
4

Estimating the distribution of the market
invariants

In this chapter we discuss how to estimate the distribution of the market
invariants from empirical observations.
In Section 4.1 we define the concept of estimator, which is simply a function

of current information that yields a number, the estimate. Such a general
definition includes estimators that perform poorly, i.e. functions that yield an
estimate which has little in common with the real distribution of the market
invariants. Therefore we discuss optimality criteria to evaluate an estimator.
After defining estimators and how to evaluate them, we need to actually

construct estimators for the market invariants. Nevertheless, constructing es-
timators by maximizing the above optimality criteria is not possible. First of
all, the search of the best estimator among all possible functions of current
information is not feasible. Secondly the optimality criteria rarely yield a uni-
vocal answer. In other words, an estimator might perform better than another
one in given circumstances, and worse in different circumstances. Therefore,
we construct estimators from general intuitive principles, making sure later
that their performance is acceptable, and possibly improving them with mar-
ginal corrections. In this spirit, we proceed as follows.
In Section 4.2 we introduce nonparametric estimators. These estimators

are based on the law of large numbers. Therefore, they perform well when the
number of empirical observations in the time series of the market invariants
is large, see Figure 4.1. When this is the case, nonparametric estimators are
very flexible, in that they yield sensible estimates no matter the underlying
true distribution of the market invariants. In particular we discuss the sam-
ple quantile, the sample mean, the sample covariance and the ordinary least
square estimate of the regression factor loadings in an explicit factor model,
stressing the geometrical properties of these estimators. We conclude with an
overview of kernel estimators.
When the number of observations is not very large, nonparametric esti-

mators are no longer suitable. Therefore we take a parametric approach, by
assuming that the true distribution of the market invariants belongs to a re-
stricted class of potential distributions. In Section 4.3 we discuss maximum
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Fig. 4.1. Performance of different types of estimators

likelihood estimators, which are built in such a way that the past observations
of the market invariants become the most likely outcomes of the estimated
parametric distribution. We compute the maximum likelihood estimators of
location, dispersion, and factor loadings under the assumption that the market
invariants are elliptically distributed: this shows the intrinsic outlier-rejection
mechanism of maximum likelihood estimators. Then we study thoroughly the
normal case: as it turns out, the main driver of the performance of the maxi-
mum likelihood estimators is the overall level of correlation among the market
invariants, as summarized by the condition number.
In some applications the number of observations is so scanty, and the result

of the estimate so unreliable, that it is advisable to average the final estimates
with fixed, yet potentially wrong, values: this way we obtain shrinkage esti-
mators, see Figure 4.1. In Section 4.4 we discuss the shrinkage estimators for
the location parameters, the dispersion parameters and the factor loadings of
a linear model.
In Section 4.5 we discuss robust estimation. Indeed, the parametric ap-

proach dramatically restricts the set of potential distributions for the market
invariants. Robust estimation provides a set of techniques to evaluate and
possibly fix the consequences of not having included the true, unknown distri-
bution among the set of potential distributions. We discuss classical measures
of robustness, such as the sensitivity curve and the jackknife, and develop
the more general concept of influence function. Then we evaluate the robust-
ness of the estimators previously introduced in this chapter and show how
to build robust M-estimators. In particular, we discuss M-estimators of the
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4.1 Estimators 171

location parameters, the dispersion parameters and the factor loadings of a
linear model.
In Section 4.6 we conclude with a series of practical tips to improve the

estimation of the distribution of the market invariants in specific situations.
Among other issues, we discuss outliers detection, which we tackle by means
of high breakdown estimators such as the minimum volume ellipsoid and the
minimum covariance determinant; missing data, which we tackle by means of
the EM algorithm; and weighted estimation techniques such as the exponential
smoothing, which accounts for the higher reliability of more recent data with
respect to data farther back in the past.

4.1 Estimators

Before introducing the concept of estimator, we review our working assump-
tions, which we set forth in Section 3.1.
The randomness in the market is driven by the market invariants. The

invariants are random variables that refer to a specific estimation-horizon eτ
and are independent and identically distributed (i.i.d.) across time. The generic
invariant Xt,eτ becomes known at the respective time t, which is part of the
set of equally spaced estimation dates:

t ∈ Det,eτ ≡ ©et,et+ eτ ,et+ 2eτ , . . .ª . (4.1)

For example, we have seen in Section 3.1.1 that the invariants in the equity
market are the compounded returns. In other words, for a stock that at the
generic time t trades at the price Pt, the following set of random variables are
independent and identically distributed across time, as t varies in (4.1):

Xt,eτ ≡ ln
µ

Pt
Pt−eτ

¶
, t ∈ Det,eτ . (4.2)

Furthermore, these variables become known at time t.

Notice that once the time origin et and the time interval eτ have been fixed,
we can measure time in units of eτ and set the origin in et − eτ . This way,
without loss of generality, we can always reduce the estimation dates to the
set of positive integers:

t ∈ Det,eτ ≡ {1, 2, 3, . . .} . (4.3)

We will use this more convenient notation throughout this chapter.

In this notation the market invariants of our example, namely the com-
pounded returns (4.2), read:
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172 4 Estimating the distribution of the market invariants

Xt ≡ ln
µ

Pt
Pt−1

¶
, t = 1, 2, . . . . (4.4)

Since the invariants are independent and identically distributed across
time, from (2.44) we obtain that their across-time joint distribution, as rep-
resented by their probability density function, factors as follows:

fX1,X2,... (x1,x2, . . .) = fX (x1) fX (x2) · · · , (4.5)

where we stress that the single-period joint distribution of the invariants fX
does not depend on the time index. Therefore all the information about the
invariants is contained in one single-period multivariate distribution.
In (4.5) we chose to represent the distribution of the invariants in terms

of their probability density function fX. Equivalently, we might find it more
convenient to represent the distribution of the invariants in terms of either
the cumulative distribution function FX or the characteristic function φX, see
Figure 2.2. The factorization (4.5) holds for any representation, as we see from
(2.46) and (2.48).

4.1.1 Definition

Our aim is to infer the single-period distribution of the invariants. More pre-
cisely, we aim at inferring the "truth", as represented by a generic number S
of features of the distribution of the market invariants. These features can be
expressed as an S-dimensional vector of functionals of the probability density
function (or of the cumulative distribution function, or of the characteristic
function):

G [fX] ≡ "unknown truth". (4.6)

For example, if we are interested in the expected value of the compounded
return on a stock (4.4), the "unknown truth" is the following one-dimensional
functional:

G [fX ] ≡
Z +∞

−∞
xfX (x) dx, (4.7)

where fX is the unknown probability density function of any compounded
return Xt, and does not depend on the specific time t.

The current time is T . We base inference on the information iT about the
invariants available at the time T when the investment decision is made. This
information is represented by the time series of all the past realizations of the
invariants:

iT ≡ {x1, . . . ,xT } , (4.8)

where the lower-case notation stresses the fact that the once random vari-
ables Xt have become observable numbers. An estimator is a vector-valued
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4.1 Estimators 173

function that associates a vector in RS , i.e. a set of S numbers, with available
information:

estimator: information iT 7→ number bG (4.9)

For example the following is an estimator:

bG [iT ] ≡ 1

T

TX
t=1

xt. (4.10)

Notice that the definition of estimator (4.9) is not related to the goal of
estimation (4.6). Again, an estimator is simply a function of currently available
information.

For example, the following is a function of information and thus it is an
estimator: bG [iT ] ≡ x1xT . (4.11)

Similarly, for strange that it might sound, the following is also an estimator:

bG [iT ] ≡ 3. (4.12)

4.1.2 Evaluation

Although the definition of estimator is very general, an estimator serves its
purpose only if its value is close to the true, unknown value (4.6) that we are
interested in: bG [iT ] ≈G [fX] . (4.13)

To make this statement precise, we need a criterion to evaluate estimators.
In order to evaluate an estimator, the main requirement is its replicability : an
estimator is good not only if the result of the estimation is close to the true
unknown value, but also if this does not happen by chance.

For example, the estimator (4.12) could yield by chance the true, unknown
parameter if this happens to be equal to 3, much like the hands of a broken
watch happen to display the correct time twice a day.

To tackle replicability, notice that the available information (4.8), namely
the time series of the market invariants, is the realization of a set of random
variables:

IT ≡ {X1, . . . ,XT } . (4.14)

In a different scenario, the realization of this set of variables would have as-
sumed a different value i0T and therefore the outcome of the estimate would
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Fig. 4.2. Estimation: replicability, bias and inefficiency

have been a different number bG [i0T ], see Figure 4.2. Therefore the estimator
(4.9), as a function of the random variable IT instead of the specific occurrence
iT , becomes a (multivariate) random variable:

bG [iT ] 7→ bG [IT ] . (4.15)

The distribution of the information (4.14) is fully determined by the true, un-
known distribution fX of the market invariants through (4.5). Therefore, the
distribution of the estimator (4.15) is also determined by the true, unknown
distribution fX of the market invariants, see Figure 4.2.

For example, if the invariants (4.4) are normally distributed with the fol-
lowing unknown parameters:

Xt ∼ N
¡
µ, σ2

¢
, (4.16)

then the estimator (4.10) is normally distributed with the following parame-
ters: bG [IT ] ≡ 1

T

TX
t=1

Xt ∼ N
µ
µ,

σ2

T

¶
, (4.17)

where µ and σ2 are unknown.

The distribution associated with an estimator is at least as important as
the specific outcome bG [iT ] of the estimation process: an estimator is suitable,
i.e. (4.13) holds, if the distribution of the multivariate random variable bG [IT ]
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4.1 Estimators 175

is highly concentrated around the true unknown value G [fX]. For instance,
this is not the case in Figure 4.2.

Suppose we use the estimator (4.10) to estimate (4.7), i.e. the expected
value of the invariants. From (4.16) this reads:

G [fX ] = µ. (4.18)

Therefore the distribution of the estimator (4.17) is centered around the true
unknown value µ and the concentration of this distribution is of the order of
σ/
√
T .

Nevertheless, evaluating a multivariate distribution can be complex. To
summarize the goodness of an estimator into a univariate distribution we
introduce the loss:

Loss
³bG,G

´
≡
°°°bG [IT ]−G [fX]°°°2 , (4.19)

where k·k denotes a norm, see (A.7). For reasons to become clear in a moment,
it is common to induce the norm from a quadratic form, i.e. a symmetric and
positive S × S matrix Q such that the following relation holds true:

kvk2 ≡ v0Qv. (4.20)

Since the loss is the square of a norm, from (A.7) the loss is zero only for
those outcomes where the estimator bG yields an estimate that is equal to the
true value to be estimated, and is strictly positive otherwise. Therefore, the
estimator is good if the distribution of the loss is tightly squeezed above the
value of zero.

In our example, from (4.17) and (4.18) we obtain:

bG [IT ]−G [fX ] ∼ N
µ
0,
σ2

T

¶
. (4.21)

We can summarize the goodness of this estimator with the quadratic loss
induced by Q ≡ 1 in (4.20). Then from (1.106) we obtain the distribution of
the loss, which is the following central gamma with one degree of freedom:

Loss
³ bG,G´ ≡ ³ bG−G

´2
∼ Ga

µ
1,
σ2

T

¶
. (4.22)

In the presence of a large number of observations, or when the underlying
market is not too volatile, this loss is a random variable tightly squeezed
above the value of zero.

Even evaluating the shape of a univariate distribution can be complex, see
Chapter 5. To further summarize the analysis of the goodness of an estimator
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176 4 Estimating the distribution of the market invariants

we consider the expected value of the loss: the higher the expected value, the
worse the performance of the estimator. Since the loss is a square distance,
we consider the square root of the expectation of the loss. The error1 is the
average distance between the outcome of the estimation process and the true
value to be estimated over all the possible scenarios:

Err
³bG,G

´
≡
s
E

½°°°bG (IT )−G [fX]°°°2¾. (4.23)

In our example, from (4.22) and (1.113) the error reads:

Err
³ bG,G´ = σ√

T
. (4.24)

As expected, the larger the number of observations in the time series and the
lower the volatility of the market, the lower the estimation error.

The definition (4.19)-(4.20) of the loss in terms of a square norm and the
definition (4.23) of the error as the square root of its expected value are not
the only viable choices. Nevertheless, the above definitions are particularly
intuitive because they allow to decompose the error into bias and inefficiency.
The bias measures the distance between the "center" of the distribution

of the estimator and the true unknown parameter to estimate:

Bias2
h bG,G

i
≡
°°°EnbG [IT ]o−G [fX]°°°2 , (4.25)

see Figure 4.2.
The inefficiency is a measure of the dispersion of the estimator, and as

such it does not depend on the true unknown value:

Inef2
h bGi ≡ E½°°°bG [IT ]− EnbG [IT ]o°°°2¾ , (4.26)

see Figure 4.2.
It is easy to check that in terms of bias and inefficiency the error (4.23)

factors as follows:

Err2
h bG,G

i
= Bias2

h bG,G
i
+ Inef2

h bGi . (4.27)

In these terms, the statement that the replicability distribution of a good
estimator is highly peaked around the true value can be rephrased as follows:
a good estimator is very efficient and displays little bias.

1 The error is called risk in the statistical literature. We prefer to reserve this term
for financial risk
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4.1 Estimators 177

In our example, from (4.17) and (4.18) we obtain the bias:

Bias
h bG,Gi = ¯̄̄En bG [IT ]o−G [fX ]

¯̄̄
= |µ− µ| = 0. (4.28)

In other words, the estimator is centered around the true, unknown value µ.
From (4.17) we obtain the inefficiency:

Inef
h bGi = Sdn bG [IT ]o = σ√

T
. (4.29)

In other words, the estimator has a dispersion of the order of σ/
√
T .

Comparing with (4.24) we see that the factorization (4.27) holds.

Notice that the definitions of loss and error are scale dependent: for exam-
ple if the true value G has the dimension of money and we measure it in US
dollars, the error is about one hundred times smaller than if we measure it
in Japanese yen. To make the evaluation scale independent we can normalize
the loss and the error by the length of the true value, if this length is not
zero. Therefore at times we consider the percentage loss, which is a random
variable:

PLoss
³bG,G

´
≡

°°°bG (IT )−G [fX]°°°2
kG [fX]k2

; (4.30)

and the percentage error, which is a scale-independent number:

PErr
³bG,G

´
≡

s
E

½°°°bG (IT )−G [fX]°°°2¾
kG [fX]k

. (4.31)

An estimator is suitable if its percentage error is much smaller than one.
At this point we face a major problem: the distribution of the loss, and

thus the error of an estimator, depends on the underlying true distribution of
the market invariants fX. If this distribution were known, we would not need
an estimator in the first place.

