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Evaluating allocations

An allocation is a portfolio of securities in a given market. In this chapter we
discuss how to evaluate an allocation for a given investment horizon, i.e. a
linear combination of the prices of the securities at the investment horizon.
In Section 5.1 we introduce the investor’s objectives. An objective is a

feature of a given allocation on which the investor focuses his attention. For
instance an objective is represented by final wealth at the horizon, or net
gains, or wealth relative to some benchmark. The objective is a random vari-
able that depends on the allocation. Although it is not possible to compute
analytically the distribution of the objective in general markets, we present
some approximate techniques that yield satisfactory results in most applica-
tions.
In Section 5.2 we tackle the problem of evaluating allocations, or more

precisely the distribution of the objective relative to a given allocation. We
do this by introducing the concept of stochastic dominance, a criterion that
allows us to evaluate the distribution of the objective as a whole: when facing
two allocations, i.e. the distributions of two different objectives, the investor
will choose the one that is more advantageous in a global sense. Nevertheless,
stochastic dominance presents a few drawbacks, most notably the fact that
two generic allocations might not necessarily be comparable. In other words,
the investor might not be able to rank allocations and thus make a decision
regarding his investment.
As a consequence, in Section 5.3 we take a different approach. We sum-

marize all the properties of a distribution in a single number: an index of
satisfaction. If the index of satisfaction is properly defined the investor can
in all circumstances choose the allocation that best suits him. Therefore we
analyze a set of criteria that a proper satisfaction index should or could sat-
isfy, such as estimability, consistency with stochastic dominance, constancy,
homogeneity, translation invariance, additivity, concavity, risk aversion.
In the remainder of the chapter we discuss three broad classes of indices

of satisfaction that have become popular among academics and practitioners.
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238 5 Evaluating allocations

In Section 5.4 we present the first of such indices of satisfaction: the
certainty-equivalent. Based on the intuitive concept of expected utility, this
has been historically the benchmark criterion to assess allocations. After in-
troducing the definition of the certainty-equivalent and discussing its general
properties, we show how to build utility functions that cover a wide range
of situations, including the non-standard setting of prospect theory. Then we
tackle some computational issues. Indeed, the computation of the certainty-
equivalent involves integrations and functional inversions, which are in general
impossible to perform. Therefore we present some approximate results, such
as the Arrow-Pratt expansion. Finally, we perform a second-order sensitivity
analysis to determine the curvature of the certainty-equivalent. The curva-
ture is directly linked to the investor’s attitude toward diversification and it is
fundamental in view of computing numerical solutions to allocation problems.
In Section 5.5 we consider another index of satisfaction, namely the quan-

tile of the investor’s objective for a given confidence level. This index is better
known under the name of value at risk when the investor’s objective are net
gains. The quantile-based index of satisfaction has become a standard tool
among practitioners after the Basel Accord enforced its use among finan-
cial institutions to monitor the riskiness of their investment policies. After
introducing the definition of the quantile-based index of satisfaction and dis-
cussing its general properties, we tackle some computational issues. Approx-
imate expressions of the quantile can be obtained with approaches such as
the Cornish-Fisher expansion and extreme value theory. Finally, we perform
a second-order sensitivity analysis, from which it follows that quantile-based
indices of satisfaction fail to promote diversification.
In Section 5.6 we discuss a third group of measures of satisfaction: co-

herent indices and spectral indices, which represent a sub-class of coherent
indices. These measures of satisfaction are defined axiomatically in terms of
their properties, most notably the fact that by definition they promote diver-
sification. Nevertheless, spectral indices of satisfaction can also be introduced
alternatively as weighted averages of a very popular measure of risk, the ex-
pected shortfall. This representation is more intuitive and suggests how to
construct coherent indices in practice. As we did for the certainty-equivalent
and the quantile, we discuss the computational issues behind the spectral in-
dices of satisfaction. Finally, we perform a second-order sensitivity analysis. In
particular, from this analysis it follows that spectral measures of satisfaction
are concave and thus promote diversification.
We remark that throughout the chapter all the distributions are assumed

continuous and smooth, possibly after regularizing them as discussed in Ap-
pendix B.4.
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5.1 Investor’s objectives 239

