbB0

−B1 (D+C)B01 + 2B (D+C)B01
= (B−B1) (D+C) (B−B1)0

+B0DB
0
0 + bBCbB0 − 2BDB00 − 2BCbB0

−B1 (D+C)B01 + 2B (D+C)B01

defining
B1 ≡

³
B0D+ bBC´ (D+C)−1 (T7.102)

the above simplifies to
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A = (B−B1) (D+C) (B−B1)0 (T7.103)

+B0DB
0
0 + bBCbB0 − ³B0D+ bBC´ (D+C)−1 ³B0D+ bBC´0 ,

which proves the result.
Substituting (T7.96) in (T7.95) and defining

ν1 ≡ T + ν0 (T7.104)

Σ1 ≡
T bΣ+ ν0Σ0 +Φ

ν1
(T7.105)

we obtain:

f (iT ,B,Ω) = f (iT |B,Ω) fpr (B,Ω) (T7.106)

= γ3

¯̄̄ bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,0|

N
2 |Σ0|

ν0
2 |Ω|

T+K+ν0−N−1
2

e−
1
2 tr{T1Ω(B−B1)ΣF,1(B−B1)

0}e− 1
2 tr(Ων1Σ1).

At this point we can perform the integration over (B,Ω) to determine the
marginal pdf f (iT )

f (iT ) =

Z
f (iT ,B,Ω) dBdΩ (T7.107)

= γ4

Z ½Z
γ5 |Ω|

K
2 |ΣF,1|

N
2 e−

1
2 tr{T1Ω(B−B1)ΣF,1(B−B1)

0}dB
¾

¯̄̄bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,1|−

N
2 |ΣF,0|

N
2

|Σ0|
ν0
2 |Ω|

ν1−N−1
2 e−

1
2 tr(Ων1Σ1)dΩ

= γ4

Z ¯̄̄ bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,1|−

N
2 |ΣF,0|

N
2

|Σ0|
ν0
2 |Ω|

ν1−N−1
2 e−

1
2 tr(Ων1Σ1)dΩ,

where we used the fact that the expression in curly brackets is the integral of
the pdf of a matrix-valued normal distribution (2.182) over the entire space
and thus sums to one. Thus we can write (T7.107) as follows:

f (iT ) = γ5

½Z
γ6 |Σ1|

ν1
2 |Ω|

ν1−N−1
2 e−

1
2 tr(ν1Σ1Ω)dΩ

¾
¯̄̄bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,1|−

N
2 |ΣF,0|

N
2 |Σ0|

ν0
2 |Σ1|−

ν1
2 (T7.108)

= γ5

¯̄̄ bΣF

¯̄̄N
2
¯̄̄ bΣ¯̄̄T−K−N−12 |ΣF,1|−

N
2 |ΣF,0|

N
2 |Σ0|

ν0
2 |Σ1|−

ν1
2 ,

where we used the fact that the term in curly brackets is the integral of the
pdf of a Wishart distribution (2.224) over the entire space and thus sums to
one.
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Finally, we obtain the posterior pdf (7.15) by dividing the joint pdf by the
marginal pdf:

fpo (B,Ω) ≡
f (iT ,B,Ω)

f (iT )

= γ7 |ΣF,1|
N
2 |Σ1|

ν1
2 |Ω|

K+ν1−N−1
2 (T7.109)

e−
1
2 tr{T1Ω(B−B1)ΣF,1(B−B1)

0}e− 1
2 tr(Ων1Σ1)

= γ8 |Ω|
K
2 |ΣF,1|

N
2 e−

1
2 tr{T1Ω(B−B1)ΣF,1(B−B1)

0}

γ9 |Σ1|
ν1
2 |Ω|

ν1−N−1
2 e−

1
2 tr(Ων1Σ1)

From (2.182) and (2.224) this proves that:

B|Ω ∼ N
³
B1, (ΩT1)

−1 ,Σ−1F,1

´
(T7.110)

and
Ω ∼W

³
ν1, (ν1Σ1)

−1
´
. (T7.111)

Recalling that Σ−1 ≡ Ω this means:

Σ−1 ∼W
µ
ν1,
Σ−11
ν1

¶
(T7.112)

and

B|Σ ∼ N
µ
B1,
Σ

T1
,Σ−1F,1

¶
. (T7.113)

7.7 NIW factor loadings-dispersion: mode and modal
dispersion

First of all, a comment on the notation to follow: we will denote here
γ1, γ2, . . . simple normalization constants. We consider the notation for the
NIW (normal-inverse-Wishart) assumptions (7.71)-(7.72) on the posterior, al-
though of course the proof applies verbatim to the prior, or any NIW distri-
bution. Thus assume
The parameter in this context are

θ ≡
¡
vec [B]0 , vech [Ω]0

¢0
. (T7.114)

Assume that B and Σ are joint NIW (normal-inverse-Wishart) distributed,
i.e.:

Σ−1 ≡ Ω ∼W
³
ν1, (ν1Σ1)

−1
´
. (T7.115)

and
B|Ω ∼ N

³
B1, (T1Ω)

−1
,Σ−1F,1

´
(T7.116)
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From from (2.182) and (2.224) the joint NIW (normal-inverse-Wishart) prob-
ability density function of B and Ω reads:

f (B,Ω) = f (B|Ω) f (Ω) (T7.117)

= γ1 |ΣF,1|
N
2 |Σ1|

ν1
2 |Ω|

ν1+K−N−1
2

e−
1
2 tr{Ω[(B−B1)T1ΣF,1(B−B1)

0+ν1Σ1]}

To determine the mode of this distribution

eθ ≡ µvec heBi0 , vech heΩi0¶0 (T7.118)

we impose the first-order condition on the logarithm of the joint probability
density function (T7.117):

ln f ≡ γ2 +
ν1 +K −N − 1

2
ln |Ω| (T7.119)

−1
2
tr
©£
(B−B1)T1ΣF,1 (B−B1)0 + ν1Σ1

¤
Ω
ª

To compute the first variation we use (A.124) obtaining:

d ln f ≡ 1

2
tr
©£
(ν1 +K −N − 1)Ω−1 −A

¤
dΩ
ª

(T7.120)

− tr
©
T1ΣF,1 (B−B1)0ΩdB

ª
,

where
A ≡ (B−B1)T1ΣF,1 (B−B1)0 + ν1Σ1 (T7.121)

Therefore
d ln f ≡ tr {GΩdΩ}+ tr {GBdB} , (T7.122)

where

GΩ ≡
1

2

£
(ν1 +K −N − 1)Ω−1 −A

¤
(T7.123)

GB ≡ −T1ΣF,1 (B−B1)0Ω (T7.124)

Using (A.120) and the duplication matrix (A.113) to get rid of the redundan-
cies of dΩ in (T7.122) we obtain:

d ln f = vec [G0
Ω]
0
DN vech [dΩ] + vec [G

0
B]
0
vec [dB] (T7.125)

Therefore from (A.116) and (A.118) we obtain:

∂ ln f

∂ vec [B]
= vec [G0

B] = −T1 vec [Ω (B−B1)ΣF,1] . (T7.126)

Similarly, from (A.116) and (A.118) we obtain:
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∂ ln f

∂ vech [Ω]
= D0

N vec [G
0
Ω] (T7.127)

=
1

2
D0
N vec

£
(ν1 +K −N − 1)Ω−1 −A

¤
.

Applying the first-order conditions to (T7.126) and (T7.127) and re-substituting
(T7.121) we obtain the mode of the factor loadings:eB ≡ B1, (T7.128)

and the mode of the dispersion parameter:eΩ−1 = ν1
ν1 +K −N − 1Σ1. (T7.129)

To compute the modal dispersion we differentiate (T7.120). Using (A.126)
the second differential reads:

d (d ln f) = −1
2
tr
©£
(ν1 +K −N − 1)Ω−1 (dΩ)Ω−1 + 2T1dBΣF,1 (B−B1)0

¤
dΩ
ª

− tr {T1ΣF,1dB
0ΩdB}− tr

©
T1ΣF,1 (B−B1)0 dΩdB

ª
= −ν1 +K −N − 1

2
tr
©
Ω−1 (dΩ)Ω−1dΩ

ª
(T7.130)

−T1 tr {ΣF,1dB
0ΩdB}− 2T1 tr

©
ΣF,1 (B−B1)0 dΩdB

ª
,

The first term in (T7.130) can be expressed using (A.107), (A.106) the dupli-
cation matrix (A.113) to get rid of the redundancies of dΩ as follows:

tr
©
Ω−1 (dΩ)Ω−1dΩ

ª
= vec [dΩ]0 vec

£
Ω−1 (dΩ)Ω−1

¤
= vec [dΩ]

¡
Ω−1 ⊗Ω−1

¢
vec [dΩ] (T7.131)

= vec [dΩ]
¡
Ω−1 ⊗Ω−1

¢
vec [dΩ]

= vech [dΩ]D0
N

¡
Ω−1 ⊗Ω−1

¢
DN vech [dΩ] .