In our example, from (4.24) the error of the estimator (4.10) depends on
the standard deviation σ of the unknown distribution of the invariants (4.16):
this estimator is good if the invariants are not too volatile.
Similarly, the estimator (4.12) gives rise to a deterministic loss, which is

equal to the error and reads:

Err
³ bG,G´ = |µ− 3| . (4.32)

This estimator is suitable if the expected value of the invariants happens to
lie in the neighborhood of the value µ ≡ 3.
Nevertheless, neither µ nor σ are known parameters.
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Fig. 4.3. Evaluation of estimators: choice of stress-test distributions

Therefore in order to evaluate an estimator we have to proceed as follows.
First we consider, among all the possible distributions of the market in-

variants, a subset of stress test distributions that is large enough to contain
the true, unknown distribution, see Figure 4.3.
Then we make sure that the estimator is suitable, i.e. its distribution is

peaked around the true unknown value to be estimated for all the distributions
in the stress test set, see Figure 4.4.
In general an estimator performs well with some stress test distributions

and performs poorly with other stress test distributions, see Figure 4.4. Con-
sequently, in choosing the set of stress test distributions we face the following
dichotomy: on the one hand, the stress test set should be as broad as pos-
sible, in such a way to encompass the true, unknown distribution; on the
other hand, the stress test set should be as narrow as possible, in such a way
that estimators can be built which display small errors for all the stress test
distributions.

4.2 Nonparametric estimators

Assume that the number of observations T in the time series iT is very large.
The nonparametric approach is based on the following intuitive result, well
known to practitioners: under fairly general conditions, sample averages com-
puted over the whole time series approximate the expectation computed with
the true distribution, and the approximation improves with the number of
observations in the time series.
This result is known as the law of large numbers (LLN), which we represent

as follows:
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Fig. 4.4. Evaluation of estimators: loss and error

1

T

TX
t=1

{past} ≈
T→∞ E

{future} . (4.33)

The Law of Large Numbers implies the Glivenko-Cantelli theorem. This
theorem states that the empirical distribution (2.239) of a set of independent
and identically distributed variables, as represented for example by its cumu-
lative distribution function, tends2 to the true distribution as the number of
observations goes to infinity, see Figure 4.5:

lim
T→∞

FiT (x) = FX (x) . (4.34)

Expression (4.34) suggests how to define the estimator of a generic func-
tional G [fX] of the true, yet unknown, distribution of the market invariants.
Indeed, we only need to replace in the functional G [fX] the true, unknown
probability density function fX with the empirical probability density function
(2.240), which we report here:

fiT (x) ≡
1

T

TX
t=1

δ(xt) (x) , (4.35)

where δ is the Dirac delta (B.17). In other words we define the estimator of
G [fX] as follows:
2 One should specify the topology for the limits in the law of large numbers and
in the Glivenko-Cantelli theorem, see e.g. Shirayaev (1989) for details. Here we
choose a heurisitc approach.
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Fig. 4.5. Glivenko-Cantelli theorem

bG [iT ] ≡G [fiT ] . (4.36)

To test the goodness of this estimator we should compute its replicability,
i.e. the distribution of bG [IT ] as in (4.15), for all possible distributions. This
is an impossible task. Nevertheless, under fairly general conditions, when the
number of observations T is very large the central limit theorem (CLT) states
that the estimator is approximately normally distributed:

bG [IT ] ∼ NµG [fX] , A
T

¶
, (4.37)

where A is a suitable symmetric and positive matrix 3. The above approxima-
tion becomes exact only in the limit of an infinite number of observations T
in the time series: although this limit is never attained in practice, for a large
enough number of observations the nonparametric approach yields benchmark
estimators that can subsequently be refined.
We now use the nonparametric approach to estimate the features of the

distribution of the market invariants that are most interesting in view of
financial applications.

3 The matrix A is defined in terms of the influence function (4.185) as follows:

Ajk ≡
Z
RN
IF (x, fX, Gj) IF (x, fX, Gk) fX (x) dx,

see Huber (1981).
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4.2.1 Location, dispersion and hidden factors

If the invariants Xt are univariate random variables, we can use as location
parameter the generic quantile qp, which is defined implicitly in terms of the
probability density function fX of the invariant as follows:Z qp[fX ]

−∞
fX (x) dx ≡ p, (4.38)

see (1.18). By applying (4.36) to the definition of quantile, we obtain the
respective estimator bqp. This is the sample quantile (1.124):

bqp [iT ] ≡ x[pT ]:T , (4.39)

where [·] denotes the integer part. In particular, for p ≡ 1/2 this expression
becomes the sample median.

� ( )
pq

f x

Tx
[ ]p Xq f

Fig. 4.6. Sample quantile: evaluation

To evaluate this estimator, we consider it as a random variable as in (4.15).
From (2.248) the probability density function of the estimator bqp reads:

fbqp (x) = T ! [FX (x)]
[pT ]−1 [1− FX (x)]

T−[pT ] fX (x)
([pT ]− 1)! (T − [pT ])! . (4.40)

From (2.253) this density is concentrated around the quantile qp and from
(2.252) the quality of the estimator improves as the sample size T increases,
see Figure 4.6.

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



182 4 Estimating the distribution of the market invariants

Similarly, to estimate the dispersion of the univariate invariants Xt we can
use the sample interquantile range, derived by applying (4.36) to (1.37).
In the multivariate case, we can rely on the expected value of the invariant

X as parameter of location. We derive the nonparametric estimator of the
expected value by applying (4.36) to the definition (2.54) of expected value.
This is the expected value of the empirical distribution (2.244), i.e. the sample
mean: bE [iT ] ≡ Z

RN
xfiT (x) dx =

1

T

TX
t=1

xt. (4.41)

Similarly, as a multivariate parameter of dispersion we choose the covari-
ance matrix. By applying (4.36) to the definition (2.67) of covariance we derive
the respective nonparametric estimator:

dCov [iT ] = 1

T

TX
t=1

¡
xt − bE [iT ]¢ ¡xt − bE [iT ]¢0 . (4.42)

This is the covariance matrix of the empirical distribution (2.245), i.e. the
sample covariance.
From (4.42) we derive an expression for the estimator of the principal com-

ponent decomposition of the covariance matrix. Indeed, it suffices to compute
the PCA decomposition of the sample covariance:

dCov ≡ bEbΛbE0. (4.43)

In this expression bΛ is the diagonal matrix of the sample eigenvalues sorted
in decreasing order: bΛ ≡ diag³bλ1, . . . , bλN´ ; (4.44)

and bE is the orthogonal matrix of the respective sample eigenvectors. The
matrix bE is the estimator of the PCA factor loadings, and the entries of bΛ
are the estimators of the variances of the PCA factors.
We do not evaluate here the performance of the estimators (4.41), (4.42),

(4.43) and (4.44) on a set of stress test distributions, because the same esti-
mators reappear in a different context in Section 4.3.
The sample mean and the sample covariance display an interesting geo-

metrical interpretation. To introduce this property, consider a generic N -
dimensional vector µ and a generic N ×N scatter matrix Σ, i.e. a symmetric
and positive matrix. Consider the ellipsoid (A.73) defined by these two para-
meters, see Figure 4.7:

Eµ,Σ ≡
©
x ∈ RN such that (x− µ)0Σ−1 (x− µ) ≤ 1

ª
. (4.45)

Consider now the set of the Mahalanobis distances from µ through the metric
Σ of each observation xt in the time series of the invariants:
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Fig. 4.7. Sample mean and sample covariance: geometric properties

Maµ,Σt ≡Ma(xt,µ,Σ) ≡
q
(xt − µ)0Σ−1 (xt − µ). (4.46)

The Mahalanobis distance is the "radius" of the ellipsoid concentric to Eµ,Σ
that crosses the observation xt. In particular, if Ma

µ,Σ
t is one, then the ob-

servation xt lies on the ellipsoid (4.45). Consider the average of the square
distances:

r2 (µ,Σ) ≡ 1

T

TX
t=1

³
Maµ,Σt

´2
. (4.47)

If this number is close to one, the ellipsoid passes through the cloud of obser-
vations.
The sample mean and sample covariance represent the choices of loca-

tion and scatter parameter respectively that give rise to the smallest ellipsoid
among all those that pass through the cloud of observations, see Figure 4.7.
More formally, we prove in Appendix www.4.1 the following result:³bE, NdCov´ = argmin

(µ,Σ)∈C
[Vol {Eµ,Σ}] , (4.48)

where the set of constraints C imposes that Σ be symmetric and positive and
that the average Mahalanobis distance be one:

r2 (µ,Σ) ≡ 1. (4.49)

In other words, the set of constraints C imposes that the respective ellipsoid
(4.45) passes trough the cloud of observations, see Figure 4.7.
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The result (4.48) is intuitive: the ellipsoid generated by the sample mean
and covariance is the one that best fits the observations, since all the obser-
vations are packed in its neighborhood.
Nevertheless, in some circumstances the ellipsoid EbE,NdCov "tries too hard"

to embrace all the observations: if an observation is an outlier, the sample
mean and the sample covariance tend to perform rather poorly in an effort
to account for this single observation. We discuss this phenomenon further in
Section 4.5.

4.2.2 Explicit factors

Consider the explicit factor affine model (3.119), which we report here:

X = BF+U. (4.50)

Since we observe both the N -dimensional market invariants X and the K-
dimensional explicit factors F, the available information (4.8) consists of the
time series of both the invariants and the factors:

iT ≡ {x1, f1, . . . ,xT , fT } . (4.51)

By applying (4.36) to the definition of the regression factor loadings (3.121)
we obtain the nonparametric estimator of the regression factor loadings of the
explicit factor affine model:

bB [iT ] ≡ ÃX
t

xtf
0
t

!ÃX
t

ftf
0
t

!−1
. (4.52)

This matrix represents the ordinary least square (OLS) estimator of the re-
gression factor loadings.
The name is due to a geometric property of the OLS coefficients, which

we sketch in Figure 4.8. Indeed, as we show in Appendix www.4.1, the OLS
estimator bB provides the best fit to the observations, in the sense that it
minimizes the sum of the square distances between the original observations
xt and the recovered values bBft:bB = argmin

B

X
t

kxt −Bf tk2 , (4.53)

where k·k is the standard norm (A.6).
By applying (4.36) to the covariance of the residuals (3.129) we obtain the

respective nonparametric estimator:

dCov [iT ] ≡ 1

T

X
t

³
xt − bBft´³xt − bBft´0 . (4.54)

This is the ordinary least square (OLS) estimator of the covariance of the
residuals.
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Fig. 4.8. OLS estimates of factor loadings: geometric properties

4.2.3 Kernel estimators

Here we briefly put into perspective a nonparametric approach to estimation
that is becoming very popular in financial applications, see Campbell, Lo, and
MacKinlay (1997).
The nonparametric estimators defined by the recipe (4.36) are very sen-

sitive to the input data and thus are not robust, in a sense to be discussed
precisely in Section 4.5. Intuitively, this happens because the empirical prob-
ability density function (4.35), is a sum of Dirac deltas, which are not regular,
smooth functions.
One way to solve this problem consists in replacing the empirical distribu-

tion with a regularized, smoother distribution by means of the convolution, see
(B.54). In other words, we replace the empirical probability density function
as follows:

fiT 7→ fiT ;� ≡
1

T

TX
t=1

1

(2π)
N
2 �N

e−
1
2�2

(x−xt)0(x−xt). (4.55)

The outcome of this operation is a smoother empirical probability density
function such as the one sketched in Figure 2.18. In this context, the Gaussian
exponential, or any other smoothing function, takes the name of kernel, and
the width � of the regularizing function takes on the name of bandwidth.
Once the probability density function has been smoothened, we can define

new nonparametric estimators that replace (4.36) as follows:

bG [iT ] ≡G [fiT ;�] . (4.56)
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186 4 Estimating the distribution of the market invariants

The bandwidth of the kernel must be chosen according to the following
trade-off. A narrow bandwidth gives rise to non-robust estimators: indeed,
a null bandwidth gives rise to the benchmark estimators (4.36) stemming
from the non-regularized empirical distribution. On the other hand, a wide
bandwidth blends the data too much and gives rise to loss of information.

4.3 Maximum likelihood estimators

In this section we abandon the nonparametric approach. In the parametric
approach the stress test set of potential distributions, which include the true,
unknown distribution of the market invariants, is dramatically restricted. Only
a few models of distributions are considered: once the model is chosen, it is
subsequently fitted to the empirical data.
We represent a parametric the family of potential distributions, the stress

test distributions, in terms of their probability density function fθ , where θ is
an S-dimensional parameter that fully determines the distribution and that
ranges in a given set Θ, see Figure 4.9 and compare with Figure 4.3.

Θ

sp ace o f a ll d istrib u tio n s

su b set o f stress-test d istrib u tion s

: tru e, un kn ow n  d istribu tio nfθ

Fig. 4.9. Parametric approach to estimation

For example, from empirical observations it might seem reasonable to
model a given market invariant by means of the lognormal distribution as
follows:

Xt ∼ LogN (θ, 1) . (4.57)

In this case the distribution’s parameters are one-dimensional; the distribu-
tion’s probability density function reads:
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fθ (x) ≡
1√
2πx

e−
1
2 (lnx−θ)2 ; (4.58)

and the parameter space Θ is the real line R.

Since the distribution of the invariants is completely determined by the
parameters θ, estimating the distribution corresponds to determining these
parameters. In other words, the estimation process (4.9) consists of determin-
ing some function of the available information bθ [iT ] that is close to the true,
unknown parameters.

observation = mode of MLE distribution

observation = mode of MLE distribution

l ( )f x
θ

( )f xθ

�
1x x=

1x

( )f xθ

l ( )f x
θ

x

x�x

Fig. 4.10. Maximum likelihood estimator as mode

The maximum likelihood principle provides a method to determine an es-
timator which is related to the intuitive concept of mode. We recall that the
mode ex of a distribution fX is the value that corresponds to the peak of the
distribution, i.e. the largest value of the probability density function:ex ≡ argmax

x∈RN
fX (x) . (4.59)

Suppose that only one observation x1 is available. Most likely, this observation
lies in a region where the probability density function is comparatively large,
i.e. near the the mode. Therefore, once we assume that the distribution that
generated that observation belongs to a specific parametric family fX ≡ fθ ,
the most intuitive value for the parameter θ is the value bθ that makes the pdf
in that point the largest, see the top plot in Figure 4.10.
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In other words, according to the maximum likelihood principle we define
the estimator bθ as follows:

bθ ≡ argmax
θ∈Θ

fθ (x1) . (4.60)

Notice that, although the maximum likelihood estimator draws on the concept
of mode, the observation x1 does not necessarily turn out to be the mode of
the distribution fbθ :

x1 6= argmax
x∈RN

fbθ (x) , (4.61)

see the bottom plot in Figure 4.10.