5.1 Investor’s objectives

Consider a market of N securities. At the time T when the investment is
made the investor can purchase αn units of the generic n-th security. These
units are specific to the security: for instance, in the case of equities the units
are shares, in the case of futures the units are contracts, etc. Therefore, the
allocation is represented by the N -dimensional vector α.
We denote as P

(n)
t the price at the generic time t of the generic n-th

security. With the allocation α the investor forms a portfolio whose value at
the time the investment decision is made is:

wT (α) ≡ α0pT , (5.1)

where the lower-case notation emphasizes that the above quantities are known
at the time the investment decision is made.
At the investment horizon τ the market prices of the securities are a mul-

tivariate random variable. Therefore at the investment horizon the portfolio
is a one-dimensional random variable, namely the following simple function
of the market prices:

WT+τ (α) ≡ α0PT+τ . (5.2)

The investor has one or more objectives Ψ , namely quantities that the
investor perceives as beneficial and therefore he desires in the largest pos-
sible amounts. This is the non-satiation principle underlying the investor’s
objectives. The standard objectives are discussed below.

• Absolute wealth

The investor focuses on the value at the horizon of the portfolio:

Ψα ≡WT+τ (α) = α0PT+τ . (5.3)

For example, personal financial planning focuses on total savings. There-
fore for the private investor who makes plans on his retirement, the horizon
is of the order of several years and the objective is the final absolute wealth
at his investment horizon.

• Relative wealth

The investor is concerned with overperforming a reference portfolio, whose
allocation we denote as β. Therefore the objective is:

Ψα ≡WT+τ (α)− γ (α)WT+τ (β) . (5.4)

The function γ is a normalization factor such that at the time the investment
decision is made the reference portfolio and the allocation have the same value:

γ (α) ≡ wT (α)

wT (β)
. (5.5)
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240 5 Evaluating allocations

In this case the explicit expression of the objective in terms of the allocation
α reads:

Ψα ≡ α0KPT+τ . (5.6)

The constant matrix K in this expression is defined as follows:

K ≡ IN −
pTβ

0

β0pT
, (5.7)

where IN is the identity matrix.

For example, mutual fund managers are evaluated every year against a
benchmark that defines the fund’s style. Therefore for mutual fund managers
the horizon is one year and the objective is relative wealth with respect to the
benchmark fund.

• Net profits

According to prospect theory some investors are more concerned with
changes in wealth than with the absolute value of wealth, see Kahneman
and Tversky (1979). Therefore the objective becomes:

Ψα ≡WT+τ (α)−wT (α) . (5.8)

The explicit expression of the objective in terms of the allocation reads in this
case:

Ψα ≡ α0 (PT+τ − pT ) . (5.9)

For example, traders focus on their daily profit and loss (P&L). Therefore
for a trader the investment horizon is one day and the net profits are his
objective.

Notice that, in all its specifications, the objective is a linear function of
the allocation and of a market vector :

Ψα = α0M. (5.10)

The market vector M is a simple invertible affine transformation of the
market prices at the investment horizon:

M ≡ a+BPT+τ , (5.11)

where a is a suitable conformable vector and B is a suitable conformable
invertible matrix. Indeed, from (5.3) the market vector for the absolute wealth
objective follows from the choice:

a ≡ 0, B ≡ IN ; (5.12)
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from (5.6) the market vector for the relative wealth objective follows from the
choice:

a ≡ 0, B ≡K, (5.13)

where K is defined in (5.7); from (5.9) the market vector for the net profits
objective follows from the choice:

a ≡ −pT , B ≡ IN . (5.14)

The distribution ofM can be easily computed from the distribution of the
security prices PT+τ at the investment horizon and viceversa, see Appendix
www.2.4. For instance, in terms of the characteristic function we obtain:

φM (ω) = eiω
0aφP (B

0ω) . (5.15)

Therefore, with a slight abuse of terminology, we refer to both M and PT+τ

as the "market vector" or simply the "market".
From (5.10) it follows that the objective as a function of the allocation is

homogeneous of first degree:

Ψλα = λΨα ; (5.16)

and additive:
Ψα+β = Ψα + Ψβ . (5.17)

These properties allow to build and compare objectives that refer to complex
portfolios of securities.
If the markets were deterministic, the investor could compute the objective

relative to a given allocation as a deterministic function of that allocation, and
thus he would choose the allocation that gives rise to the largest value of the
objective.

For example, assume that the investor’s objective is final wealth, i.e. (5.3).
Suppose that the market prices grew linearly:

PT+t = diag (pT )ht, (5.18)

where h is a constant vector. Then from (5.12) the market vector would read:

M ≡ PT+τ = diag (pT )hτ . (5.19)

Consequently, the investor would allocate all his money in the asset that per-
forms the best over the investment horizon, which corresponds to the largest
entry in the vector h.

Instead, the market prices at the investment horizon are stochastic and
therefore the market vector is a random variable, and so is the investor’s
objective.
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242 5 Evaluating allocations

For example, consider normally distributed market prices:

PT+τ ∼ N(µ,Σ) . (5.20)

If the investor focuses on final wealth, from (5.12) the market vector reads:

M ≡ PT+τ . (5.21)

Thus the objective (5.10) is normally distributed:

Ψα ∼ N
¡
µα , σ

2
α

¢
, (5.22)

where
µα ≡ µ0α, σ2α ≡ α0Σα. (5.23)

Since the objective is a random variable we need some tools to figure out
in which sense a random variable is "larger" or is "better" than another one.
We devote the rest of this chapter to this purpose.
We conclude this section remarking that the computation of the exact

distribution of the objective Ψα = α0M is in general a formidable task. Indeed,
the distribution of the market is easily obtained once the distribution of the
prices is known, see (5.15). Nevertheless, the distribution of the prices is very
hard to compute in general. Here we mention the gamma approximation of
the investor’s objective, a quite general approximate solution which has found
a wide range of applications.
Consider the generic second-order approximation (3.108) for the prices of

the securities in terms of the underlying market invariants X, which we report
here:

P
(n)
T+τ ≈ g(n) (0) +X0 ∂g

(n)

∂x

¯̄̄̄
x=0

+
1

2
X0 ∂

2g(n)

∂x∂x0

¯̄̄̄
x=0

X, (5.24)

where n = 1, . . . , N . As we show in Appendix www.5.1, the investor’s objective
can be approximated by a quadratic function of the invariants:

Ψα ≈ Ξα ≡ θα +∆
0
αX+

1

2
X0ΓαX, (5.25)

where

θα ≡
NX
n=1

αnan +
NX

n,m=1

αnBnmg
(m) (0) (5.26)

∆α ≡
NX

n,m=1

αnBnm
∂g(m)

∂x

¯̄̄̄
x=0

(5.27)

Γα ≡
NX

n,m=1

αnBnm
∂2g(m)

∂x∂x0

¯̄̄̄
x=0

; (5.28)
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5.2 Stochastic dominance 243

and a and B are the coefficients (5.11) that determine the market.
In general the market invariants are sufficiently symmetric to be modeled

appropriately by symmetrical distributions, such as elliptical or symmetric
stable distributions, see (3.22), or (3.37), or (3.55), and comments thereafter.
Under this hypothesis it is possible to compute the distribution of the

approximate objective (5.25) as represented by its characteristic function. In
particular, assume that the invariants are normally distributed:

X ∼ N(µ,Σ) . (5.29)

Then we prove in Appendix www.5.1 that the characteristic function of the
approximate objective (5.25) reads:

φΞα
(ω) = |IK − iωΓαΣ|−

1
2 eiω(θα+∆

0
α µ+

1
2µ

0Γα µ) (5.30)

e−
1
2 [∆α+Γα µ]

0Σ(IK−iωΓαΣ)−1[∆α+Γα µ],

where the explicit dependence on the allocation α is easily recovered from
(5.26)-(5.28).