Similarly, the second term in (T7.130) can be expressed using (A.107),
(A.106), (A.108) and (A.109):

tr {ΣF,1dB
0ΩdB} = tr {dBΣF,1dB

0Ω} (T7.132)

= vec [dB0]
0
vec [ΣF,1dB

0Ω]

= (KKN vec [dB])
0
(Ω⊗ΣF,1) (KKN vec [dB])

= vec [dB]
0
KNK (Ω⊗ΣF,1)KKN vec [dB] .

Since we are interested in the Hessian evaluated in the mode, where (T7.128)
holds. Therefore the last term in (T7.130) cancels and we can express the
second differential (T7.130) as follows:

d (d ln f)|B,Ω = −
ν1 +K −N − 1

2
vech [dΩ]D0

N

³eΩ−1 ⊗ eΩ−1´DN vech [dΩ]

−T1 vec [dB]0KNK

³eΩ⊗ΣF,1

´
KKN vec [dB] . (T7.133)
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Therefore from (A.117) and (A.121) and substituting back (T7.129) we obtain:

∂2 ln f

∂ vec [B] ∂ vec [B]0

¯̄̄̄
B,Ω

= −T1
ν1 +K −N − 1

ν1
KNK

¡
Σ−11 ⊗ΣF,1

¢
KKN

∂2 ln f

∂ vech [Ω] ∂ vec [B]0

¯̄̄̄
B,Ω

= 0(N(N+1)/2)2×(NK)2 (T7.134)

∂2 ln f

∂ vech (Ω) ∂ vech (Ω)
0

¯̄̄̄
B,Ω

= −1
2

ν21
ν1 +K −N − 1D

0
N (Σ1 ⊗Σ1)DN

Finally the modal dispersion reads:

MDis {θ} ≡
µ
− ∂2 ln f

∂θ∂θ0

¯̄̄̄
θ

¶−1
(T7.135)

=

µ
SB 0(NK)2×(N(N+1)/2)2

0(N(N+1)/2)2×(NK)2 SΣ

¶
,

where using (A.109) and (A.101) we have:

SB ≡
1

T1

ν1
ν1 +K −N − 1KNK

³
Σ1 ⊗Σ−1F,1

´
KKN (T7.136)

SΣ ≡
2

ν1

ν1 +K −N − 1
ν1

[D0
N (Σ1 ⊗Σ1)DN ]

−1 . (T7.137)

7.8 NIW factor loadings-dispersion: marginal
distribution of factor loadings

First of all, a comment on the notation to follow: we will denote here γ1, γ2, . . .
simple normalization constants.
We consider the notation for the NIW (normal-inverse-Wishart) assump-

tions (4.129)-(7.59) on the prior, although of course the proof applies verbatim
to the posterior, or any NIW distribution. Thus we assume:

Ω ≡ Σ−1 ∼W
³
ν0, (ν0Σ0)

−1
´

(T7.138)

and
B|Ω ∼ N

³
B0, (T0Ω)

−1
,Σ−1F,0

´
. (T7.139)

From (2.182) and (2.224) the joint prior pdf of B and Ω is:

f (B,Ω) = f (B|Ω) f (Ω)
= γ1 |Ω|

K
2 |ΣF,0|

N
2 e−

1
2 tr{(T0Ω)(B−B0)ΣF,0(B−B0)

0}(T7.140)

|Σ0|
ν0
2 |Ω|

ν0−N−1
2 e−

1
2 tr(ν0Σ0Ω)

= γ1 |ΣF,0|
N
2 |Σ0|

ν0
2 |Ω|

ν0+K−N−1
2

e−
1
2 tr{Ω((B−B0)T0ΣF,0(B−B0)

0+ν0Σ0)}.
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To determine the unconditional pdf of B we have to compute the marginal in
(T7.140). Defining

Σ2 ≡ (B−B0)T0ΣF,0 (B−B0)0 + ν0Σ0 (T7.141)

we obtain

f (B) ≡
Z

f (B,Ω) dΩ

=

Z
γ1 |ΣF,0|

N
2 |Σ0|

ν0
2 |Ω|

ν0+K−N−1
2 e−

1
2 tr{ΩΣ2}dΩ (T7.142)

= γ2 |ΣF,0|
N
2 |Σ0|

ν0
2 |Σ2|−

ν0+K
2½Z

γ3 |Σ2|
ν0+K

2 |Ω|
ν0+K−N−1

2 e−
1
2 tr{ΩΣ2}dΩ

¾
= γ2 |ΣF,0|

N
2 |Σ0|

ν0
2 |Σ2|−

ν0+K
2

where we have used the fact that the term in curly brackets is the integrals
of the Wishart pdf (2.224) over the entire space and thus it sums to one.
Thus substituting again (T7.141) we obtain that the marginal pdf (T7.142)

reads:

f (B) = γ2 |ΣF,0|
N
2 |Σ0|

ν0
2 (T7.143)¯̄

ν0Σ0 + (B−B0)T0ΣF,0 (B−B0)0
¯̄− ν0+K

2 ,

From (A.91) we obtain the following general identity:

|Σ|
ν0
2
¯̄
Σ+VV0¯̄− ν0+K

2 = |Σ|
ν0
2
£
|Σ|

¯̄
IN +Σ

−1VV0¯̄¤− ν0+K
2

= |Σ|−
K
2
¯̄
IN +Σ

−1VV0 ¯̄− ν0+K
2 (T7.144)

= |Σ|−
K
2
¯̄
IK +V

0Σ−1V
¯̄− ν0+K

2

Applying this result to

V ≡ (B−B0)PF,0 (T7.145)

Σ ≡ ν0Σ0,

where PF,0 satisfies
T0ΣF,0 ≡ PF,0P

0
F,0, (T7.146)

we reduce (T7.143) to the following expression:

f (B) = γ4 |ΣF,0|
N
2 |ν0Σ0|−

K
2 (T7.147)¯̄̄

IN + (ν0Σ0)
−1
(B−B0)T0ΣF,0 (B−B0)0

¯̄̄− ν0+K
2
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Applying again (A.91) we obtain:

f (B) = γ4

¯̄̄
Σ−1F,0

¯̄̄−N
2 |ν0Σ0|−

K
2 (T7.148)¯̄̄

IK + T0ΣF,0 (B−B0)0 (ν0Σ0)−1 (B−B0)
¯̄̄− ν0+K

2

= γ5

¯̄̄
Σ−1F,0

¯̄̄−N
2
¯̄̄
(ν0 +K −N)

−1
ν0Σ0

¯̄̄−K
2

¯̄̄̄
¯̄IK + T0ΣF,0 (B−B0)0

h
(ν0 +K −N) (ν0Σ0)

−1
i

(ν0 +K −N)
(B−B0)

¯̄̄̄
¯̄
− ν0+K

2

Comparing with (2.199) we see that this is the pdf of a matrix-variate Student
t distribution with the following parameters:

B ∼ St
µ
ν0 +K −N,B0,

ν0
ν0 +K −N

Σ0, (T0ΣF,0)
−1
¶
. (T7.149)

7.9 Results on the determination of the prior

Allocation-implied parameters

Consider the constraints
C1 : α0pT = wT (T7.150)

and
C2 : b ≤ Bα ≤ b, (T7.151)

where B is a K×N matrix and
¡
b,b

¢
are K-dimensional vectors. From (7.91)

we obtain the allocation function:

α (µ,Σ) ≡ argmax
α0pT=wT
b≤Bα≤b

½
α0 diag (pT ) (1+ µ)−

1

2ζ
α0 diag (pT )Σdiag (pT )α

¾
.