For example, from (4.58) we solve:

bθ ≡ argmax
θ∈R

½
1√
2πx1

e−
1
2 (lnx1−θ)2

¾
. (4.62)

From the first-order condition with respect to θ we obtain the value:

bθ = lnx1. (4.63)

On the other hand, from the first-order condition with respect to x we obtain
that the mode bx satisfies:

ln bx = bθ − 1. (4.64)

Therefore, in the case of the lognormal distribution, (4.61) takes place, i.e. the
mode of the distribution estimated with the maximum likelihood principle is
not the observation, see the bottom plot in Figure 4.10.

In the general case of a time series of several observations, from (4.5) we
obtain the joint probability density function of the time series, which is the
product of the single-period probability density functions:

fθ (iT ) ≡ fθ (x1) · · · fθ (xT ) . (4.65)

Expression (4.65) is also called the likelihood function of the time series. Now
we can apply the maximum likelihood principle (4.60) to the whole time series.
Therefore the maximum likelihood estimator (MLE) of the parameters θ is
defined as follows:

bθ [iT ] ≡ argmax
θ∈Θ

fθ (iT ) (4.66)

= argmax
θ∈Θ

TX
t=1

ln fθ (xt) .
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For example, in the case of lognormal invariants, from (4.58) we solve:

bθ ≡ argmax
θ∈Θ

(
−

TX
t=1

1

2
(lnxt − θ)2

)
. (4.67)

The first-order condition reads:

0 =
1

T

TX
t=1

³
lnxt − bθ´ , (4.68)

which implies the following expression for the maximum likelihood estimate
of the parameter: bθ = 1

T

TX
t=1

lnxt. (4.69)

The maximum likelihood estimator displays a few appealing properties.
For instance, the invariance property , which states that the MLE of a func-

tion of the parameters is that function applied to the MLE of the parameters:dg (θ) = g
³bθ´ . (4.70)

This property follows from the definition (4.66).
Furthermore, similarly to the nonparametric approach (4.37), the maxi-

mum likelihood principle provides good estimators in the limit case of a very
large number of observations T in the time series iT , as sketched in Figure 4.1.
Indeed, the following relation holds in approximation, and the approximation
becomes exact as T tends to infinity:

bθ [iT ] ∼ Nµθ, Γ
T

¶
. (4.71)

In this expression Γ is a symmetric and positive matrix called the Fisher
information matrix :

Γ ≡ Cov
½
∂ ln (fθ (X))

∂θ

¾
, (4.72)

see e.g. Haerdle and Simar (2003).
The Cramer-Rao lower bound theorem states that the inefficiency of the

maximum likelihood estimator, as represented by (4.72), is the smallest pos-
sible achievable with an unbiased estimator, and from (4.71) we see that the
MLE becomes unbiased in the limit of many observations.
Nevertheless, we introduced the parametric approach to estimation in or-

der to build estimators that perform well in the realistic case of a finite number
of observations of market invariants. Therefore below we evaluate the maxi-
mum likelihood estimators of parametric models that are apt to describe the
market invariants.
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190 4 Estimating the distribution of the market invariants

4.3.1 Location, dispersion and hidden factors

In Chapter 3 we saw that the market invariants are quite symmetrical. There-
fore, in this section we construct and evaluate maximum-likelihood estimators
under the assumption that the N -dimensional invariantsX are elliptically dis-
tributed:

X ∼ El (µ,Σ, g) , (4.73)

where µ is the N -dimensional location parameter, Σ is the N ×N dispersion
matrix and g is the probability density generator, see (2.268). In other words,
the probability density function of the invariants invariants X is of the form:

fθ (x) ≡
1p
|Σ|

g
¡
Ma2 (x,µ,Σ)

¢
, (4.74)

where Ma(x,µ,Σ) is the Mahalanobis distance of the point x from the point
µ through the metric Σ:

Ma(x,µ,Σ) ≡
q
(x− µ)0Σ−1 (x− µ), (4.75)

see (2.61).
Under the assumption (4.73) the parameters θ ≡ (µ,Σ) completely deter-

mine the distribution of the market invariants4. These parameters span the
set:

Θ ≡
©
µ ∈ RN ,Σ ∈ RN×N ,Σ º 0

ª
, (4.76)

where º 0 denotes symmetric and positive.
In this context, estimating the distribution of the market invariants means

estimating from currently available information iT the parameters (µ,Σ). In
Appendix www.4.2 we prove that the MLE estimators bµ [iT ] and bΣ [iT ] are
the solutions to the following joint set of implicit equations:

bµ = TX
t=1

w
³
Ma2

³
xt, bµ, bΣ´´PT

s=1w
³
Ma2

³
xs, bµ, bΣ´´xt (4.77)

bΣ = 1

T

TX
t=1

(xt − bµ) (xt − bµ)0 w ³Ma2 ³xt, bµ, bΣ´´ , (4.78)

where the function w is defined as follows in terms of the probability density
generator:

w (z) ≡ −2g
0 (z)
g (z)

. (4.79)

Notice that defining the following weights:

4 We assume known the specific density generator, otherwise we would obtain a
semiparametric model.
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wt ≡ w
³
Ma2

³
xt, bµ, bΣ´´ , (4.80)

we can interpret the maximum likelihood estimators of location and dispersion
(4.77) and (4.78) as weighted sums:

bµ = TX
t=1

wtPT
s=1ws

xt (4.81)

bΣ = 1

T

TX
t=1

wt (xt − bµ) (xt − bµ)0 . (4.82)

Each observation is weighted according to its Mahalanobis distance from the
ML estimator of location through the metric defined by the ML estimator of
dispersion.

For example, assume that the market invariants are Cauchy distributed,
see (2.208). In this case the density generator reads:

gCa (z) =
Γ
¡
1+N
2

¢
Γ
¡
1
2

¢
(π)

N
2

(1 + z)−
1+N
2 , (4.83)

where Γ is the gamma function (B.80). Therefore the weights (4.80) become:

wt =
N + 1

1 +Ma2
³
xt, bµ, bΣ´ . (4.84)

This is a decreasing function of the Mahalanobis distance: the maximum like-
lihood estimators of location and dispersion of a set of Cauchy-distributed
invariants tend to neglect outliers.
This result is intuitive: we recall that the Cauchy distribution is fat-tailed,

see Figure 1.9. Therefore extreme observations, i.e. observations with large
Mahalanobis distance, are quite frequent. These extreme observations might
distort the estimation, which is why the maximum likelihood estimator tends
to taper their influence in the estimation process.

After solving (4.77)-(4.79) for bΣ we can derive the expression for the max-
imum likelihood estimator of the principal component factor model. Indeed,
it suffices to compute the PCA decomposition of the estimator:

bΣ [iT ] ≡ bEbΛbE0, (4.85)

where bΛ is the diagonal matrix of the eigenvalues in decreasing order andbE is the orthogonal matrix of the respective eigenvectors. Then bE becomes
the MLE estimator of the hidden factor loadings and bΛ becomes the estimator
of the dispersion of the hidden factors.
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To evaluate the performance of the maximum likelihood estimators of lo-
cation and dispersion bµ and bΣ we should determine the distribution of bµ
and bΣ when in (4.77)-(4.79) the market invariants are considered as random
variables as in (4.15).
Unfortunately, in the generic elliptical case it is not possible to convert

the implicit equations (4.77)-(4.79) into explicit functional expressions of cur-
rent information. Therefore we must solve for the estimators numerically and
resort to simulations to evaluate their performance, unless the invariants are
normally distributed. We discuss the normal case in detail in Section 4.3.3.

4.3.2 Explicit factors

Consider the explicit factor affine model (3.119), which we report here:

X = BF+U. (4.86)

Since we observe both the N -dimensional invariantsX and theK-dimensional
factors F, the available information (4.8) is the time series of both the invari-
ants and the factors:

iT ≡ {x1, f1, . . . ,xT , fT } . (4.87)

To implement the maximum likelihood approach we could model the
(N +K)-dimensional joint distribution of invariants and factors by means
of some parametric distribution fθ and then maximize the likelihood over the
parameters θ and the factor loadings B.
Nevertheless, most explicit factor models serve the purpose of stress testing

the behavior of the invariants under assumptions on the future realization
of the factors. For example, practitioners ask themselves such questions as
what happens to a given stock if the market goes up, say, 2%. Therefore, it is
more convenient to model the N -dimensional distribution of the perturbations
fθ|f ≡ fU|f conditional on knowledge of the factors and model the conditional
distribution of the invariants accordingly:

X|f = Bf +U|f . (4.88)

Under the above assumptions the conditional distribution fX|f of the in-
variants becomes a parametric function fθ,B of the parameters θ of the per-
turbations and the factor loadings B. Therefore we can apply the maximum
likelihood principle (4.66) to the conditional distribution of the invariants,
determining the maximum likelihood estimator bθ of the distribution of the
perturbations and the maximum likelihood estimator of the factor loadingsbB: ³bθ, bB´ ≡ argmax

θ∈Θ,B
fθ,B (iT ) . (4.89)

In Chapter 3 we saw that the market invariants are quite symmetrical.
Therefore, we construct the maximum-likelihood estimators under the as-
sumption that the conditional distribution of the perturbations be an N -
dimensional elliptical random variable:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



4.3 Maximum likelihood estimators 193

Ut|ft ∼ El (0,Σ, g) . (4.90)

In other words we assume that the perturbations are centered in zero; that
Σ is their N × N dispersion matrix and that g is their probability density
generator.
From (2.270) the invariants are elliptically distributed with the same gen-

erator:
Xt|ft ∼ El (Bf t,Σ, g) . (4.91)

In this context the parameters to be estimated are B and Σ.
In Appendix www.4.2 we show that the MLE estimators of these parame-

ters solve the following set of joint implicit equations:

bB = " TX
t=1

w
³
Ma2

³
xt, bBf t,bΣ´´xtf 0t

#
(4.92)

"
TX
t=1

w
³
Ma2

³
xt, bBf t,bΣ´´ ftf 0t

#−1
and

bΣ = 1

T

TX
t=1

w
³
Ma2

³
xt, bBf t, bΣ´´³xt − bBf t´³xt − bBf t´0 , (4.93)

where the function w is defined in terms of the probability density generator:

w (z) ≡ −2g
0 (z)
g (z)

. (4.94)

In the generic elliptical case, the implicit equations (4.92)-(4.94) must be
solved numerically and the evaluation of the estimators must be performed
by means of simulations. On the other hand, in the specific normal case the
above implicit equations can be solved analytically. We discuss the normal
explicit factor model at the end of Section 4.3.3.

4.3.3 The normal case

In the special case where the market invariants are normally distributed the
analysis of the maximum likelihood estimators of location, dispersion and
explicit factors can be performed analytically. This analysis provides insight
into the more general case.

Location, dispersion and hidden factors

Assume that the market invariants are normally distributed:
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X ∼ N(µ,Σ) . (4.95)

In the normal case the location parameter µ is the expected value of the
distribution and the dispersion parameter Σ is its covariance matrix.
The normal distribution is a special case of elliptical distribution, which

corresponds to the following choice of the density generator:

gN (z) ≡ e−
z
2

(2π)
N
2

, (4.96)

see (2.264). It is immediate to check that in the normal case the weights (4.79)
are constant:

w (z) ≡ 1. (4.97)

To interpret this result, we compare it with the respective result for the Cauchy
distribution. The normal distribution is very thin-tailed and therefore extreme
observations are rare. If an observation is far from the location parameter, the
reason must be due to a large dispersion matrix: therefore, unlike (4.84), the
maximum likelihood estimator gives full weight to that observation, in such a
way to effectively modify the estimation and lead to a larger estimate of the
dispersion matrix.
From (4.77) we obtain the explicit expression of the estimator of location

in terms of current information:

bµ [iT ] = 1

T

TX
t=1

xt. (4.98)

Similarly, from (4.78) we obtain the explicit expression of the estimator of
dispersion in terms of current information:

bΣ [iT ] = 1

T

TX
t=1

(xt − bµ) (xt − bµ)0 . (4.99)

These estimators are the sample mean (4.41) and the sample covariance
(4.42) respectively. It is reassuring that two completely different methods yield
the same estimators for both location and dispersion. This supports our state-
ment that the sample mean and the sample covariance are the benchmark
estimators of location and dispersion respectively.
To evaluate the goodness of the sample mean and of the sample covariance

under the normal hypothesis we proceed as in (4.15), computing the joint
distribution of the following random variables:

bµ [IT ] ≡ 1

T

TX
t=1

Xt (4.100)

bΣ [IT ] ≡ 1

T

TX
t=1

(Xt − bµ) (Xt − bµ)0 . (4.101)
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In Appendix www.4.3 we prove the following results. The sample mean is
normally distributed: bµ [IT ] ∼ Nµµ, Σ

T

¶
. (4.102)

The distribution of the sample covariance is related to theWishart-distribution
(2.223) by the following expression:

T bΣ [IT ] ∼W(T − 1,Σ) . (4.103)

Furthermore, (4.102) and (4.103) are independent of each other.

• Component-wise evaluation

From the above expressions we can evaluate component-wise the error
(4.23) of the sample estimators, using the standard quadratic form Q ≡ 1 in
(4.20) and decomposing the error into bias and inefficiency as in (4.27).
For the sample mean, from (4.102) we obtain:

Bias (bµi, µi) = 0 (4.104)

Inef (bµi) =rΣii

T
. (4.105)

This shows that the sample mean is unbiased and that its inefficiency shrinks
to zero as the number of observations grows to infinity.
As for the estimator of the sample covariance, from (4.103) and (2.227)-

(2.228) we obtain:

Bias
³ bΣmn, Σmn

´
=
1

T
|Σmn| (4.106)

Inef
³ bΣmn

´
=

r
T − 1
T 2

p
ΣmmΣnn +Σ2

mn. (4.107)

As expected, bias and inefficiency shrink to zero as the number of observations
grows to infinity.
Formulas (4.104)-(4.107) provide the measure of performance for each of

the entries of the estimators separately. It is nonetheless interesting to obtain
a global measure of performance. Since the sample mean bµ and the sample
covariance bΣ are independent, we evaluate them separately.

• Evaluation of sample mean

To evaluate the sample mean (4.100), we consider the loss (4.19) induced
by the quadratic formQ ≡ IN . In other words, the loss is the following random
variable:

Loss (bµ,µ) ≡ [bµ [IT ]− µ]0 [bµ [IT ]− µ] . (4.108)

We then summarize the information contained in the loss by means of the
error (4.23). We prove in Appendix www.4.3 that the error reads:
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Err2 (bµ,µ) = 1

T
tr (Σ) . (4.109)

The whole error is due to inefficiency, as the sample estimator is unbiased:

Inef2 (bµ) = 1

T
tr (Σ) (4.110)

Bias2 (bµ,µ) = 0. (4.111)

As expected, the error decreases as the number of observations grows to in-
finity. Furthermore, it is an increasing function of the average variance: intu-
itively, more volatile invariants give rise to larger estimation errors.
To gain further insight into the estimation error of the sample mean, we

consider the PCA decomposition (A.70) of the scatter matrix:

Σ ≡ EΛE0. (4.112)

In this expression Λ is the diagonal matrix of the eigenvalues of Σ sorted in
decreasing order:

Λ ≡ diag (λ1, . . . , λN ) ; (4.113)

and E is the juxtaposition of the respective orthogonal eigenvectors. From the
PCA decomposition the following identity follows:

tr [Σ] = tr [Λ] . (4.114)

Therefore, the estimation error of sample mean (4.109), along with its
factorization in terms of bias and inefficiency, is completely determined by
the eigenvalues of Σ. To interpret this result geometrically, consider the el-
lipsoid Eµ,Σ determined by the market parameters as described in (A.73),
which is also the location-dispersion ellipsoid of the invariants (2.75). Since
the eigenvalues represent the (square of) the length of the principal axes of the
ellipsoid, the estimation error of the sample mean is completely determined
by the shape of the location-dispersion ellipsoid of the invariants, and not by
its location or orientation.
In particular, a key parameter is the condition number or the condition

ratio defined as the ratio between the smallest and the largest eigenvalue:

CN {X} ≡ λN
λ1
. (4.115)

The condition number ranges in the interval [0, 1]. When the condition num-
ber is close to one the invariants X are well-conditioned and the location-
dispersion ellipsoid that represents the invariants resembles a sphere. When
the condition number is close to zero the invariants X are ill-conditioned : the
ellipsoid is elongated, shaped like a cigar, since the actual dimension of risk
is less than the number of invariants. This is the case in highly correlated
markets, such as the swap market, see Figure 3.20.
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To capture the effect of the shape of the location-dispersion ellipsoid on
the estimation error, we keep the location µ constant and we let the scatter
matrix Σ vary as follows:

Σ ≡


1 θ · · · θ

θ 1
. . .

...
...
. . .

. . . θ
θ · · · θ 1

 , θ ∈ (0, 1) . (4.116)

The parameter θ represents the overall level of correlation among the invari-
ants: as the correlation varies between zero and one, the condition number
varies between one and zero.

loss distribution

error

correlation

bias 2
inefficiency 2

2

condition number

Fig. 4.11. Sample mean: evaluation

In Figure 4.11 we display the distribution of the loss (4.108) and the re-
spective error (4.109) as the market parameters vary according to (4.116).
Notice how the distribution of the loss varies, although the inefficiency and
thus the error remain constant.

• Evaluation of sample covariance

To evaluate the sample covariance (4.101) we introduce the Frobenius
quadratic form for a generic symmetric matrix S:

kSk2 ≡ tr
£
S2
¤
. (4.117)
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This corresponds to the choiceQ ≡ IN2 in (4.20) acting on vec (S), the stacked
columns of S. Accordingly, the loss (4.19) becomes the following random vari-
able:

Loss
³bΣ,Σ´ ≡ tr ·³bΣ [IT ]−Σ´2¸ . (4.118)

In Appendix www.4.3 we show that the estimation error (4.23) relative to this
loss reads:

Err2
³bΣ,Σ´ = 1

T

·
tr
¡
Σ2
¢
+

µ
1− 1

T

¶
[tr (Σ)]2

¸
. (4.119)

The error factors as follows into bias and inefficiency:

Inef2
³bΣ´ = 1

T

µ
1− 1

T

¶h
tr
¡
Σ2
¢
+ [tr (Σ)]2

i
(4.120)

Bias2
³bΣ,Σ´ = 1

T 2
tr
¡
Σ2
¢
. (4.121)

As expected, the error decreases as the number of observations grows to in-
finity. Furthermore, it is an increasing function of the average variance: intu-
itively, more volatile invariants give rise to higher estimation errors. Notice
also that the bulk of the error is due to the inefficiency, as the sample estimator
is almost unbiased.
From the spectral decomposition (4.112) the following identity follows:

tr
£
Σ2
¤
= tr

£
Λ2
¤
. (4.122)

Therefore from this expression and (4.114) also the estimation error of the
sample covariance (4.119), along with its factorization in terms of bias and
inefficiency, is completely determined by the shape of the location-dispersion
ellipsoid of the invariants, and not by its location or orientation.
In Figure 4.12 we display the distribution of the loss (4.118) and the respec-

tive error (4.119) as the market parameters vary according to (4.116). Notice
in the top plot that for high correlations the peak of the distribution of the
loss is close to zero, although its dispersion increases dramatically. Indeed, we
see in the middle plot how the inefficiency increases with the correlation of
the market invariants.

Explicit factors

Consider the particular case of the conditional linear factor model (4.90) where
the perturbations are normally distributed:

Ut|ft ∼ N(0,Σ) . (4.123)

From the expression (2.264) of the density generator:
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Fig. 4.12. Sample covariance: evaluation

gN (z) ≡ (2π)−
N
2 e−

z
2 , (4.124)

we obtain that the weights (4.94) are constant:

w (z) ≡ 1. (4.125)

Therefore (4.92) yields the explicit expression of the estimator of the factor
loadings in terms of current information:

bB [iT ] = bΣXF [iT ] bΣ−1F [iT ] , (4.126)

where bΣXF [iT ] ≡
1

T

TX
t=1

xtf
0
t , bΣF [iT ] ≡

1

T

TX
t=1

ftf
0
t. (4.127)

This is the ordinary least squares estimator (4.52) of the regression factor
loadings. It is reassuring that two completely different methods yield the same
estimator for the factor loadings. This supports our statement that the OLS
estimator is the benchmark estimator for the factor loadings.
On the other hand (4.93) yields the explicit expression of the estimator of

the dispersion of the perturbations in terms of current information:

bΣ [iT ] = 1

T

TX
t=1

³
xt − bB [iT ] ft´³xt − bB [iT ] ft´0 . (4.128)
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This is the sample covariance (4.42) of the residuals that stems from the OLS
estimation.
To evaluate the goodness of the MLE estimators under the normal hypoth-

esis, we proceed as in (4.15). We prove in Appendix www.4.4 the following
results.
The estimator of the factor loadings has a matrix-variate normal distrib-

ution: bB [IT |f1, . . . , fT ] ∼ NµB, Σ
T
, bΣ−1F ¶

, (4.129)

see (2.181) for the definition of this distribution.
The estimator of the dispersion of the perturbations is a Wishart distrib-

uted random matrix (modulo a scale factor):

T bΣ [IT |f1, . . . , fT ] ∼W(T −K,Σ) . (4.130)

Furthermore, (4.129) and (4.130) are independent of each other.
Given the normal-Wishart joint structure of these estimators, the maxi-

mum likelihood estimators of the factor loadings and of the dispersion of the
perturbations can be evaluated by exactly the same methodology used for
(4.102) and (4.103) respectively.

4.4 Shrinkage estimators

We have discussed in Section 4.2 the benchmark estimators of location and
dispersion of the generic market invariants X, namely the sample mean and
sample covariance respectively, and the benchmark estimators of the explicit
factor models, namely the OLS regression coefficients. These estimators per-
form well in the limit case of an infinite number of observations, see Figure
4.1. We have also seen in Section 4.3 that when the underlying distribution
of the invariants is normal these estimators satisfy the maximum likelihood
principle.
Nevertheless, when the sample is very short, the error associated with the

benchmark estimators is quite large.
An estimator is admissible if it is not systematically outperformed, i.e. if

there does not exist another estimator which displays less error for all the
stress-test distributions considered in the evaluation of that estimator, see
Figure 4.9. The benchmark estimators are not admissible. Indeed, although
the maximum likelihood principle is an intuitive recipe with many palatable
features, it does not guarantee that the ensuing estimators be optimal.
In particular, the bulk of the error of the benchmark estimators is due to

their inefficiency, whereas their bias is quite limited, see Figures 4.11 and 4.12.
A key feature of the underlying distribution of the invariants X that deeply
affects the efficiency of the benchmark estimators is the condition number

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



4.4 Shrinkage estimators 201

(4.115), namely the ratio between the smallest and the largest eigenvalues of
the unknown underlying scatter matrix:

CN {X} ≡ λN
λ1
. (4.131)

We see below that the benchmark estimators are very inefficient when the
condition number is close to one, i.e. when the invariants are well-diversified
and display little correlation with each other.
In order to fix the inefficiency of the benchmark estimators we consider

estimators that are very efficient, although they display a large bias, namely
constant estimators. Then we blend the benchmark estimators with the con-
stant estimators by means of weighted averages. Such estimators are called
shrinkage estimators, because the benchmark estimators are shrunk towards
the target constant estimators.
As we see below, the gain in efficiency of the shrinkage estimators with

respect to the original benchmark estimators more than compensates for the
increase in bias, and thus the overall error of the shrinkage estimators is
reduced.

4.4.1 Location

Assume that the market invariants are normally distributed with the following
parameters:

Xt ∼ N(µ,Σ) . (4.132)

Consider the standard definition (4.108) of loss of a generic estimator of loca-
tion bµ with respect to the true unknown location parameter µ of the invari-
ants:

Loss (bµ,µ) ≡ (bµ [IT ]− µ)0 (bµ [IT ]− µ) ; (4.133)

and the respective definition of error:

Err2 (bµ,µ) ≡ E©(bµ [IT ]− µ)0 (bµ [IT ]− µ)ª . (4.134)

Consider the benchmark estimator of location (4.98) of the market invariants,
namely the sample mean:

bµ [iT ] ≡ 1

T

TX
t=1

xt. (4.135)

From (4.109) the error (4.134) of the sample mean reads:

Err2 (bµ,µ) = 1

T
tr (Σ) . (4.136)

In a pathbreaking publication, Stein (1955) proved that the sample mean
is not an admissible estimator. In other words, when the dimensions N of the
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vector of invariants X is larger than one, there exists an estimator of locationbµS such that:
Err2

³bµS ,µ´ <
1

T
tr (Σ) , (4.137)

no matter the values of the underlying parameters in (4.132). The hypotheses
in the original work were somewhat more restrictive than (4.132). Here we
discuss the more general case, see also Lehmann and Casella (1998).
First of all, from (4.111) we see that we cannot improve on the sample

mean’s bias, as the whole error is due to the estimator’s inefficiency (4.110). In
other words, the sample mean is properly centered around the true, unknown
value, but it is too dispersed, see Figure 4.2.
To reduce the error of the estimator we must reduce its inefficiency, al-

though this might cost something in terms of bias. The most efficient esti-
mator is a constant estimator, i.e., an estimator such as (4.12), which with
any information associates the same fixed value. Indeed, constant estimators
display zero inefficiency, although their bias is very large.
Therefore we consider weighted averages of the sample estimator with a

constant estimator of location b, i.e. any fixed N -dimensional vector. This
way we obtain the James-Stein shrinkage estimators of location:bµS ≡ (1− α) bµ+ αb. (4.138)

We show in Appendix www.4.5 that an optimal choice for the weight α in this
expression is the following:

α ≡ 1

T

Nλ− 2λ1
(bµ− b)0 (bµ− b) , (4.139)

where λ1 is the largest among the N eigenvalues of Σ and λ is the average of
the eigenvalues.
By means of Stein’s lemma we prove in Appendix www.4.5 that the shrink-

age estimator (4.138)-(4.139) performs better than the sample mean, i.e. it
satisfies (4.137). In real applications the true underlying covariance matrix
Σ is not known, and thus we cannot compute its eigenvalues. Therefore we
replace it with an estimate Σ 7→ bΣ. Furthermore, to obtain more sensible
results and to interpret α as a weight, we impose the additional constraint
that α be comprised in the interval (0, 1).
As intuition suggests, the optimal amount of shrinkage (4.139) vanishes as

the amount of observations T increases.
Furthermore, the optimal shrinkage weight (4.139) is largest in well condi-

tioned market, i.e. when the condition number (4.131) is one. Indeed, in the
limit case of full correlation among the invariants, the multivariate setting
becomes a one-dimensional setting, in which case the sample estimate is no
longer inadmissible.
On the other hand, in the case of extremely well conditioned markets all

the eigenvalues are equal to the common value λ and the optimal shrinkage
weight reads:
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α ≡ N − 2
T

λ

(bµ− b)0 (bµ− b) . (4.140)

Notice in particular that, as intuition suggests, shrinking toward the target
b becomes particularly effective when the number of observations T is low
with respect to the dimension of the invariants N and, since λ is the average
variance of the invariants, when the markets are very volatile.

loss distribution

error

correlation

bias
2

inefficiency 2

2

condition number

Fig. 4.13. Shrinkage estimator of mean: evaluation

In Figure 4.13 we display the distribution of the loss (4.133) of the shrink-
age estimator (4.138)-(4.139) and the respective error (4.134) as the market
parameters vary according to (4.116), along with the ensuing condition num-
ber. As expected, in well-conditioned markets the amount of shrinkage is max-
imal. Indeed, the bias is large, whereas the sample mean, which corresponds
to a null shrinkage, is unbiased. Nevertheless, the overall error is reduced with
respect to the sample mean, compare Figure 4.13 with Figure 4.11.
Shrinking the sample mean towards a constant vector b is not the only

option to improve the estimation. Another possibility consists in shrinking
the sample mean towards a scenario-dependent target vector, such as the
grand mean. This corresponds to replacing the constant vector b in (4.138)
as follows:

b 7→ 10bµ
N
1, (4.141)

where 1 is an N -dimensional vector of ones.
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Another choice of scenario-dependent target is the volatility-weighted
grand mean, see Jorion (1986). This corresponds to replacing the constant
vector b in (4.138) as follows:

b 7→ 10 bΣ−1bµ
10 bΣ−11 1. (4.142)

where bΣ is an estimator of the scatter matrix of the invariants.
Several authors have proved the non-admissibility of the sample mean for

underlying distributions of the invariants other than (4.132), see Evans and
Stark (1996). It is immediate to check that the sample mean is unbiased
no matter the underlying distribution, therefore also in the general case an
improved estimator must outperform the sample mean in terms of efficiency.
In Chapter 7 we revisit the shrinkage estimators of location in the more

general context of Bayesian estimation.