(T7.152)
We can solve this problem by means of Lagrange multipliers. We defining the
Lagrangian:

L ≡ α0 diag (pT ) (1+ µ)−
1

2ζ
α0 diag (pT )Σdiag (pT )α (T7.153)

−λα0pT −
¡
λ− λ

¢0
Bα,

where λ is the multiplier relative to the equality constraint α0pT = wT and¡
λ,λ

¢
are the multipliers relative to the additional inequality constraints

(T7.151) and satisfy the Kuhn-Tucker conditions:
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λ,λ ≥ 0 (T7.154)
NX
n=1

λkBknbn =
NX
n=1

λkBknbn = 0, k = 1, . . . ,K. (T7.155)

Therefore, defining:

eµ ≡ µ− [diag (pT )]−1B0 ¡λ− λ¢ , (T7.156)

we can write the Lagrangian as follows:

L = α0 diag (pT ) (1+ eµ)− λα0 − 1

2ζ
α0 diag (pT )Σdiag (pT )α. (T7.157)

This is the Lagrangian of the optimization (T7.152) with the constraints
(T7.150) but without the constraints (T7.151). Its solution is (6.39). After
substituting (7.90) in that expression we obtain the respective allocation func-
tion:

(eµ,Σ) 7→ α (eµ,Σ) (T7.158)

≡ [diag (pT )]−1Σ−1
µ
ζeµ+ wT − ζ10Σ−1eµ

10Σ−11
1

¶
.

This can be inverted, by pinning down specific values Σ for the covariance
matrix and solving the ensuing implicit equation:

eµ− 10Σ−1eµ
10Σ

−1
1
1 =

1

ζ

µ
Σdiag (pT )α−

wT

10Σ
−1
1
1

¶
. (T7.159)

From the inverse function
α 7→ eµ (α) (T7.160)

and from (T7.156) the implied returns that include the constraints (T7.151)
read:

µc = eµ (α) + [diag (pT )]−1B0 ¡λ− λ¢ (T7.161)

Likelihood maximization

In our example (7.91), consider an investor who has no risk propensity, i.e.
such that ζ → 0 in his exponential utility function. Then the quadratic term
becomes overwhelming in the index of satisfaction, which become independent
of the expected returns:

CEΣ (α) ≈ −
1

2ζ
α0 diag (pT )Σdiag (pT )α. (T7.162)

Assume there exists a budget constraint
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C1 : α0pT = wT , (T7.163)

And consider the no-short-sale constraint:

C2 : α ≥ 0. (T7.164)

The allocation function α (Σ) follows in terms of the Lagrangian:

α (Σ) , λ∗,λ∗ = argmin
α,λ,λ

L (α, λ,λ) , (T7.165)

where

L (α, λ,λ) ≡ α0 diag (pT )Σdiag (pT )α− λα0pT −α0λ. (T7.166)

From the first-order conditions on the Lagrangian we obtain:

α = λdiag (pT )
−1
Σ−11+ diag (pT )

−1
Σ−1 diag (pT )

−1
λ, (T7.167)

together with the Kuhn-Tucker conditions

λ ≥ 0, λn = 0 ⇐⇒ αn > 0. (T7.168)

Since prices are positive, the allocation is positive if

Σ−11 ≥ 0, (T7.169)

where the inequality is meant entry by entry.

7.10 Monte Carlo Markov Chain (MCMC) generation of
posterior distribution

References for the discussion below can be found e.g. in Chib and Greenberg
(1995). We recall that according to Bayesian theory, first we must specify a
flexible parametric family for the market, which might include fat tails and
skewness, as represented by its pdf:

X|θ ⇔ fX (xt|θ) . (T7.170)

Then as in (7.13) the likelihood of the data

iT ≡ {x1, . . . ,xT } (T7.171)

reads:

l (iT |θ) ≡
TY
t=1

fX (xt|θ) . (T7.172)

Assume a prior for the parameters f0 (θ). Then posterior distribution of the
parameters reads:
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π (θ|iT ) ≡
l (iT |θ) f0 (θ)R
l (iT |θ) f0 (θ) dθ

, (T7.173)

see (7.15).
To generate samples from the posterior distribution we use a Metropolis-

Hastings Markov Chain Monte Carlo (MCMC) algorithm. First we select a
one-parameter family of candidate-generating densities q (ξ,θ), which satisfiesR
q (ξ,θ) dθ = 1. Then we define the function

α (θ, ξ) ≡ min
½
l (iT |ξ) f0 (ξ) q (ξ,θ)
l (iT |θ) f0 (θ) q (θ, ξ)

, 1

¾
. (T7.174)

In particular, if we choose a symmetric function q (ξ,θ) = q (θ, ξ), this func-
tion simplifies to

α (θ, ξ) ≡ min
½
l (iT |ξ) f0 (ξ)
l (iT |θ) f0 (θ)

, 1

¾
. (T7.175)

A convenient rule of thumb is to pick q to be the multivariate normal density

q (z,b)⇔ N(b, κ diag (b)) , (T7.176)

where κ ≈ 10−2. Then the algorithm proceeds as follows:

• Step 0. Set j ≡ 0 and generate a starting point for the parameters θ(j).
• Step 1. Generate ξ from q

³
θ(j), ·

´
and u from U([0, 1]).

• Step 2. If u ≤ α
³
θ(j), ξ

´
set θ(j+1) ≡ ξ, else set θ(j+1) ≡ θ(j).

• Step 3. If convergence is achieved go to Step 4, else go to Step 1.
• Step 4. Disregard the first samples and return the remaining θ(j).





8

Technical appendix to Chapter 8

8.1 Optimal allocation as function of invariant
parameters

Replacing the market parameters (8.21) in the certainty-equivalent (8.25) we
obtain:

S = α0 diag (PT ) (1+ µ)−
1

2ζ
α0 diag (PT )Σdiag (PT )α. (T8.1)

Substituting in this expression the optimal allocation (8.32), which we report
here:

α = ζ [diag (PT )]
−1Σ−1µ+

wT − ζ10Σ−1µ

10Σ−11
[diag (PT )]

−1Σ−11, (T8.2)

we obtain:

S = (1+ µ)0
∙
ζΣ−1µ+

wT − ζ10Σ−1µ

10Σ−11
Σ−11

¸
(T8.3)

− 1
2ζ

∙
ζµ0 +

wT − ζ10Σ−1µ

10Σ−11
10
¸ ∙

ζΣ−1µ+
wT − ζ10Σ−1µ

10Σ−11
Σ−11

¸
= ζ (1+ µ)

0
Σ−1µ+

wT − ζ10Σ−1µ

10Σ−11
(1+ µ)

0
Σ−11

− 1
2ζ

µ
ζ2µ0Σ−1µ+ ζ

wT − ζ10Σ−1µ

10Σ−11
µ0Σ−11

+ζ
wT − ζ10Σ−1µ

10Σ−11
10Σ−1µ+

µ
wT − ζ10Σ−1µ

10Σ−11

¶2
10Σ−11

!
.

Defining
A ≡ 10Σ−11, B ≡ 10Σ−1µ, C ≡ µ0Σ−1µ (T8.4)

the above expression simplifies as follows:
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S = ζB + ζC +
wT − ζB

A
A+

wT − ζB

A
B (T8.5)

− 1
2ζ

"
ζ2C + ζ

wT − ζB

A
B + ζ

wT − ζB

A
B +

µ
wT − ζB

A

¶2
A

#

= ζB + ζC + wT − ζB +
wT − ζB

A
B

−1
2

∙
ζC + 2

wT − ζB

A
B +

−2BwT + ζB2

A

¸
− 1

2ζ

w2T
A

=
1

2
ζ

µ
C − B2

A

¶
+ wT

µ
1 +

B

A
− 1

2ζ

wT

A

¶
.