4.4.2 Dispersion and hidden factors

Assume that the market invariants are normally distributed with the following
parameters:

Xt ∼ N(µ,Σ) . (4.143)

Consider the standard definition of the loss (4.118) of a generic estimator of
dispersion bΣ with respect to the true unknown underlying scatter parameter
Σ, namely the Frobenius loss:

Loss
³bΣ,Σ´ ≡ tr ·³bΣ [IT ]−Σ´2¸ ; (4.144)

and the respective definition of error:

Err2
³bΣ,Σ´ ≡ E½tr ·³bΣ [IT ]−Σ´2¸¾ . (4.145)

Consider the benchmark estimator of dispersion (4.99), namely the sample
covariance: bΣ [iT ] ≡ 1

T

TX
t=1

[xt − bµ [iT ]] [xt − bµ [iT ]]0 , (4.146)

where bµ is the sample mean (4.98).
From (4.119) the error (4.145) of the sample covariance reads:

Err2
³bΣ,Σ´ = 1

T

·
tr
¡
Σ2
¢
+

µ
1− 1

T

¶
[tr (Σ)]2

¸
. (4.147)

This is not the minimum error achievable and thus it is possible to define an
estimator of dispersion that performs better than the sample covariance.
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In order to determine this better estimator we analyze further the error
(4.147). Consider as in (4.112) the principal component decomposition of the
true unknown scatter matrix:

Σ ≡ EΛE0. (4.148)

In this expression Λ is the diagonal matrix of the eigenvalues of Σ sorted in
decreasing order:

Λ ≡ diag (λ1, . . . , λN ) ; (4.149)

and the matrix E is the juxtaposition of the respective orthogonal eigenvec-
tors. Using the identities (4.114) and (4.122), the percentage error (4.31) reads
in this context:

PErr2
³bΣ,Σ´ = 1

T

Ã
1 +

µ
1− 1

T

¶ PN
n=1 λnPN
n=1 λ

2
n

!
. (4.150)

In this expression we can assume without loss of generality that the eigenvalues

1λ

Nλ

2

1
1

N

n
n

λ
=

=∑

( )max tr Σ : low correlations

( )min tr Σ : high correlations

Fig. 4.14. Bounds on the error of the sample covariance matrix

lie on the unit sphere, see Figure 4.14. The sum in the numerator is the trace
of Σ. The different values γ that the trace can assume are represented by the
family of hyperplanes (a line in the figure) with equation

PN
n=1 λn = γ. Since

the eigenvalues are constrained on the unit sphere and must be positive, the
trace can only span the patterned volume of the hypersphere in Figure 4.14.
The minimum trace corresponds to the following corner solution5:

5 There are actually N solutions, but we only consider one, since we sort the eigen-
values in decreasing order.

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



206 4 Estimating the distribution of the market invariants

λ1 = 1, λ2 = · · · = λN = 0⇔ tr (Σ) = 1, (4.151)

which gives rise to a condition number (4.131) equal to zero. In this situa-
tion the ellipsoid Eµ,Σ determined by the market parameters as described in
(A.73), which is also the location-dispersion ellipsoid of the invariants (2.75),
is squeezed into a line. In other words, there exists only one actual dimension
of risk, as all the invariants can be expressed as functions of one specific invari-
ant. This is approximately the case in the swap market, as we see in Figure
3.20. In this environment of high correlations the percentage estimation error
is minimal, and reads:

PErr2
³bΣ,Σ´ = 1

T

µ
2− 1

T

¶
. (4.152)

On the other hand, the maximum trace corresponds to the following com-
bination:

λ1 = · · · = λN =
1√
N
⇔ tr (Σ) =

√
N , (4.153)

which gives rise to a condition number (4.131) equal to one. In this case the
location-dispersion ellipsoid of the market invariants becomes a sphere, which
means that cross-correlations among the invariants are zero. Therefore, in a
zero-correlation environment, the percentage error is maximal and reads:

PErr2
³bΣ,Σ´ = 1

T

µ
1 +

µ
1− 1

T

¶
N

¶
. (4.154)

Notice that the estimation degenerates as the dimension N of the invariants
becomes large as compared with the number T of observations.
To summarize, we need an estimator that improves on the sample covari-

ance especially when the market invariants are well conditioned and when the
number of observations in the sample is small with respect to the number of
invariants.
To introduce this estimator, we notice from (4.120)-(4.121) that the sample

covariance’s bias is minimal, as almost the whole error is due to the estimator’s
inefficiency. In other words, the sample covariance is properly centered around
the true, unknown value, but it is too dispersed, see Figure 4.2.
The sample covariance is inefficient because the estimation process tends

to scatter the sample eigenvalues bΛ away from the mean value λ of the true
unknown eigenvalues. Indeed, Ledoit and Wolf (2004) prove the following
general result:

E

(
NX
n=1

³bλn − λ
´2)

=
NX
n=1

¡
λn − λ

¢2
+Err2

³bΣ,Σ´ . (4.155)

Geometrically, the estimation process squeezes and stretches the location-
dispersion ellipsoid Eµ,Σ of the market invariants.
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Fig. 4.15. Scattering of sample eigenvalues

Since the estimation error is large when the number of observations T is
small, the scattering effect is larger when T is small with respect to the number
of invariants. We plot this phenomenon in Figure 4.15 for the case of N ≡ 50
market invariants. As we show in Appendix www.4.6, in the extreme case
where the number of observations T is lower than the number of invariants
N , the last sample eigenvalues become null and thus the sample covariance
becomes singular.
Furthermore, the scattering of the eigenvalues of the sample covariance

is more pronounced for those invariants whose location-dispersion ellipsoid
is close to a sphere. This result is intuitive: comparatively speaking, a sphere
gets squeezed and stretched more than an elongated ellipsoid, which is already
elongated to begin with. This result is also consistent with (4.152) and (4.154).
We can summarize the cause of the inefficiency of the sample covariance in

terms of the condition number (4.131). Indeed, the estimation process worsens
the condition number of the market invariants:

dCN {X} ≡ bλNbλ1 <
λN
λ1
≡ CN {X} . (4.156)

To reduce the error of the sample covariance we must reduce its inefficiency
by averaging it with an efficient and well conditioned estimator of dispersion.
On the one hand, the most efficient estimator is a constant estimator, i.e. an
estimator such as (4.12), which with any information associates a given fixed
value: indeed, constant estimators display zero inefficiency, although their bias
is very large. On the other hand, the best-conditioned matrices are multiples
of the identity, in which case the condition number is one.
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Therefore, the ideal candidate to reduce the inefficiency of the sample
covariance is the following constant, well conditioned matrix:

C ≡ λIN , (4.157)

where the mean value λ of the true unknown eigenvalues represents the average
variance of the invariants:

λ ≡ tr {Λ}
N

=
tr {Σ}
N

=
1

N

NX
n=1

Var {Xn} . (4.158)

Nevertheless, the true eigenvalues are unknown, therefore we replace (4.157)
with its sample counterpart:

bC ≡ PN
n=1

bλn
N

I. (4.159)

At this point, following Ledoit and Wolf (2004) we define the shrinkage esti-
mator of dispersion as the weighted average of the sample covariance and the
target matrix: bΣS ≡ (1− α) bΣ+ αbC. (4.160)

The optimal shrinkage weight in this expression is defined as follows:

α ≡ 1

T

1
T

PT
t=1 tr

½³
xtx

0
t − bΣ´2¾

tr

½³bΣ− bC´2¾ , (4.161)

if α < 1, and 1 otherwise.
The shrinkage estimator (4.160) is indeed better conditioned than the sam-

ple covariance: bλSNbλS1 >
bλNbλ1 , (4.162)

see Appendix www.4.6. Thus the ensuing error (4.145) is less than for the
sample covariance.
As intuition suggests, the optimal amount of shrinkage (4.161) vanishes as

the amount of observations T increases.
Furthermore, the optimal shrinkage weight is largest when the condition

number of the market invariants is close to one. Indeed, in this case the de-
nominator in (4.161) becomes very small. This is consistent with the fact that
the percentage error is maximal in well-condition markets, see (4.154).
In Figure 4.16 we display the distribution of the loss (4.144) of the shrink-

age estimator (4.160) and the respective error (4.145) as the market para-
meters vary according to (4.116), along with the ensuing condition number.
Notice that shrinking towards a multiple of the identity matrix introduces a
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Fig. 4.16. Shrinkage estimator of covariance: evaluation

bias that was not present in the case of the sample covariance, see Figure 4.12.
Nevertheless, the overall error is reduced by the shrinkage process.
In Chapter 7 we revisit the shrinkage estimators of dispersion in the more

general context of Bayesian estimation.

4.4.3 Explicit factors

The benchmark estimator of the factor loadings in an explicit factor model
is the ordinary least square estimator of the regression coefficients (4.126)
and the estimator of the dispersion of the residuals is the respective sample
covariance matrix (4.128). Like in the case of the estimators of location and
dispersion, it is possible to improve on these estimators by shrinking them
towards suitable targets, see Ledoit and Wolf (2003) for an application of a
one-factor model to the stock market.
We discuss in Chapter 7 the shrinkage estimators of explicit-factor models

in the more general context of Bayesian estimation.

4.5 Robustness

In our journey throughout the possible approaches to building estimators we
have always assumed that the true, unknown distribution of the market invari-
ants lies somewhere in the subset of stress test distributions, refer to Figure
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4.3 for the general case and to Figure 4.9 for the parametric approach. In this
section we discuss robust estimation, which deals with the potential conse-
quences and possible remedies of choosing a space of stress test distributions
that does not include the true, unknown distribution of the market invariants,
see Figure 4.17.

Θ

sp ace o f a ll d istrib u tio n s

su b set o f stress-test d istrib u tion s

: tru e, un kn ow n  d istribu tio nfθ

Fig. 4.17. Robust approach to estimation

To provide the intuition behind robust estimation, consider as in Figure
4.7 the location-dispersion ellipsoid (2.75) defined by the sample-mean (4.41)
and sample-covariance (4.42) of a set of observations of market invariants:

EbE,dCov ≡
½
x ∈ RN such that

¡
x− bE¢0 ³dCov´−1 ¡x− bE¢ ≤ 1¾ . (4.163)

Then add a fake observation, an outlier, and repeat the estimation based
on the enlarged sample. The new ellipsoid, which represents the new sample
mean and sample covariance, is completely different, see Figure 4.18: one single
observation completely disrupted the estimation.
In the above experiment we know that the extra-observation is spurious.

Therefore, such an extreme sensitivity does not represent a problem. If we
knew for a fact that some observations were spurious, a sensitive estimator
would help us detect the unwelcome outliers. This is the subject of outlier
detection, which we tackle in Section 4.6.1.
On the other hand, in many applications we do not know the true under-

lying distribution and, most importantly, we have no reason to believe that
some observations could be spurious. Therefore we cannot trust sensitive esti-
mators such as the sample estimators. Instead, we need to develop estimators
that properly balance the trade-off between the precision and the robustness
of the final results.
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Fig. 4.18. Sample estimators: lack of robustness

In this section, first we discuss a few measures of robustness for an es-
timator, namely the jackknife, the sensitivity curve and, most notably, the
influence function: when this is bounded, the respective estimator is robust.
Then we compute the influence function of the estimators introduced so

far, namely nonparametric sample estimators and parametric maximum like-
lihood estimators of location, dispersion and explicit factor loadings. As it
turns out, the sample estimators display an unbounded influence function
and therefore they are not robust. On the other hand, the maximum likeli-
hood estimators display a range of behaviors: for instance, MLE of normally
distributed invariants are the sample estimators and therefore they are not ro-
bust. On the other hand, MLE of Cauchy-distributed invariants have bounded
influence function and therefore they are robust.
Finally, we show how to build robust estimators of the main parameters

of interest for asset allocation problem.

4.5.1 Measures of robustness

To tackle robustness issues, we need first of all to be able to measure the
robustness of a generic estimator. First we introduce two qualitative measures,
namely the jackknife and the sensitivity curve. Relying on the intuition behind
these measures we introduce a tool that precisely quantifies the robustness of
an estimator, namely the influence function.
Consider a generic estimator bG of S features of an unknown distribution.

As in (4.9), an estimator is a vector-valued function of currently available
information, which is represented as in (4.8) by the time series of the past
occurrences of the market invariants:
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iT ≡ {x1, . . . ,xT } 7→ bG. (4.164)

A first measure of robustness of an estimator is the jackknife, introduced
by Quenouille (1956) and Tukey (1958). The jackknife is built as follows. First
we remove the generic t-th observation from the time series; then we estimate
the quantity of interest from the reduced time series:

bG(−t) ≡ bG (x1 . . . ,xt−1,xt+1, . . . ,xT ) ; (4.165)

finally we put back in place the t-th observation. We repeat this process for
all the observations, computing a total of T estimates. If all the estimates are
comparable, we assess that the estimator is robust. In Figure 4.18 we see that
this is not the case for the sample mean and the sample covariance.
To build another measure of robustness, instead of removing in turn all

the observations, we can add an arbitrary observation to the time series and
evaluate its effect on the estimate. This way we obtain the sensitivity curve,
introduced by Tukey (1977) and defined as follows:

SC
³
x, bG´ ≡ T bG (x1, . . . ,xT ,x)− T bG (x1, . . . ,xT ) , (4.166)

where the normalization T is meant to make the evaluation less sensitive to
the sample size. If the sensitivity curve is small for any value of the extra-
observation x, we assess that the estimator bG is robust. We see in Figure 4.18
that this is not the case for the sample mean and the sample covariance.
Both jackknife and sensitivity curve are qualitative tools that can detect

lack of robustness: if either measure shows that the given estimator is not
robust, we should reject that estimator and search for a better one.
Nevertheless, if an estimator is not rejected, we cannot draw any conclusion

on the degree of robustness of that estimator. Indeed, as far as the sensitivity
curve is concerned, whatever result we obtain depends on the specific sample.
On the other hand, as far as the jackknife is concerned, the sample might
contain two or more outliers instead of one: in this case we might consider
tests that remove more than one observation at a time, but we would not be
sure where to stop.
To obtain a tool that quantifies robustness independently of the specific

sample, we should move in the opposite direction, considering the marginal
effect of an outlier when the sample size tends to infinity. The influence func-
tion can be defined heuristically as the infinite-sample limit of the sensitivity
curve, see Hampel, Ronchetti, Rousseeuw, and Stahel (1986). Intuitively, the
influence function quantifies the marginal effect on an estimator of an extra-
observation in the limit of infinite observations.
In order to introduce this limit, we need to express the generic S-

dimensional estimator as an S-dimensional functional of the empirical proba-
bility density function: bG ≡ eG [fiT ] , (4.167)
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where the empirical probability density function (2.240) is defined in terms of
the Dirac delta (B.16) as follows:

fiT ≡
1

T

TX
t=1

δ(xt). (4.168)

The sample estimators are explicit functionals of the empirical probability
density function. Indeed the sample estimators aim at estimating some func-
tional G [fX] of the unknown probability density function fX of the market
invariants. Therefore by their very definition (4.36) the functional that de-
fines the estimator is the functional that defines the quantity of interest of the
unknown distribution of the market invariants:bG ≡G [fiT ] . (4.169)

This expression is clearly in the form (4.167).

For example, consider the following functional:

G [h] ≡
Z
RN
xh (x) dx, (4.170)

where h is any function such that the integral (4.170) makes sense. This func-
tional, when applied to the probability density function of a distribution,
yields its expected value:

G [fX] = E {X} . (4.171)

Consider now the sample mean:

bG ≡ 1

T

TX
t=1

xt. (4.172)

The sample mean is the functional (4.170) applied to the empirical pdf:

bG =

Z
RN
xfiT (x) dx ≡G [fiT ] . (4.173)

On the other hand, the maximum likelihood estimators are implicit func-
tionals of the empirical probability density function. Consider the ML es-
timator bθ of the S-dimensional parameter θ of a distribution fθ . The ML
estimator as a functional is defined implicitly by the first-order conditions on
the log-likelihood. Indeed, from their definition (4.66) the ML estimators solve
in quite general cases the following implicit equation:

0 =
1

T

TX
t=1

ψ
³
xt, bθ´ , (4.174)
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where ψ is the S-dimensional vector of first-order partial derivatives of the
log-likelihood:

ψ (x,θ) ≡ ∂

∂θ
ln (fθ (x)) . (4.175)

Consider now the S-dimensional functional eθ [h] defined implicitly for a
generic function h in a suitable domain as follows:

eθ [h] : Z
RN

ψ
³
x, eθ´h (x) dx ≡ 0. (4.176)

In this notation, the ML estimator (4.174) can be written as follows:bθ ≡ eθ [fiT ] , (4.177)

which is in the form (4.167).

For example, consider the functional eθ [h] defined implicitly by the follow-
ing equation: eθ [h] : 0 ≡

Z
R

³
lnx− eθ´hdx. (4.178)

Now assume as in (4.57) that there exists a lognormally distributed invariant
with the following parameters:

X ∼ LogN (θ, 1) . (4.179)

The ML estimator of θ reads:

bθ = 1

T

TX
t=1

lnxt, (4.180)

see (4.69). Clearly, the ML estimator of θ solves:

0 =
1

T

TX
t=1

³
lnxt − bθ´

=

Z
R

³
lnx− bθ´ 1

T

TX
t=1

δ(xt) (x) dx (4.181)

=

Z
R

³
lnx− bθ´ fiT (x) dx.

Therefore: bθ = eθ [fiT ] . (4.182)

Notice that the term in brackets in the integral (4.178) is the first-order deriv-
ative of the logarithm of the probability density function (4.58), as prescribed
by (4.175).
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Consider the sensitivity curve (4.166). Adding one observation in an ar-
bitrary position x corresponds to modifying the empirical probability density
function (4.168) as follows:

fiT 7→ (1− �) fiT + �δ(x), (4.183)

where � ≡ 1/ (T + 1) is the relative weight of the extra-observation and δ
is the Dirac delta (B.16). Therefore in the functional notation (4.167) the
sensitivity curve (4.166) reads:

SC
³
x, bG´ ≡ 1− �

�

neG h(1− �) fiT + �δ(x)
i
− eG [fiT ]o . (4.184)

In the limit of an infinite number of observations T the relative weight
� tends to zero. Furthermore, from the Glivenko-Cantelli theorem (4.34) the
empirical pdf fiT tends to the true, unknown pdf fX. Therefore the influence
function of a generic S-dimensional estimator bG, which is the infinite-sample
limit of the sensitivity curve, is defined as the following S-dimensional vector:

IF
³
x, fX, bG´ ≡ lim

�→0
1

�

³eG h(1− �) fX + �δ(x)
i
− eG [fX]´ , (4.185)

where eG is the S-dimensional functional (4.167) that links the estimator to
the empirical probability density function.
In order to use the influence function in applications, we need to define

it more formally as a Gateaux derivative, which is the equivalent of a partial
derivative in the world of functional analysis.
We recall that the partial derivatives of a function g defined in RN at the

point v are N numbers D, commonly denoted as follows:

D (n,v, g) ≡ ∂g (v)

∂vn
, n = 1, . . . , N . (4.186)

These N numbers are such that such that whenever u ≈ v the following
approximation holds:

g (u)− g (v) ≈
NX
n=1

D (n,v, g) (un − vn) . (4.187)

According to Table B.4, in the world of functional analysis the vector’s
index n is replaced by the function’s argument x, vectors such as v are replaced
by functions v (·) and sums are replaced by integrals. Furthermore, functions
g are replaced with functionals G.
The Gateaux derivative is the partial derivative (4.187) in this new nota-

tion. In other words it is the number D such that whenever two functions are
close u ≈ v the following approximation holds:

G [u]−G [v] ≈
Z
RN

D (x, v,G)u (x) dx, (4.188)
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where we used the normalization:Z
RN

D (x, v,G) vdx ≡ 0. (4.189)

Consider an estimator bG that is represented by the functional eG as in
(4.167). The influence function of each entry of the estimator bG for a given
distribution fX is the Gateaux derivative of the respective entry of eG in fX:

IF
³
x, fX, bG´ ≡ D³x, fX, eG´ . (4.190)

Indeed, setting u ≡ (1− �) fX+ �δ(x) in (4.188) yields the heuristic definition
(4.185).
An estimator is robust if its influence function is small, or at least bounded,

as the extra observation x varies in a wide range in the space of observations
and as the distribution of the invariants fX varies in a wide range in the space
of distributions.
More precisely, suppose that we are interested in some parameters G [fX]

of the unknown distribution fX of the market invariants. As usual, we make
assumptions on the set of possible distributions for fX and we build an es-
timator bG. Suppose that we choose inappropriately a family of stress test
distributions that does not include the true, unknown distribution fX, i.e.
we miss the target by some extent as in Figure 4.17. Under these "wrong"
assumptions we develop the "wrong" estimator bG, which can be expressed as
a functional of the empirical pdf as in (4.167). The influence function provides
a measure of the damage:

bG−G [fX] ≈ 1

T

TX
t=1

IF
³
xt, fX, bG´ , (4.191)

where the approximation improves with the number of observations. This
follows immediately by setting u ≡ fiT in (4.188) and using the fact that
estimators are typically Fisher consistent , i.e. such that:eG [fX] =G [fX] . (4.192)

Of course, we do not know the true underlying distribution fX of the market
invariants, but as long as the influence function is bounded for a wide range
of underlying distributions fX, the damage is contained.

4.5.2 Robustness of previously introduced estimators

In Section 4.2 we introduced the nonparametric sample estimators bG of the
unknown features G [fX] of the distribution of the market invariants. The
functional representation eG [fiT ] of sample estimators in terms of the empir-
ical probability density function is explicit and defined by (4.169). Therefore,
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the expression of the influence function of generic nonparametric estimators
follows directly from the heuristic definition (4.185) of the influence function
and reads:

IF
³
x, fX, bG´ = lim

�→0
1

�

³
G
h
(1− �) fX + �δ(x)

i
−G [fX]

´
. (4.193)

In Section 4.3 we introduced the maximum likelihood estimators of the
parameters θ of the distribution fθ of the market invariants. The functional
representation eθ [fiT ] of the maximum likelihood estimators in terms of the
empirical probability density function is implicit and defined by (4.176). We
prove in Appendix www.4.7 that in this case the influence function reads:

IF
³
x, fX, bθ´ = A ∂ ln fθ (x)

∂θ

¯̄̄̄
θ≡eθ[fX] , (4.194)

where the constant S × S matrix A is defined as follows:

A ≡ −
"Z

RN

∂2 ln fθ (x)

∂θ∂θ0

¯̄̄̄
θ≡eθ [fX] fX (x) dx

#−1
. (4.195)

We proceed below to apply these formulas to the sample and maximum
likelihood estimators of interest for asset allocation problems.

Location and dispersion

Consider the sample estimators of location and dispersion of the market in-
variants Xt, i.e. the sample mean (4.41) and the sample covariance (4.42)
respectively:

bE ≡ 1

T

TX
t=1

xt (4.196)

dCov ≡ 1

T

TX
t=1

¡
xt − bE¢ ¡xt − bE¢0 . (4.197)

We prove in Appendix www.4.7 that the influence function (4.193) for the
sample mean reads:

IF
¡
x, fX, bE¢ = x− E {X} ; (4.198)

and the influence function (4.193) for the sample covariance reads:

IF
³
x, fX,dCov´ = (x− E {X}) (x− E {X})0 −Cov {X} . (4.199)

Notice that the influence function of the sample estimators is not bounded.
Therefore, the sample estimators are not robust: a strategically placed outlier,
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also known as leverage point, can completely distort the estimation. This is
the situation depicted in Figure 4.18.
Assume now that the invariants Xt are elliptically distributed:

Xt ∼ El (µ,Σ, g) , (4.200)

where µ is the N -dimensional location parameter, Σ is the N × N disper-
sion matrix and g is the probability density generator. In other words, the
probability density of the invariants X reads:

fθ (x) ≡
1p
|Σ|

g
¡
Ma 2 (x,µ,Σ)

¢
, (4.201)

where Ma(x,µ,Σ) is the Mahalanobis distance of the point x from the point
µ through the metric Σ:

Ma2 (x,µ,Σ) ≡ (x− µ)0Σ−1 (x− µ) . (4.202)

In this case the parametric distribution of the market invariants is fully de-
termined by the set of parameters is θ ≡ (µ,Σ).
Consider the maximum likelihood estimators of the parameters θ, which

are defined by the implicit equations (4.77)-(4.79) as follows:

bµ = TX
t=1

w
³
Ma2

³
xt, bµ, bΣ´´PT

s=1w
³
Ma2

³
xs, bµ, bΣ´´xt (4.203)

bΣ = 1

T

TX
t=1

(xt − bµ) (xt − bµ)0 w ³Ma2 ³xt, bµ, bΣ´´ , (4.204)

where

w (z) ≡ −2g
0 (z)
g (z)

. (4.205)

These parameters can be expressed as functionals eµ [fiT ] and eΣ [fiT ] of the
empirical pdf. The functionals are defined implicitly as in (4.176) as follows:Z

RN
ψ
³
x, eµ [h] , eΣ [h]´h (x) dx ≡ 0. (4.206)

The vector-valued function ψ in this expression follows from (4.203)-(4.204)
and reads:

ψ (x,µ,Σ) ≡
µ
w
¡
Ma2 (x,µ,Σ)

¢
(x− µ)

w
¡
Ma2 (x,µ,Σ)

¢
vec

£¡
(x− µ) (x− µ)0 −Σ

¢¤¶ , (4.207)

where vec is the operator (A.104) that stacks the columns of a matrix into a
vector. From (4.194) and (4.175) the norm of the influence function is propor-
tional to the norm of the above vector:
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4.5 Robustness 219°°°IF³x, fX,³bµ, bΣ´´°°° ∝ kψk . (4.208)

In particular, if the invariants are normally distributed the term w in
(4.207) becomes w ≡ 1, see (4.97). Therefore the influence function is not
bounded. This is not surprising, since we know from Section 4.3 that the ML
estimators of location and dispersion of normally distributed invariants are the
sample estimators and thus their influence function is (4.198)-(4.199). In other
words, the ML estimators of location and dispersion of normally distributed
invariants are not robust.
On the other hand, if the invariants are elliptically but not normally dis-

tributed the influence function displays a different behavior. Consider for ex-
ample Cauchy-distributed invariants. In this case from (4.84) the term w in
(4.207) becomes:

w (z) =
N + 1

1 + z
. (4.209)

Therefore, from (4.208) and (4.202) the influence function of the location and
dispersion maximum likelihood estimators becomes bounded. In other words,
the ML estimators of location and dispersion of Cauchy-distributed invariants
are robust.