8.2 Statistical significance of sample allocation

Consider the independent sample estimators (8.85) and (8.86):

bµ ∼ Nµµ, 1
T
Σ

¶
, T bΣ ∼W(T − 1,Σ) . (T8.6)

where W denotes the Wishart distribution.
Define: bv ≡ α0 diag (PT ) bΣdiag (PT )α. (T8.7)

From (2.230) the distribution of this random variable satisfies

Tbv ∼ Ga (T − 1,α0 diag (PT )Σdiag (PT )α) , (T8.8)

where Ga denotes the gamma distribution. Thus from (1.113) the expected
value of bv reads:

E {bv} = T − 1
T

α0 diag (PT )Σdiag (PT )α, (T8.9)

and from (1.114) the inefficiency of bv reads:
Sd {bv} =r2T − 1

T 2
α0 diag (PT )Σdiag (PT )α. (T8.10)

Similarly, define be ≡ α0 diag (PT ) (1+ bµ) (T8.11)

From (2.163) we obtain:

be ∼ Nµα0 diag (PT ) (1+ µ) ,
α0 diag (PT )Σdiag (PT )α

T

¶
. (T8.12)

Therefore, from (2.158) the expected value of be reads:
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E {be} = α0 diag (PT ) (1+ µ) , (T8.13)

and from (2.159) the inefficiency of be reads:
Sd {be} =rα0 diag (PT )Σdiag (PT )α

T
. (T8.14)

Furthermore, since bµ and bΣ are independent, so are bv and be.
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Technical appendix to Chapter 9

9.1 Results on the resampled allocation

αrs [iT ] ≡ E
n
αs
h
I
µ[iT ],Σ[iT ]
T

io
(T9.1)

= E
n
ζ [diag (pT )]

−1Vw
o
+E

n wT

10V1
[diag (pT )]

−1V1
o

−E
½
ζ10Vw

10V1
[diag (pT )]

−1V1

¾
= ζ [diag (pT )]

−1
E {V}E {w}+ wT [diag (pT )]

−1
E

½
V1

10V1

¾
−ζ [diag (pT )]−1 E {w}0 E

½
V1

10V1
V1

¾
= ζ [diag (pT )]

−1
E {V} bµ+ wT [diag (pT )]

−1
E

½
V1

10V1

¾
−ζ [diag (pT )]−1 bµ0 E½ V1

10V1
V1

¾
.

Therefore

αrs [iT ] = [diag (pT )]
−1
µ
ζ

µ
E {Vbµ}− E½10Vbµ

10V1
V1

¾¶
(T9.2)

+ wT E

½
V1

10V1

¾¶
.

9.2 Probability bounds for the sample mean

From (8.85) the sample estimator is distributed as follows:
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bµ ∼ NÃµt

,
Σ

t

T

!
, (T9.3)

where µ
t

and Σ
t

are the true underlying parameters. Therefore from Appen-
dix www.7.1 we have:³bµ− µt

´0ÃΣt

T

!−1 ³bµ− µt
´
∼ χ2N . (T9.4)

From the definition (1.7) of cumulative distribution function:

Fχ2N (Tγ) ≡ P

⎧⎨⎩³bµ− µt
´0ÃΣt

T

!−1 ³bµ− µt
´
≤ Tγ

⎫⎬⎭ (T9.5)

= P
½³
µ
t − bµ´0 ³Σt

´−1 ³
µ
t − bµ´ ≤ γ

¾
.

By applying the quantile function (1.17) to both sides of the above equality
we obtain:

p = P

(³
µ
t − bµ´0 ³Σt

´−1 ³
µ
t − bµ´ ≤ Qχ2N

(p)

T

)
. (T9.6)

Therefore, considering the set

Θ [iT ] ≡
(
µ ∈ RN such that Ma2

³
µ, bµ [iT ] ,Σt

´
≤

Qχ2N
(p)

T

)
(T9.7)

The following result holds:

P
n
µ
t ∈ Θ [iT ]

o
= p. (T9.8)

9.3 The Black-Litterman approach

First of all we prove the general Bayes’ rule (9.30), which we report here:

fX|v (x|v) =
fV|g(x) (v|x) fX (x)R
fV|g(x) (v|x) fX (x) dx

. (T9.9)

Indeed, by the definition of the conditional density we have

fX|v (x|v) ≡
fX,V (x,v)

fV (v)
, (T9.10)

where fX,V is the joint distribution of X and V and
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fV (v) ≡
Z

fX,V (x,v) dx (T9.11)

is the marginal pdf of V. On the other hand, by the definition of the condi-
tional density we also have:

fX,V (x,v) = fV|g(x) (v|x) fX (x) . (T9.12)

Thus

fX|v (x|v) ≡
fX,V (x,v)R
fX,V (x,v) dx

(T9.13)

=
fV|g(x) (v|x) fX (x)R
fV|g(x) (v|x) fX (x) dx

,

as claimed.
In the Black-Litterman setting, the marginal pdf of X is assumed normal:

fX (x) ≡
|Σ|−

1
2

(2π)
N
2

e−
1
2 (x−µ)

0Σ−1(x−µ) (T9.14)

and the conditional pdf of V given PX = Px is:

fV|Px (v|x) ≡
|Ω|−

1
2

(2π)
K
2

e−
1
2 (v−Px)

0Ω−1(v−Px). (T9.15)

Thus the joint pdf of V and X reads:

fX,V (x,v) = fV|Px (v|x) fX (x) (T9.16)

∝ |Σ|−
1
2 |Ω|−

1
2 e−

1
2 [(x−µ)

0Σ−1(x−µ)+(v−Px)0Ω−1(v−Px)].

Expanding the expression in square brackets in (T9.16) we obtain:

[· · · ] = (x− µ)0Σ−1 (x− µ) + (v−Px)0Ω−1 (v−Px) (T9.17)

= x0Σ−1x− 2x0Σ−1µ+ µ0Σ−1µ+ v0Ω−1v− 2x0P0Ω−1v+ x0P0Ω−1Px
= x0

¡
Σ−1 +P0Ω−1P

¢
x− 2x0

£
Σ−1µ+P0Ω−1v

¤
+ µ0Σ−1µ+ v0Ω−1v

We define eµ in such a way that the following holds:£
Σ−1µ+P0Ω−1v

¤
≡
¡
Σ−1 +P0Ω−1P

¢ eµ. (T9.18)

This implies

eµ (v) ≡ ¡Σ−1 +P0Ω−1P¢−1 ¡Σ−1µ+P0Ω−1v¢ . (T9.19)

Using (T9.18) we easily re-write (T9.17) as follows:
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[· · · ] = x0
¡
Σ−1 +P0Ω−1P

¢
x− 2x0

¡
Σ−1 +P0Ω−1P

¢ eµ (T9.20)

+eµ0 ¡Σ−1 +P0Ω−1P¢ eµ+ µ0Σ−1µ+ v0Ω−1v
−eµ0 ¡Σ−1 +P0Ω−1P¢ eµ

= (x− eµ)0 ¡Σ−1 +P0Ω−1P¢ (x− eµ) + α.

where

α ≡ µ0Σ−1µ+ v0Ω−1v − eµ0 ¡Σ−1 +P0Ω−1P¢ eµ (T9.21)

Substituting the definition (T9.19) in this expression we obtain:

α = µ0Σ−1µ+ v0Ω−1v (T9.22)

−
¡
µ0Σ−1 + v0Ω−1P

¢ ¡
Σ−1 +P0Ω−1P

¢−1 ¡
Σ−1µ+P0Ω−1v

¢
= µ0Σ−1µ+ v0Ω−1v− µ0Σ−1

¡
Σ−1 +P0Ω−1P

¢−1
Σ−1µ

−v0Ω−1P
¡
Σ−1 +P0Ω−1P

¢−1
P0Ω−1v

+2µ0Σ−1
¡
Σ−1 +P0Ω−1P

¢−1
P0Ω−1v

= v0
n
Ω−1 −Ω−1P

¡
Σ−1 +P0Ω−1P

¢−1
P0Ω−1

o
v

+2v0Ω−1P
¡
Σ−1 +P0Ω−1P

¢−1
Σ−1µ

+µ0
³
Σ−1 −Σ−1

¡
Σ−1 +P0Ω−1P

¢−1
Σ−1

´
µ

Using the identity (A.90) we write the expression in curly brackets as follows:

Ω−1 −Ω−1P
¡
Σ−1 +P0Ω−1P

¢−1
P0Ω−1 =

¡
Ω+PΣP0

¢−1
(T9.23)

Also, we define ev in such a way that¡
Ω+PΣP0

¢−1 ev = −Ω−1P ¡Σ−1 +P0Ω−1P¢−1Σ−1µ (T9.24)

Therefore

α = v0
¡
Ω+PΣP0

¢−1
v− 2v0

¡
Ω+PΣP0

¢−1 ev (T9.25)

+ev0 ¡Ω+PΣP0¢−1 ev+ µ0 ³Σ−1 −Σ−1 ¡Σ−1 +P0Ω−1P¢−1Σ−1´µ
−ev0 ¡Ω+PΣP0¢−1 ev (T9.26)

= (v − ev)0 ¡Ω+PΣP0¢−1 (v− ev) + φ,

where

φ ≡ µ0
³
Σ−1 −Σ−1

¡
Σ−1 +P0Ω−1P

¢−1
Σ−1

´
µ (T9.27)

−ev0 ¡Ω+PΣP0¢−1 ev
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From (T9.24) we see that

ev = − ¡Ω+PΣP0¢Ω−1P ¡Σ−1 +P0Ω−1P¢−1Σ−1µ (T9.28)

does not depend on either v or x. Therefore neither does φ in (T9.27). Sub-
stituting (T9.25) back in (T9.20) the expression in square brackets in (T9.16)
reads

[· · · ] = (x− eµ (v))0 ¡Σ−1 +P0Ω−1P¢ (x− eµ (v))
+ (v − ev)0 ¡Ω+PΣP0¢−1 (v− ev) + φ. (T9.29)

Therefore (T9.16) becomes:

fX,V (x,v) ∝ |Σ|−
1
2 |Ω|−

1
2 e−

1
2 (x−µ(v))

0(Σ−1+P0Ω−1P)(x−µ(v))

e−
1
2 (v−v)

0(Ω+PΣP0)−1(v−v) (T9.30)

=
¯̄
Σ−1 +P0Ω−1P

¯̄ 1
2 e−

1
2 (x−µ(v))

0(Σ−1+P0Ω−1P)(x−µ(v))¯̄
Ω+PΣP0

¯̄− 1
2 e−

1
2 (v−γ)

0(Ω+PΣP0)
−1
(v−γ),

where the last equality follows from¯̄
Ω+PΣP0

¯̄
|Σ| |Ω| |Σ−1 +P0Ω−1P| = 1, (T9.31)

which in turn follows from an application of (A.91):

|Σ| |Ω|
¯̄
Σ−1 +P0Ω−1P

¯̄
=
¯̄
Σ
¡
Σ−1 +P0Ω−1P

¢¯̄
|Ω|

=
¯̄
I+ΣP0Ω−1P

¯̄
|Ω| (T9.32)

=
¯̄
I+Ω−1PΣP0

¯̄
|Ω| =

¯̄
Ω
¡
I+Ω−1PΣP0

¢¯̄
=
¯̄
Ω+PΣP0

¯̄
To summarize, from (T9.30) we see that

fX,V (x,v) ∝ fX|v (x|v) fV (v) , (T9.33)

where

fX|v (x|v) ∝
¯̄
Σ−1 +P0Ω−1P

¯̄ 1
2 (T9.34)

e−
1
2 (x−µ(v))

0(Σ−1+P0Ω−1P)(x−µ(v))

and
fV (v) ∝

¯̄
Ω+PΣP0

¯̄− 1
2 e−

1
2 (v−γ)

0(Ω+PΣP0)−1(v−γ). (T9.35)

Since (T9.34) and (T9.35) are normal probability density functions, it follows
that the random variable X conditioned on V = v is normally distributed:
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X|V = v ∼ N
³eµ, eΣ´ , (T9.36)

and so is the marginal distribution of V:

V ∼ N
³ev, eΩ´ , (T9.37)

The expected value eµ (v) in (T9.36) is defined in (T9.19) and, using (A.90),
it reads:

eµ (v) ≡ ¡Σ−1 +P0Ω−1P¢−1 ¡Σ−1µ+P0Ω−1v¢ . (T9.38)

=
³
Σ−ΣP0

¡
PΣP0 +Ω

¢−1
PΣ

´ ¡
Σ−1µ+P0Ω−1v

¢
= µ+ΣP0

³
Ω−1 −

¡
PΣP0 +Ω

¢−1
PΣP0Ω−1

´
v

−ΣP0
¡
PΣP0 +Ω

¢−1
Pµ

Noticing that

Ω−1 −
¡
PΣP0 +Ω

¢−1
PΣP0Ω−1 =

¡
PΣP0 +Ω

¢−1
, (T9.39)

which can be easily checked left-multiplying both sides by
¡
PΣP0 +Ω

¢
, the

expression for the expected value eµ (v) in (T9.36) can be further simplified
as follows: eµ (v) = µ+ΣP0 ¡PΣP0 +Ω¢−1 (v−Pµ) (T9.40)

Similarly, from (T9.34) and using (A.90) the covariance matrix in (T9.36)
reads: eΣ ≡ ¡Σ−1 +P0Ω−1P¢−1 (T9.41)

= Σ−ΣP0
¡
PΣP0 +Ω

¢−1
PΣ

On the other hand, the expected value ev in (T9.37) is defined in (T9.28) and
from (T9.35) the covariance matrix in (T9.37) reads:

eΩ ≡ Ω+PΣP0 (T9.42)

9.4 Investor’s certain views in the Black-Litterman
approach

First of all we complete the K×N matrix P to a non-singular N ×N matrix

S ≡
µ
Q
P

¶
, (T9.43)

where Q is an arbitrary full-rank (N −K) ×N matrix. It will soon become
evident that the choice of Q is irrelevant.
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Then we compute the probability density of the following random variable:

Y ≡ SX =

µ
QX
PX

¶
≡
µ
YA

YB

¶
(T9.44)

It is immediate to check that Y is normal:

Y ∼ N(ν,T) (T9.45)

where

ν ≡
µ
νA
νB

¶
=

µ
Qµ
Pµ

¶
(T9.46)

and

T ≡
µ
TAA TAB

TBA TBB

¶
≡
µ
QΣQ0 QΣP0

PΣQ0 PΣP0

¶
. (T9.47)

At this point we can compute the conditional probability density. From (2.164)
we obtain

YA|yB ∼ N(ξ, Φ) (T9.48)

where the expected values and covariance read explicitly

ξ ≡ νA +TABT
−1
BB (yB − νB) (T9.49)

Φ ≡ TAA −TABT
−1
BBTBA

Substituting the investor’s opinion yB = Px = v in (T9.49) we obtain there-
fore that the expected value of the whole vector y is

E {Y|YB = v} =
µ
E {YA|YB = v}

v

¶
= (T9.50)µ

Qµ+QΣP0
¡
PΣP0

¢−1
(v −Pµ)

v

¶
Recalling that Y = SX and rewriting q as Pµ+PΣP0

¡
PΣP0

¢−1
(v −Pv)

we can express (T9.50) as follows:

SE {X|PX = v} = S
³
µ+ΣP0

¡
PΣP0

¢−1
(v −Pµ)

´
. (T9.51)

Since S is invertible we finally obtain

E {X|PX = v} = µ+ΣP0
¡
PΣP0

¢−1
(v−Pµ) , (T9.52)

which is the expression of the conditional expectation that we were looking
for.
As for the covariance matrix, substituting the investor’s opinion YB =

PX = v in (T9.49) we obtain therefore that the expected value of the whole
vector y is
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Cov {Y|YB = v} =
µ
Cov {YA|YB = v} 0

0 0

¶
=

µ
Φ 0
0 0

¶
(T9.53)

=

µ
QΣQ0 −QΣP0

¡
PΣP0

¢−1
PΣQ0 0

0 0

¶
.