Explicit factors

Consider an explicit factor linear model:

Xt = BFt +Ut. (4.210)

The sample estimator of the regression factor loadings are the ordinary least
squares coefficients (4.52), which we report here:

bB ≡ ÃX
t

xtf
0
t

!ÃX
t

ftf
0
t

!−1
. (4.211)

We do not discuss the sample covariance of the perturbation, which is the
same as (4.197), where bBft replaces bE. We prove in Appendix www.4.7 that
the influence function for the OLS coefficients reads:

IF
³
(x, f) , fX,F, bB´ = ¡xf 0 −Bff 0¢E©FF0ª−1 . (4.212)

Notice that the influence function of the sample OLS coefficients is not
bounded. Therefore, the OLS estimate is not robust: a strategically placed
outlier, also known as leverage point, can completely distort the estimation.
This is the situation depicted in Figure 4.18.
Consider now a parametric explicit factor model conditioned on the fac-

tors. We assume as in (4.90) that the perturbations are elliptically distributed
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and centered in zero. Therefore the respective conditional explicit factor model
reads:

Xt|ft ∼ El (Bf t,Σ, g) , (4.213)

where Σ is the N ×N dispersion matrix of the perturbations and g is their
probability density generator. In this case the parametric distribution of the
market invariants is fully determined by the set of parameters is θ ≡ (B,Σ).
Consider the maximum likelihood estimators of the parameters θ, which

are defined by the implicit equations (4.92)-(4.94) as follows:

bB = " TX
t=1

w
³
Ma2

³
xt, bBf t,bΣ´´xtf 0t

#
(4.214)

"
TX
t=1

w
³
Ma2

³
xt, bBf t,bΣ´´ ftf 0t

#−1

bΣ = 1

T

TX
t=1

w
³
Ma2

³
xt, bBf t,bΣ´´³xt − bBf t´³xt − bBf t´0 . (4.215)

where

w (z) ≡ −2g
0 (z)
g (z)

. (4.216)

These parameters can be expressed as functionals eB [fiT ] and eΣ [fiT ] of the
empirical pdf. The functionals are defined implicitly as in (4.176) as follows:

0 =

Z
RN+K

ψ
³
x, f , eB [h] , eΣ [h]´h (x, f) dxdf . (4.217)

The vector-valued function ψ in this expression follows from (4.214)-(4.215)
and reads:

ψ (x, f ,B,Σ) ≡
µ
w
¡
Ma2 (x,Bf ,Σ)

¢
vec [(x−Bf) f 0]

w
¡
Ma2 (x,Bf ,Σ)

¢
vec

£
(x−Bf) (x−Bf)0 −Σ

¤¶ ,
(4.218)

where vec is the operator (A.104) that stacks the columns of a matrix into a
vector. From (4.194) and (4.175) the norm of the influence function is propor-
tional to the norm of the above vector:°°°IF³(x, f) , fX,³bµ, bΣ´´°°° ∝ kψk . (4.219)

In particular, if the perturbations are normally distributed the term w in
(4.218) becomes w ≡ 1, see (4.125). Therefore the influence function of the
regression factor loadings estimator and the perturbation dispersion estimator
is not bounded. This is not surprising, since we know from Section 4.3 that
the ML estimators of the regression factor loadings of normally distributed
factor models are the OLS coefficients, whose influence function is (4.212). In
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other words, the ML estimator of the regression factor loadings in a factor
model with normally distributed perturbations is not robust, and neither is
the ML estimator of the perturbation dispersion.
On the other hand, if the perturbations are elliptically but not normally

distributed the influence function display a different behavior. Consider for
instance Cauchy-distributed perturbations. In this case as in (4.209) the term
w in (4.218) becomes:

w (z) =
N + 1

1 + z
. (4.220)

Therefore, from (4.219) and (4.202) the influence function becomes bounded.
In other words, the ML estimators of the regression factor loadings and of the
perturbation dispersion stemming from Cauchy-distributed perturbations are
robust.

4.5.3 Robust estimators

From the above discussion we realize that robust estimators should satisfy
two requirements. In the first place, since robustness questions the accuracy
of the parametric assumptions on the unknown distribution of the invariants,
the construction of robust estimators should be as independent as possible
of these assumptions. Secondly, robust estimators should display a bounded
influence function.
By forcing maximum likelihood estimators to have a bounded influence

function, Maronna (1976) and Huber (1981) developed the so-called M-
estimators, or generalized maximum likelihood estimators.
We recall that, under the assumption that the distribution of the market

invariants is fθ , the maximum likelihood estimators of the parameters θ are
defined as functional of the empirical distribution eθ [fiT ]. From (4.176), this
functional is defined as follows:

eθ [h] : Z
RN

ψ
³
x, eθ´h (x) dx ≡ 0, (4.221)

where ψ follows from the assumptions on the underlying distribution:

ψ (x,θ) ≡ ∂ ln fθ (x)

∂θ
. (4.222)

M-estimators are also defined by (4.221), but the function ψ (x,θ) is cho-
sen exogenously. Under these more general assumptions, the influence function
(4.194) becomes:

IF
³
x, fX, bθ´ = Aψ ³x, eθ [fX]´ , (4.223)

where the S × S matrix A is defined as follows:

A ≡ −
"Z

RN

∂ψ0

∂θ

¯̄̄̄
θ≡eθ [fX] fX (x) dx

#−1
, (4.224)
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see Appendix www.4.7.
This way the ensuing estimator eθ [fiT ] is independent of any assumption on

the distribution of the underlying market invariants. If the functionψ is chosen
appropriately, the influence function (4.223) becomes bounded. Therefore, the
estimator eθ [fiT ] is robust.
Location and dispersion

Consider (4.207) and replace it with a vector-valued function ψ defined ex-
ogenously as follows:

ψ ≡
µ
γ
¡
Ma2 (x,µ,Σ)

¢
(x− µ)

ζ
¡
Ma2 (x,µ,Σ)

¢ ¡
vec

¡
(x− µ) (x− µ)0 −Σ

¢¢¶ , (4.225)

where γ and ζ are bounded functions that satisfy some regularity criteria. The
ensuing estimators, which replace (4.203)-(4.205), solve the following implicit
equations:

bµ = TX
t=1

γ
³
Ma2

³
xt, bµ, bΣ´´PT

s=1 γ
³
Ma2

³
xs, bµ, bΣ´´xt (4.226)

bΣ = 1

T

TX
t=1

(xt − bµ) (xt − bµ)0 ζ ³Ma2 ³xt, bµ, bΣ´´ . (4.227)

Since γ and ζ are bounded functions, so is the influence function and therefore
these estimators are robust.
For instance, the following is a suitable choice of weights:

γ (x) ≡ ζ (x) ≡
(
1 if x ≤ x0
x0
x e
− (x−x0)2

2b2 if x > x0,
(4.228)

where x0 ≡
³√

N + 2
´
/
√
2. If we set b ≡ +∞ we obtain the M-estimators

suggested by Huber (1964). If we set b ≡ 1.25 we obtain the M-estimators
suggested by Hampel (1973), see also Campbell (1980).
As in the case of the maximum likelihood estimators, in general the solu-

tion to the above implicit equations cannot be computed analytically. Never-
theless, for suitable choices of the functions γ and ζ such as (4.228) a recursive
approach such as the following is guaranteed to converge. Further results for
existence and uniqueness of the solution are provided in Huber (1981).
Step 0. Initialize bµ and bΣ as the sample mean and sample covariance

respectively.
Step 1. Compute the right hand side of (4.226) and (4.227).
Step 2. Update the left hand side of (4.226) and (4.227).
Step 3. If convergence has been reached stop, otherwise go to Step 1.
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Explicit factors

It is possible to define multivariate M-estimators of the factor loadings and of
the dispersion of the perturbations of an explicit factor model. The discussion
proceeds exactly as above. Nevertheless, due to the larger number of parame-
ters, convergence problems arise for the numerical routines that should yield
the estimators in practice.

4.6 Practical tips

In this section we provide a few tips that turn out useful in practical estimation
problems.

4.6.1 Detection of outliers

In Section 4.5.1 we introduced the tools to measure the effect on an estimate
of one outlier both in the finite sample case, namely the influence curve and
the jackknife, and in the infinite sample limit, namely the influence function.
Another interesting question is the maximum amount of outliers that a certain
estimator can sustain before breaking down: if there is a total of T = TG+TO
observations, where TG are good data and TO outliers, what is the highest
ratio TO/T that the estimator can sustain?
The breakdown point is the limit of this ratio when the number of obser-

vations tends to infinity. Obviously, the breakdown point is a positive number
that cannot exceed 0.5.

For example, suppose that we are interested in estimating the location
parameter of an invariant Xt.
Consider first the sample mean (4.41), which we report here:

bE ≡ 1

T

TX
t=1

xt. (4.229)

From (4.198) breakdown point of the sample mean is 0, as one single outlier
can disrupt the estimation completely.
Consider now the sample median (4.39), which we report here:

bq1/2 ≡ x[T/2]:T , (4.230)

where [·] denotes the integer part. The breakdown point of the median is
0.5. Indeed, changing the values of half the sample, i.e. all (minus one) the
observations larger than x[T/2]:T , or all (minus one) the observations smaller
than x[T/2]:T , does not affect the result of the estimation.
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224 4 Estimating the distribution of the market invariants

Estimators whose breakdown point is close to 0.5 are called high breakdown
estimators. These estimators are useful in financial applications because they
allow us to detect outliers. Indeed, time series are often fraught with suspicious
data. In the case of one-dimensional variables it is relatively easy to spot these
outliers by means of graphical inspection. In the multivariate case, this task
becomes much more challenging.

good data

outliers

1X

NX

Fig. 4.19. Minimum Volume Ellipsoid

There exists a vast literature on estimators with high breakdown point,
see Huber (1981) and Hampel, Ronchetti, Rousseeuw, and Stahel (1986). Here
we propose two methods to build high breakdown estimators of location and
dispersion: the minimum volume ellipsoid (MVE) and the minimum covari-
ance determinant (MCD), see Rousseeuw and Leroy (1987), Rousseeuw and
VanDriessen (1999). The rationale behind these estimators rests on the as-
sumption that the core of the good data is tightly packed, whereas the joint
set of good data and outliers is much more scattered, see Figure 4.19.

Minimum volume ellipsoid

Suppose we know that TG out of the T data are good and TO are outliers. Due
to the above rationale, the smallest ellipsoid that contains the TG good data is
the smallest among all the ellipsoids that contain any set of TG observations.
Consider a generic location parameter µ, i.e. an N -dimensional vector,

and a generic scatter matrix Σ, i.e. a positive and symmetric N ×N matrix.
The parameters (µ,Σ) define an ellipsoid Eµ,Σ as in (A.73). We can inflate
this ellipsoid as follows:
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Eqµ,Σ ≡
©
x ∈ RN such that (x− µ)0Σ−1 (x− µ) ≤ q2

ª
. (4.231)

This locus represents a rescaled version of the original ellipsoid, where all the
principal axis are multiplied by a factor q. From (A.77) the volume of the
inflated ellipsoid reads:

Vol
n
Eqµ,Σ

o
= γNq

N
p
|Σ|, (4.232)

where γ is the volume of the unit sphere:

γN ≡
π
N
2

Γ
¡
N
2 + 1

¢ . (4.233)

Consider the set of Mahalanobis distances (2.61) of each observation from the
location parameter µ through the metric Σ:

Maµ,Σt ≡Ma(xt,µ,Σ) ≡
q
(xt − µ)0Σ−1 (xt − µ). (4.234)

We can sort these distances in increasing order and consider the TG-th dis-
tance:

qTG ≡Ma
µ,Σ
TG:T

. (4.235)

By construction, the ellipsoid EqTGµ,Σ contains only TG points and from (4.232)
its volume reads:

Vol
n
EqTGµ,Σ

o
= γN

³
Maµ,ΣTG:T

´Np
|Σ|. (4.236)

Notice that the product on the right hand side of this expression does not
depend on the determinant of Σ. Therefore we can impose the constraint that
the determinant of Σ be one.
Consequently, the parameters that give rise to the smallest ellipsoid that

contains TG observations solve the following equation:³bµTG , bΣTG

´
= argmin
µ,Σº0,|Σ|=1

n
Maµ,ΣTG:T

o
, (4.237)

where the the notation Σ º 0 means that Σ is symmetric and positive. Once
we have computed the parameters (4.237), we tag as outliers all the obser-
vation that are not contained in the ellipsoid (4.231) determined by (4.237),
with the radius (4.235) implied by (4.237).
In reality we do not know a priori the true number TG of good data. Nev-

ertheless, if TG is the largest set of good data, the minimum volume ellipsoid
that contains TG + 1 observations has a much larger volume than the mini-
mum volume ellipsoid that contains TG observations. Therefore, we consider
the volume of the minimum volume ellipsoid as a function of the number of
observations contained in the ellipsoid:
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TG → γN

µ
Ma

bµTG ,bΣTG
TG:T

¶N
. (4.238)

The true number of good data is the value TG where this function displays an
abrupt jump, see Figure 4.20.
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volume of 
M inimum 
Volume 

Ellipsoid

M inimum 
Covariance 
Determinant

Fig. 4.20. Detection of outliers

The optimization problem (4.237) cannot be solved analytically. Numer-
ical algorithms both deterministic and non-deterministic are available in the
literature. We present below an approach that we used to generate the figures
in this section.

Minimum covariance determinant

An alternative approach to detect outliers is provided by the minimum covari-
ance determinant. This method also searches the "smallest ellipsoid". Instead
of the smallest ellipsoid defined by the cloud of data we look for the smallest
ellipsoid defined by the sample covariance of the data. Indeed, we recall from
(4.48) that the sample covariance defines the smallest ellipsoid that fits the
data in an average sense.
Suppose that we know the number of good observations TG. Consider a

generic subset of TG observations
©
x∗1, . . . ,x

∗
TG

ª
from the T observations in

the time series iT of the market invariants. We can compute the sample mean
(4.41) and sample covariance (4.42) associated with this subset:
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bE∗TG ≡ 1

TG

TGX
t=1

x∗t (4.239)

dCov∗TG ≡ 1

TG

TGX
t=1

³
x∗t − bE∗TG´³x∗t − bE∗TG´0 . (4.240)

Consider the ellipsoid determined by these parameters:

E∗ ≡
½
x :

³
x− bE∗TG´0 ³dCov∗TG´−1 ³x− bE∗TG´ ≤ 1¾ . (4.241)

From (A.77), the volume of E∗ is proportional to the square root of the de-
terminant of (4.240).
Therefore we have to determine the subset of observations that gives rise

to the minimum covariance determinant:©
x×1 , . . . ,x

×
TG

ª
= argmin

x∗1 ,...,x
∗
TG
∈iT

¯̄̄dCov∗TG ¯̄̄ . (4.242)

In reality we do not know a priori the true number TG of good data. Neverthe-
less, if TG is the largest set of good data, the minimum covariance determinant
relative to TG + 1 observations is much larger than the minimum covariance
determinant relative to TG observations. Therefore, we consider the minimum
covariance determinant as a function of the number of observations contained
in the ellipsoid:

TG →
¯̄̄dCov×TG ¯̄̄ . (4.243)

The true number of good data is the value TG where this function displays an
abrupt jump, see Figure 4.20.
The optimization problem (4.242) cannot be solved exactly. We present

below an approach that we used to generate the figures in this section.

Computational issues

Suppose we have a series of observations {x1, . . . ,xT }. Assume we know that
TG ≤ T among them are good data.
In principle we should compute the minium volume ellipsoid and the sam-

ple covariance matrix for all the possible combinations of TG observations out
of the total T observations. This number reads:µ

T

TG

¶
≡ TG!