Recalling that Y = SX we can write

a ≡ SCov {X|PX = v}S0 (T9.54)

as follows

a = Cov {SX|PX = v}

=

Ã
Q
³
Σ−ΣP0

¡
PΣP0

¢−1
PΣ

´
Q
0
0

0 0

!
(T9.55)

=

⎛⎝Q³Σ−ΣP0 ¡PΣP0¢−1PΣ´Q0
Q
³
Σ−ΣP0

¡
PΣP0

¢−1
PΣ

´
P
0

P
³
Σ−ΣP0

¡
PΣP0

¢−1
PΣ

´
Q
0
P
³
Σ−ΣP0

¡
PΣP0

¢−1
PΣ

´
P
0

⎞⎠
=

µ
Q
P

¶³
Σ−ΣP0

¡
PΣP0

¢−1
PΣ

´µQ
P

¶0
Since S is invertible we can pre- and post- multiply (T9.54) by S−1 and finally
obtain:

Cov {X|PX = v} = Σ−ΣP0
¡
PΣP0

¢−1
PΣ, (T9.56)

which is the expression of the conditional covariance that we were looking for.

9.5 Computations for the robust version of the leading
example

From (8.33), (8.25) and (8.29) we obtain:

α∗ ≡ argmin
α

⎧⎪⎪⎨⎪⎪⎩maxµ∈Θp

⎧⎪⎪⎨⎪⎪⎩
ζ
2

³
µ0Σ−1µ− 1

A

¡
10Σ−1µ

¢2´
+wT

³
1 + 1

A1
0Σ−1µ− wT

ζ
1
2A

´
−α0 diag (pT ) (1+ µ) + 1

2ζα
0Φα

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭ (T9.57)

s.t.
½
α0pT = wT

(1− γ)wT −α0 diag (pT ) (1+ µ) +
√
2α0Φαλ ≤ 0, for all µ ∈ bΘp

where

A ≡ 10Σ−11, λ ≡ erf−1 (2c− 1) (T9.58)

Φ ≡ diag (pT )Σdiag (pT ) .
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and

bΘp ≡
½
µ such that (µ− bµ)0Σ−1 (µ− bµ) ≤ QN (p)

T

¾
, (T9.59)

Using the budget constraint this becomes:

α∗ ≡ argmin
α

(
max
µ∈Θp

(
ζ
2µ

0Σ−1µ− ζ
2A

¡
10Σ−1µ

¢2
+ wT

A

¡
10Σ−1µ

¢
−α0 diag (pT )µ+ 1

2ζα
0Φα

))

s.t.
½
α0pT = wT

α0 diag (pT )µ ≥
√
2α0Φαλ− γw, for all µ ∈ bΘp

(T9.60)

or:

α∗ ≡ argmin
α

(
max
µ∈Θp

(
ζ
2µ

0Σ−1µ− ζ
2A

¡
10Σ−1µ

¢2
+ wT

A

¡
10Σ−1µ

¢
−α0 diag (pT )µ+ 1

2ζα
0Φα

))

s.t.

⎧⎨⎩α0p = w

max
µ∈Θp

n√
2α0Φαλ−α0 diag (pT )µ

o
≤ γw. (T9.61)

The second maximization

max
µ∈Θp

n√
2α0Φαλ−α0 diag (pT )µ

o
≤ γw (T9.62)

is maximization constrained on an ellipsoid of contour surfaces that describe
parallel hyperplanes. The tangency condition is achieved when the gradients
are parallel. For the gradient of the ellipsoid we have

gΘp ∝ Σ
−1 (µ− bµ) . (T9.63)

For the gradient of the hyperplane we have:

gH ∝ diag (pT )α. (T9.64)

Therefore the maximum is achieved when there exists a ρ such that:

Σ−1 (µ− bµ) = ρdiag (pT )α (T9.65)

Since µ ∈ bΘp we have

QN (p)

T
= (µ− bµ)0Σ−1 (µ− bµ) (T9.66)

= (µ− bµ)0Σ−1ΣΣ−1 (µ− bµ)
= ρ2α0 diag (pT )Σdiag (pT )α

Therefore
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ρ = ±
s

QN (p)

T

1

α0 diag (pT )Σdiag (pT )α
(T9.67)

Substituting in (T9.65) we obtain

µ = bµ−s QN (p) /T

α0 diag (pT )Σdiag (pT )α
Σdiag (pT )α, (T9.68)

where the choice of the sign follows from the maximization (T9.62).
Therefore the original problem (T9.61) reads:

α∗ ≡ argmin
α

(
max
µ∈Θp

½
µ0Tµ+

w

A
10Σ−1µ−α0 diag (p)µ+ 1

2ζ
α0Φα

¾)
(T9.69)

s.t.

⎧⎨⎩
α0p = w
√
2α0Φαλ+

r
QN (p) /T

α0Φα
−α0Φα−α0 diag (pT ) bµ ≤ γw.

,

where

T ≡ ζ

2
Σ−1 − ζ

2A
Σ−1110Σ−1. (T9.70)

9.6 Computations for the robust mean-variance problem

Taking into account the elliptical/certain specifications (9.118)-(9.119), the
robust mean-variance problem (9.117) can be written as follows:

α
(i)
r = argmax

α

(
min
µ∈Θµ

{α0µ}
)

(T9.71)

subject to
½
α ∈ C
α0 bΣα ≤ vi,

where bΘµ ≡ ©µ : (µ−m)0T−1 (µ−m) ≤ q2
ª
. (T9.72)

Consider the spectral decomposition (A.70) of the shape parameter:

T ≡ EΛ1/2Λ1/2E0. (T9.73)

Then:

bΘµ ≡ nµ : (µ−m)0EΛ−1/2Λ−1/2E0 (µ−m) ≤ q2
o
. (T9.74)

Define the variable
u ≡ 1

q
Λ−1/2E0 (µ−m) , (T9.75)



Technical Appendix to Chapter 9 T-165

which implies
µ ≡m+ qEΛ1/2u. (T9.76)

Then bΘµ ≡ nm+ qEΛ1/2u : u0u ≤ 1
o
. (T9.77)

We can express the minimization in (T9.71) as follows:

min
µ∈Θµ

{α0µ} = min
u0u≤1

n
α0
³
m+ qEΛ1/2u

´o
(T9.78)

= α0m+ q min
u0u≤1

n
α0EΛ1/2u

o
= α0m+ q min

u0u≤1

D
Λ1/2E0α,u

E
,

where h·, ·i denotes the standard scalar product (A.5). This scalar product
reaches a minimum when the vector u is opposite to the other term in the
product: eu ≡ − Λ1/2E0α°°Λ1/2E0α°° , (T9.79)

and the respective minimum reads:

min
u0u≤1

D
Λ1/2E0α,u

E
=
D
Λ1/2E0α, euE

=

*
Λ1/2E0α,− Λ

1/2E0α°°Λ1/2E0α°°
+

(T9.80)

= − 1°°Λ1/2E0α°° DΛ1/2E0α,Λ1/2E0αE
= − 1°°Λ1/2E0α°°

°°°Λ1/2E0α°°°2
= −

°°°Λ1/2E0α°°° .
Substituting (T9.80) in (T9.78), the original problem (T9.71) reads:

α
(i)
r = argmax

α

n
α0m− q

°°°Λ1/2E0α°°°o (T9.81)

subject to
½
α ∈ C
α0 bΣα ≤ vi.

Equivalently, from (T9.73) we can write:

α
(i)
r = argmax

α

n
α0m− q

√
α0Tα

o
(T9.82)

subject to
½
α ∈ C
α0 bΣα ≤ vi.
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To put the problem (T9.81) in the SOCP form (6.55) we introducing an
auxiliary variable z:³

α
(i)
r , z

(i)
r

´
= argmax

α,z
{α0m− z} (T9.83)

subject to

⎧⎪⎨⎪⎩
α ∈ C
q
°°°Λ1/2E0α°°° ≤ z

α0 bΣα ≤ vi.

Furthermore, considering the spectral decomposition (A.70) of the estimate
of the covariance bΣ ≡ FΓ1/2Γ1/2F0, (T9.84)

we can write
α0 bΣα =DΓ1/2F0α,Γ1/2F0αE . (T9.85)

Therefore the mean-variance problem (T9.83) can be written as follows:³
α
(i)
r , z

(i)
r

´
= argmax

α,z
{α0m− z} (T9.86)

subject to

⎧⎪⎪⎨⎪⎪⎩
α ∈ C
q
°°°Λ1/2E0α°°° ≤ z°°°Γ1/2F0α°°° ≤ √vi.

If the investment constraints C are regular enough, this problem is in the
SOCP form (6.55).

9.7 Restating the robust mean-variance problem in
SeDuMi format

Let us define
x ≡ (α0, z)0 (T9.87)

and let us assume that C represents the full-budget constraints and the long-
only constraints:

NX
n=1

xn = 1 (T9.88)

xn ≥ 0, n = 1, . . . , N (T9.89)

We redefine the following quantities to re-express our problem

• Target
b ≡ (−m0, 1)

0 (T9.90)
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• Long-only and budget constraints:

Dlo ≡ [IN |0N ] (T9.91)

flo ≡ 0N (T9.92)

Db1 ≡ [10N |0] (T9.93)

fb1 ≡ −1 (T9.94)

Db2 ≡ [−10N |0] (T9.95)

fb2 ≡ 1 (T9.96)

D ≡

⎛⎝Dlo

Db1

Db2

⎞⎠0

(T9.97)

f ≡

⎛⎝ flo
fb1
fb2

⎞⎠ (T9.98)

• Estimation error

A0
1 ≡

h
qΛ1/2E0|0N

i
(T9.99)

b01 ≡ [00N |1] (T9.100)

d1 ≡ 0 (T9.101)

c1 ≡ 0N (T9.102)

• Variance

A0
2 ≡

h
Γ1/2F0|0N

i
(T9.103)

b02 ≡
£
00N+1

¤
(T9.104)

d2 ≡
√
vi (T9.105)

c2 ≡ 0N (T9.106)

Then our problem (T9.86) reads:

x∗ = argmin
y

{b0x} (T9.107)

subject to

D0x+ f ≥ 0 (T9.108)

kA0
1x+ c1k ≤ b01x+ d1 (T9.109)

kA0
2x+ c2k ≤ b02x+ d2 (T9.110)

This problem is in the standard SeDuMi format.
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9.8 Normal predictive distribution

More in general, consider

fM (m) ≡
Z

fµ,Σ (m) fν,Φ (µ) dµ (T9.111)

=

Z
e−

1
2 (m−µ)

0Σ−1(m−µ)

(2π)
N
2
p
|Σ|

e−
1
2 (µ−ν)

0Φ−1(µ−ν)

(2π)
N
2
p
|Φ|

dµ

=
(2π)

−Np
|Σ|
p
|Φ|

Z
e−

1
2adµ,

where

a ≡ (m− µ)0Σ−1 (m− µ) + (µ− ν)0Φ−1 (µ− ν) (T9.112)

= m0Σ−1m+ µ0Σ−1µ− 2m0Σ−1µ+ µ0Φ−1µ+ ν0Φ−1ν − 2µ0Φ−1ν
= µ0

¡
Σ−1 +Φ−1

¢
µ− 2µ0

¡
Σ−1m+Φ−1ν

¢
+m0Σ−1m+ ν0Φ−1ν

Defining
b ≡

¡
Σ−1 +Φ−1

¢−1 ¡
Σ−1m+Φ−1ν

¢
(T9.113)

we can write

a = (µ− b)0
¡
Σ−1 +Φ−1

¢
(µ− b) (T9.114)

−b0
¡
Σ−1 +Φ−1

¢
b+m0Σ−1m+ ν0Φ−1ν

Therefore (T9.111) becomes:

fM (m) =
(2π)−Np
|Σ|
p
|Φ|

e−
1
2 [−b

0(Σ−1+Φ−1)b+m0Σ−1m+ν0Φ−1ν] (T9.115)

(2π)
N
2
¯̄
Σ−1 +Φ−1

¯̄− 1
2

Z
e−

1
2 (µ−b)

0(Σ−1+Φ−1)(µ−b)

(2π)
N
2 |Σ−1 +Φ−1|−

1
2

dµ

= γ2e
− 1
2 c

where γ2 is a normalization constant and
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c ≡ −b0
¡
Σ−1 +Φ−1

¢
b+m0Σ−1m+ ν0Φ−1ν

= −
¡
m0Σ−1 + ν0Φ−1

¢ ¡
Σ−1 +Φ−1

¢−1 ¡
Σ−1m+Φ−1ν

¢
+m0Σ−1m+ ν0Φ−1ν (T9.116)

= −
¡
m+ΣΦ−1ν

¢0
Σ−1

¡
Σ−1 +Φ−1

¢−1
Σ−1

¡
m+ΣΦ−1ν

¢
+m0Σ−1m+ ν0Φ−1ν

= −m0Σ−1
¡
Σ−1 +Φ−1

¢−1
Σ−1m− ν0Φ−1

¡
Σ−1 +Φ−1

¢−1
Φ−1ν

−2m0Σ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν +m0Σ−1m+ ν0Φ−1ν

= m0
h
Σ−1 −Σ−1

¡
Σ−1 +Φ−1

¢−1
Σ−1

i
m

−2m0Σ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

−ν0Φ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν + ν0Φ−1ν

Defining

T ≡ Σ−1 −Σ−1
¡
Σ−1 +Φ−1

¢−1
Σ−1 (T9.117)

Tg ≡ Σ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

h ≡ ν0Φ−1ν − ν 0Φ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

we obtain

c = m0Tm− 2m0Tg+ h (T9.118)

= m0Tm− 2m0Tg+ g0Tg − g0Tg+ h

= (m− g)0T (m− g)− g0Tg+ h

Since

g =
h
Σ−1 −Σ−1

¡
Σ−1 +Φ−1

¢−1
Σ−1

i−1
(T9.119)

Σ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

the term h− g0Tg cancels (???):
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h− g0Tg = ν0Φ−1ν − ν0Φ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

−
h
Σ−1

¡
Σ−1 +Φ−1

¢−1
Φ−1ν

i0
h
Σ−1 −Σ−1

¡
Σ−1 +Φ−1

¢−1
Σ−1

i−1
Σ−1

¡
Σ−1 +Φ−1

¢−1
Φ−1ν (T9.120)

= ν0Φ−1ν − ν0Φ−1
¡
Σ−1 +Φ−1

¢−1
Φ−1ν

−ν0Φ−1Σ−1
¡
Σ−1 +Φ−1

¢−1h
Σ−1 −Σ−1

¡
Σ−1 +Φ−1

¢−1
Σ−1

i−1
Σ−1

¡
Σ−1 +Φ−1

¢−1
Φ−1ν.

Therefore
fM (m) = γ2e

− 1
2 (m−g)

0T(m−g). (T9.121)

or in other words
M ∼ N

¡
g,T−1

¢
. (T9.122)

In our example

Φ ≡ Σ
T
. (T9.123)

Therefore

g =
h
Σ−1 −Σ−1

¡
Σ−1 + TΣ−1

¢−1
Σ−1

i−1
Σ−1

¡
Σ−1 + TΣ−1

¢−1
TΣ−1ν (T9.124)

=

∙
Σ−1 −Σ−1 1

1 + T

¸−1
T

1 + T
Σ−1ν

=
1 + T

T
Σ

T

1 + T
Σ−1ν

= ν

and

T = Σ−1 −Σ−1
¡
Σ−1 + TΣ−1

¢−1
Σ−1

= Σ−1 −Σ−1 1

1 + T
(T9.125)

=
T

1 + T
Σ−1

9.9 Computations for the Bayesian robust mean-variance
problem

The robustness uncertainty set for µ

Consider the ellipsoid (9.149):
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bΘµ [iT , eC ] ≡ ½µ : (µ− µ1)0Σ−11 (µ− µ1) ≤
1

T1

ν1
ν1 − 2

q2µ

¾
. (T9.126)

Consider the spectral decomposition of the dispersion parameter:

Σ1 ≡ FΓ1/2Γ1/2F0, (T9.127)

where F is the juxtaposition (A.62) of the eigenvectors and Γ is the diagonal
matrix (A.65) of the eigenvalues.
We can write (T9.126) as follows:

bΘµ ≡ ½µ : (µ− µ1)0FΓ−1/2Γ−1/2F0 (µ− µ1) ≤ 1

T1

ν1
ν1 − 2

q2µ

¾
. (T9.128)

Define the new variable:

u ≡
µ
1

T1

ν1
ν1 − 2

q2µ

¶−1/2
Γ−1/2F0 (µ− µ1) , (T9.129)

which implies

µ = µ1 +

µ
1

T1

ν1
ν1 − 2

q2µ

¶1/2
FΓ1/2u, (T9.130)

we can write (T9.128) as follows:

bΘµ ≡ (µ1 +µ 1T1 ν1
ν1 − 2

q2µ

¶1/2
FΓ1/2u, u0u ≤ 1

)
.