TG! (T − TG)!
, (4.244)

which is intractably large if T exceeds the order of the dozen. Instead, we
delete the unwelcome observations one at a time from the initial set of T
observations using a theoretically sub-optimal, yet for practical purposes very
effective, approach.
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First we build Routine A, which computes the smallest ellipsoid Em,S that
contains a given set of observations {x1, . . . ,xT }.
Step 0. Initialize the relative weights:

wt ≡
1

T
, t = 1, . . . , T . (4.245)

Step 1. Compute the location parameter m and the scatter matrix S as
follows:

m ≡ 1PT
s=1ws

TX
t=1

wtxt (4.246)

S ≡
TX
t=1

wt (xt −m) (xt −m)0 . (4.247)

Notice that the weights in the scatter matrix are not normalized.
Step 2. Compute the square Mahalanobis distances:

Ma2t ≡ (x−m)
0 S−1 (x−m) , t = 1, . . . , T . (4.248)

Step 3. Update the weights: if Ma2t > 1 change the respective weight as
follows:

wt 7→ wtMa
2
t ; (4.249)

otherwise, leave the weight unchanged.
Step 4. If convergence has been reached, stop and define Em,S as in (A.73),

otherwise, go to Step 1.
Secondly, we build Routine B, which spots the farthest outlier in a series

of observations {x1, . . . ,xT }. Define the following T ×N matrix:

U =

 x
0
1 − bE0
...

x0T − bE0
 , (4.250)

where bE is the sample mean (4.41) of the data. The sample covariance matrix
(4.42) can be written as follows:

dCov ≡ 1

T
U0U. (4.251)

We aim at finding the observation xt such that if we remove it from the set
{x1, . . . ,xT } the determinant of the resulting sample covariance is reduced
the most. This would mean that by dropping that observation the location-
dispersion ellipsoid defined by sample mean and covariance shrinks the most,
and thus that observation is the farthest outlier in the sample. To do this, we
use the following result, see Poston, Wegman, Priebe, and Solka (1997):
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U0
(−t)U(−t)

¯̄̄
= (1− λt) |U0U| . (4.252)

In this expression U(−t) denotes the matrix (4.250) after removing the t-th
row and λt denotes the t-th element of the diagonal of the information matrix :

λt ≡
³
U (U0U)−1U0

´
tt
. (4.253)

It can be proved that
0 ≤ λt ≤ 1. (4.254)

Therefore, the farthest outlier corresponds to the highest value of λt, unless
λt = 1: in this last case, if we remove the t-th observation the sample covari-
ance becomes singular, as is evident from (4.252).
Now we can define Routine C, which detects the outliers among the given

data by means of the minimum volume ellipsoid and the minimum covariance
determinant.
Step 0. Consider as data all the observations.

Step 1. Compute the sample mean and covariance
³bE,dCov´ of the given

data and compute the determinant of the sample covariance
¯̄̄dCov¯̄̄.

Step 2. Compute with Routine A the minimum volume ellipsoid of the
given data Em,S and compute |S|.
Step 3. Find the farthest outlier among the data with Routine B and

remove it from the data.
Step 4. If the number of data left is less than half the original number

stop, otherwise go to Step 1.
The plot of

¯̄̄dCov¯̄̄ and/or |S| as a function of the number of observations
in the dataset shows an abrupt jump when the first outlier is added to the
dataset, see Figure 4.20. The respective sample covariance dCov is the mini-
mum covariance determinant and the respective ellipsoid Em,S is the minimum
volume ellipsoid.

4.6.2 Missing data

Sometimes some data is missing from the time series of observations. Our
purpose is twofold. On the one hand, we are interested in interpolating the
missing values. On the other hand we want to estimate parameters of interest
regarding the market invariants, such as parameters of location or dispersion.
We refer the reader to Stambaugh (1997) for a discussion of the case where
some series are shorter than others. Here, we discuss the case where some
observations are missing randomly from the time series.
Consider a T × N panel of observations, where T is the length of the

sample and N is the number of market invariants. Each row of this matrix
corresponds to a joint observation xt of the invariants at a specific date. In
some rows one or more entry might be missing:
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xt ≡ xt,mis(t) ∪ xt,obs(t), (4.255)

where we stressed that the set of missing and observed values depends on the
specific date t. Notice that for most t the set xt,mis(t) is empty.

For example, consider a case of four market invariants and a hundred joint
observations. Assume that the second entry is missing at time t = 7 then

mis (7) ≡ {2} , obs (7) ≡ {1, 3, 4} . (4.256)
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Fig. 4.21. EM algorithm for data recovery

Following Little and Rubin (1987) we make the simplifying assumption
that prior to their realization the invariants are independent and normally
distributed:µ

Xt,mis(t)

Xt,obs(t)

¶
∼ N

µµ
µmis(t)
µobs(t)

¶
,

µ
Σmis(t),mis(t) Σmis(t),obs(t)
Σobs(t),mis(t) Σobs(t),obs(t)

¶¶
. (4.257)

The algorithm we propose is a specific instance of a general approach called
expectation-maximization (EM) algorithm, see Dempster, Laird, and Rubin
(1977) and also Bilmes (1998). In Figure 4.21 we recovered a few missing
values with the EM algorithm.
The algorithm proceeds as follows, see Appendix www.4.8 for the proofs.
Step 0. Set u ≡ 0 and initialize both the location and the dispersion

parameters. For all n = 1 . . . , N set:
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µ(u)n ≡ 1

Tn

X
t∈ avail. obs.

xt,n (4.258)

Σ(u)
nn ≡

1

Tn

X
t∈ avail. obs.

³
xt,n − µ(u)n

´2
, (4.259)

where Tn is the number of available observations for the generic n-th market
invariant. For all n,m = 1 . . . , N , n 6= m set:

Σ(u)
nm ≡ 0. (4.260)

Step 1. For each t = 1, . . . , T fill in the missing entries by replacing the
missing values with their expected value conditional on the observations. For
the observed values we have:

x
(u)
t,obs(t) ≡ xt,obs(t); (4.261)

and for the missing values we have:

x
(u)
t,mis(t) ≡ µ

(u)
mis(t) (4.262)

+Σ
(u)
mis(t),obs(t)

³
Σ
(u)
obs(t),obs(t)

´−1 ³
xt,obs(t) − µ(u)obs(t)

´
.

Step 2. For each t = 1, . . . , T compute the conditional covariance, which
is zero if at least one of the invariants is observed:

C
(u)
t,obs(t),mis(t) ≡ 0, C

(u)
t,obs(t),obs(t) ≡ 0, (4.263)

and otherwise reads:

C
(u)
t,mis(t),mis(t) ≡ Σ

(u)
mis(t),mis(t) (4.264)

−Σ(u)mis(t),obs(t)
³
Σ
(u)
obs(t),obs(t)

´−1
Σ
(u)
obs(t),mis(t).

Step 3. Update the estimate of the location parameter:

µ(u+1) ≡ 1

T

X
t

x
(u)
t . (4.265)

Step 4. Update the estimate of the dispersion parameter:

Σ(u+1) ≡ 1

T

X
t

C
(u)
t −

³
µ(u+1) − µ(u)

´³
µ(u+1) − µ(u)

´0
. (4.266)

Step 5. If convergence has been reached, stop. Otherwise, set u ≡ u + 1
and go to Step 1.
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4.6.3 Weighted estimates

We have seen in (4.167) and comments that follow that any estimator bG can
be represented as a functional eG [fiT ] that acts on the empirical probability
density function of the time series of the market invariants:

iT ≡ {x1, . . . ,xT } . (4.267)

In the definition of the empirical density function (4.168) and thus in the
definition of the estimator bG the order of the realization of the market invari-
ants does not play a role. This is correct, since the invariants are independent
and identically distributed across time, see (4.5).
Nevertheless, intuition suggests that the most recent observations should

somehow play a more important role than observations farther back in the
past. To account for this remark, it suffices to replace the definition of the
empirical probability density function (4.168) as follows:

fiT 7→ fiT ≡
1PT

s=1ws

TX
t=1

wtδ
(xt), (4.268)

where δ is the Dirac delta (B.17) and where the weights wt are positive,
non-decreasing functions of the time index t. We present below two notable
cases.

Rolling window

A simple way to give more weight to the last observations is to assume that
only the last set of observations is good at forecasting, whereas considering
the previous observations might be disruptive. Therefore, we consider only
the rolling window of the last W observations among the T in the whole time
series. This corresponds to setting in (4.268) the following weights:

wt ≡ 1, if t > T −W (4.269)

wt ≡ 0, if t ≤ T −W . (4.270)

Each time a new observation is added to the time series, we roll over the
window and again we only consider the last W observations.

For example, if we are at time T , the sample mean (4.41) becomes:

bEW ≡ 1

W

TX
t=T−W+1

xt, (4.271)

and the sample covariance (4.42) becomes:

dCovW ≡ 1

W

TX
t=T−W+1

(xt − bµw) (xt − bµw)0 . (4.272)
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To determine the most appropriate value of the rolling window one should
keep in mind the specific investment horizon.

Exponential smoothing

A less dramatic approach consists in giving less and less weight to past obser-
vations in a smooth fashion. The exponential smoothing consists in setting in
(4.268) weights that decay exponentially:

wt ≡ (1− λ)T−t , (4.273)

where λ is a fixed decay factor between zero and one. Notice that the case λ ≡
0 recovers the standard empirical pdf. If the decay factor is strictly positive,
the weight of past observations in the estimate tapers at an exponential rate.

For example, if we are at time T , the sample mean (4.41) becomes:

bEλ ≡ λ

1− (1− λ)T

TX
t=1

(1− λ)T−t xt; (4.274)

and the sample covariance (4.42) becomes:

dCovλ ≡ λ

1− (1− λ)T

TX
t=1

(1− λ)T−t
¡
xt − bEλ¢ ¡xt − bEλ¢0 . (4.275)

The exponential smoothing estimate is used, among others, by RiskMet-
rics and Goldman Sachs, see Litterman and Winkelmann (1998). To assign a
suitable value to the decay factor a possible approach is to choose a paramet-
ric form for the probability density function and then apply the maximum
likelihood principle (4.66).

For example, if the invariants Xt are normally distributed, we determine
the parameter λ in (4.274)-(4.275) by maximizing the normal log-likelihood:

eλ ≡ argmax
0≤λ<1

Ã
−T
2
ln
¯̄̄dCovλ ¯̄̄− 1

2

TX
t=1

¡
xt − bEλ¢0 dCov−1λ ¡

xt − bEλ¢! . (4.276)
The exponential smoothing presents an interesting link to GARCH mod-

els, an acronym for Generalized AutoRegressive Conditionally Heteroskedastic
models, see Engle (1982) and Bollerslev (1986). Indeed, by recursive substi-
tution we can check that in the presence of an infinite series of observations
the exponential smoothing is consistent with the following GARCH model:
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Xt ≡ µ+ �t, (4.277)

where �t are random perturbations such that:

Var {�t} = λ�2t−1 + (1− λ)Var {�t−1} . (4.278)

4.6.4 Overlapping data

In order for the market invariants to be independent across time it is necessary
that they refer to non-overlapping time intervals as in Figure 3.11.

For example, consider the case of the equity market where the invariants
are the compounded returns (3.11). Suppose that the returns are identically
normally distributed and independent:

 Ct,τ

Ct+τ,τ

...

 ∼ N

µ
µ
...

 ,


σ2 0

. . .

0 σ2
. . .

. . .
. . .
. . .


 . (4.279)

From (2.163) we immediately derive the distribution of the overlapping time
series:  Ct,2τ

Ct+τ,2τ

...

 =

Ct,τ +Ct−τ,τ
Ct+τ,τ +Ct,τ

...

 ∼ N(m,S) , (4.280)

where

m ≡

2µ2µ
...

 , S ≡


2σ2 σ2 · · ·

σ2 2σ2
. . .

. . .
. . .

. . .

 . (4.281)

This expression shows that that the overlapping observations are not inde-
pendent.

In some circumstances it is possible and even advisable to consider over-
lapping data, see Campbell, Lo, and MacKinlay (1997).

4.6.5 Zero-mean invariants

When a location parameter such as the expected value of a market invariant
is close to null with respect to a dispersion parameter such as its standard
deviation, it might be convenient to assume that the location parameter is
zero, instead of estimating it. We can interpret this approach as an extreme
case of shrinkage, see Section 4.4.
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This approach often leads to better results, see Alexander (1998) and
therefore it is often embraced by practitioners. For instance we made this
assumption in (3.233) regarding the expected changes in yield in the swap
market.

4.6.6 Model-implied estimation

Time-series analysis is by definition backward-looking. An alternative ap-
proach to estimation makes use of pricing models, which reflects the expecta-
tions on the market and thus is forward-looking.
Consider a parametric model fθ for the market invariants. Assume there

exist pricing functions F (θ) of financial products which depend on those pa-
rameters and which trade at the price PT at the time the estimate is made.
In these circumstances we can compute the estimate of the parameters

as the best fit to the data, i.e. as the solution of the following optimization
problem: bθ = argmin

θ

©
(P−F (θ))0Q (P−F (θ))

ª
, (4.282)

where Q is a suitably chosen symmetric and positive matrix.
Depending on the applications, some authors suggest mixed approaches,

where time series analysis is used together with implied estimation.

For example, to estimate the correlation matrix of swap yield changes
we can proceed as in Longstaff, Santa-Clara, and Schwartz (2001). First we
estimate from (4.41) and (4.42) the sample correlation matrix:

bCmn ≡
dCov {Xm,Xn}qdCov {Xm,Xm}dCov {Xn,Xn}

. (4.283)

Then we perform the principal component decomposition (A.70) of the cor-
relation matrix: bC = bEbΛbE0, (4.284)

where bΛ is the diagonal matrix of the estimated eigenvalues and bE is the
orthogonal matrix of the respective estimated eigenvectors. Next, we assume
that a more suitable estimate of the correlation matrix is of this form:

C = bEΨbE0, (4.285)

where Ψ is a diagonal matrix of positive entries. Finally we fit an estimate eΨ
from the prices of a set of swaptions which depend on the correlation through
suitable pricing function.

The main problem with the model-implied approach is that the pricing
functions F (θ) give rise to model risk. This risk is equivalent to the risk
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of assuming an incorrect parametric distribution for the invariants in the
derivation of maximum likelihood estimators.
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