Since

ω0µ =

*
ω,µ1 +

µ
1

T1

ν1
ν1 − 2

q
pµ
N

¶1/2
FΓ1/2u

+
(T9.131)

hω,µ1i+
*µ

1

T1

ν1
ν1 − 2

q
pµ
N

¶1/2
Γ1/2F0ω,u

+

we have

min
Σ∈Θµ

{ω0µ} = hω,µ1i (T9.132)

+ min
u0u≤1

*µ
1

T1

ν1
ν1 − 2

q
pµ
N

¶1/2
Γ1/2F0ω,u

+

= ω0µ1 −
µ
1

T1

ν1
ν1 − 2

q
pµ
N

¶1/2 °°°Γ1/2F0ω°°°
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The robustness uncertainty set for Σ

Consider the ellipsoid (9.152):

bΘΣ ≡ ½Σ : vech hΣ− bΣcei0 S−1Σ vech
h
Σ− bΣcei ≤ q2Σ

¾
, (T9.133)

where bΣce [iT , eC ] = ν1
ν1 +N + 1

Σ1; (T9.134)

and SΣ is the dispersion parameter of Σ:

SΣ [iT , eC ] =
2ν21

(ν1 +N + 1)
3

¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
. (T9.135)

Consider the spectral decomposition of the rescaled dispersion parameter
(T7.75); ¡

D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1 ≡ EΛE0, (T9.136)

where E is the juxtaposition (A.62) of the eigenvectors:

E ≡
³
e(1), . . . , e(N(N+1)/2)

´
; (T9.137)

and Λ is the diagonal matrix (A.65) of the eigenvalues:

Λ ≡ diag
¡
λ1, . . . , λN(N+1)/2

¢
. (T9.138)

We can write (T9.133) as follows:

bΘΣ ≡ (vech hΣ− bΣcei0EΛ−1/2Λ−1/2E0 vech hΣ− bΣcei ≤ 2ν21q
2
Σ

(ν1 +N + 1)
3

)
.

(T9.139)
Define the new variable:

u ≡
Ã

2ν21q
2
Σ

(ν1 +N + 1)
3

!−1/2
Λ−1/2E0 vech

h
Σ− bΣcei , (T9.140)

which implies

vech [Σ] ≡ vech
hbΣcei+Ã 2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2
EΛ1/2u. (T9.141)

we can write (T9.139) as follows

bΘΣ ≡
⎧⎨⎩vech hbΣcei+

Ã
2ν21q

2
Σ

(ν1 +N + 1)3

!1/2
EΛ1/2u, u0u ≤ 1

⎫⎬⎭ (T9.142)

=

⎧⎨⎩vech hbΣcei+
N(N+1)/2X

s=1

Ã
2ν21q

2
Σλs

(ν1 +N + 1)
3

!1/2
e(s)us, u0u ≤ 1

⎫⎬⎭
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Each eigenvector e(s) represents the non-redundant entries of a matrix. To con-
sider all the elements we simply multiply by the duplication matrix (A.113).
Then from (T9.141) we obtain:

ω0Σω = (ω0 ⊗ ω0) vec [Σ] (T9.143)

= (ω0 ⊗ ω0)DN vech [Σ]

=

*
D0
N (ω

0 ⊗ ω0)0 , vech
hbΣcei+Ã 2ν21q

2
Σ

(ν1 +N + 1)3

!1/2
EΛ1/2u

+
=
D
D0
N (ω

0 ⊗ ω0)0 , vech
hbΣceiE

+

*
D0
N (ω

0 ⊗ ω0)0 ,
Ã

2ν21q
2
Σ

(ν1 +N + 1)3

!1/2
EΛ1/2u

+
= ω0 bΣceω
+

Ã
2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2 D
Λ1/2E0D0

N (ω
0 ⊗ ω0)0 ,u

E
Therefore

max
Σ∈ΘΣ

{ω0Σω} = ω0 bΣceω (T9.144)

+

Ã
2ν21q

2
Σ

(ν1 +N + 1)3

!1/2
max
u0u≤1

D
Λ1/2E0D0

N (ω
0 ⊗ ω0)0 ,u

E
= ω0 bΣceω
+

Ã
2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2 °°°Λ1/2E0D0
N (ω

0 ⊗ ω0)0
°°° .

Substituting (T9.134) this becomes

max
Σ∈ΘΣ

ω0Σω =
ν1

ν1 +N + 1
ω0Σ1ω (T9.145)

+

Ã
2ν21q

2
Σ

(ν1 +N + 1)3

!1/2 °°°Λ1/2E0D0
N (ω

0 ⊗ ω0)
°°°

To simplify this expression, consider the pseudo inverse eD of the duplica-
tion matrix: eDNDN = IN(N+1)/2. (T9.146)

It is possible to show that¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
= eDN

¡
Σ−11 ⊗Σ−11

¢−1 eD0
N (T9.147)
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and
(ω0 ⊗ ω0)DN

eDN = (ω
0 ⊗ ω0) , (T9.148)

see Magnus and Neudecker (1999).
Now consider the square of the norm in (T9.145). Using (T9.147) and

(T9.148) we obtain:

a ≡
°°°Λ1/2E0D0

N (ω
0 ⊗ ω0)0

°°°2 (T9.149)

= (ω0 ⊗ ω0)DNEΛ
1/2Λ1/2E0D0

N (ω
0 ⊗ ω0)0

= (ω0 ⊗ ω0)DN

¡
D0
N

¡
Σ−11 ⊗Σ−11

¢
DN

¢−1
D0
N (ω

0 ⊗ ω0)0

= (ω0 ⊗ ω0)DN
eDN (Σ1 ⊗Σ1) eD0

ND
0
N (ω

0 ⊗ ω0)0

= (ω0 ⊗ ω0)DN
eDN (Σ1 ⊗Σ1)

h
(ω0 ⊗ ω0)

³
DN

eDN

´i0
= (ω0 ⊗ ω0) (Σ1 ⊗Σ1) (ω0 ⊗ ω0)0

Using (A.100) this becomes:

a = (ω0 ⊗ ω0) (Σ1 ⊗Σ1) (ω0 ⊗ ω0)0

= (ω0Σ1ω)⊗ (ω0Σ1ω) (T9.150)

= (ω0Σ1ω)
2

Therefore (T9.145) yields:

max
Σ∈ΘΣ

ω0Σω =
ν1

ν1 +N + 1
ω0Σ1ω (T9.151)

+

Ã
2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2
(ω0Σ1ω)

=

⎡⎣ ν1
ν1 +N + 1

+

Ã
2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2⎤⎦ (ω0Σ1ω) .
Equivalently, recalling (T9.127) we can write (T9.145) as follows:

max
Σ∈ΘΣ

{ω0Σω} =

⎡⎣ ν1
ν1 +N + 1

+

Ã
2ν21q

2
Σ

(ν1 +N + 1)
3

!1/2⎤⎦°°°Γ1/2F0ω°°°2
(T9.152)

The mean-variance problem

Substituting (T9.132) and (T9.152) in (9.139), and defining
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γµ ≡
Ã
1

T1

q2µν1

ν1 − 2

!1/2
(T9.153)

γ
(i)
Σ ≡

v(i)

ν1
ν1+N+1

+
³

2ν21q
2
Σ

(ν1+N+1)
3

´1/2 , (T9.154)

the Bayesian robust mean-variance problem reads:

ω
(i)
Br = argmax

ω

n
ω0µ1 − γµ

°°°Γ1/2F0ω°°°o (T9.155)

s.t.
°°°Γ1/2F0ω°°° ≤qγ

(i)
Σ .

This is equivalent to: ³
ω
(i)
Br, z

∗
´
= argmax

ω∈C,z
{ω0µ1 − z} (T9.156)

subject to °°°Γ1/2F0ω°°° ≤ z/γeµ (T9.157)°°°Γ1/2F0ω°°° ≤qγ
(i)
Σ . (T9.158)

This problem is in the SOCP form (6.55).