5.2 Stochastic dominance

In this section we present the stochastic dominance approach to assess the
distribution of the investor’s objective. For further references, see Ingersoll
(1987), Levy (1998) and Yamai and Yoshiba (2002).
Suppose that the investor can choose between an allocation α that gives

rise to the objective Ψα and an allocation β that gives rise to the objective
Ψβ . All the information necessary to make a decision as to which allocation
is more advantageous is contained in the joint distribution of Ψα and Ψβ .
When confronted with two different objectives Ψα and Ψβ , it is natural

to first check whether in all possible scenarios one objective is larger than
the other, see the left plot in Figure 5.1. When this happens, the objective
Ψα , or the allocation α, is said to strongly dominate the objective Ψβ , or the
allocation β:

strong dom.: Ψα ≥ Ψβ in all scenarios. (5.31)

In other words, strong dominance arises when the difference of the objectives
relative to two allocations is a positive random variable. Therefore, an equiva-
lent definition of strong dominance reads as follows in terms of the cumulative
distribution function of the difference of the objectives:

strong dom.: FΨα−Ψβ (0) ≡ P {Ψα − Ψβ ≤ 0} = 0. (5.32)

We call strong dominance also order zero dominance, for reasons that will
become clear below.
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g en eral casestro n g  do m in an ce

Ψ α

Ψ β

Ψ α

Ψ β

Fig. 5.1. Strong dominance

For example, suppose that the objective relative to one allocation has a
chi-square distribution with two degrees of freedom:

Ψα ∼ χ22; (5.33)

and that the objective relative to another allocation has a chi-square distrib-
ution with one degree of freedom:

Ψβ ∼ χ21. (5.34)

Assume that Ψα = Ψβ + Y where Y ∼ χ21 is independent of Ψβ . Then Ψα
strongly dominates Ψβ . With this example we generated the plot on the left
in Figure 5.1.

Nevertheless, strong dominance cannot be a general criterion to evaluate
allocations.
In the first place, strong dominance never takes place, for if it did, arbitrage

opportunities, i.e. "free lunches" would arise. Instead, in general an allocation
α gives rise to an objective Ψα that in some scenarios is larger and in some
scenarios is smaller than the objective Ψβ stemming from a different allocation
β, see the plot on the right hand side in Figure 5.1.
Secondly, the definition of strong dominance relies on the joint distribution

of the two objectives Ψα and Ψβ , which is necessary to compute the distribu-
tion of their difference (5.32). Nevertheless, the two allocations are mutually
exclusive, i.e. the investor either chooses one or the other. Therefore the in-
terplay of the two allocations should not have an effect on the decision and
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5.2 Stochastic dominance 245

thus any criterion to rank allocations should focus on comparing the marginal
distributions of the objectives.

pdf cdf
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Fig. 5.2. Weak dominance

A different approach that compares two allocations only in terms of their
marginal distributions is inspired from a plot of the possible values of the
objectives on the vertical axis and the respective probability density functions
on the horizontal axis as in Figure 5.2. We would be prone to choose an
allocation α over another allocation β if the probability density function of the
ensuing objective were concentrated around larger values than for the other
allocation. This condition is expressed more easily in terms of the cumulative
distribution function. The objective Ψα , or the allocation α, is said to weakly
dominate the objective Ψβ , or the allocation β, if the following condition holds
true (notice the "wrong" direction of the inequality):

weak dom.: FΨα (ψ) ≤ FΨβ (ψ) for all ψ ∈ (−∞,+∞) . (5.35)

Weak dominance is also called first-order dominance, for reasons to become
clear below.
Comparing Figure 5.2 with Figure 1.2 we obtain a more intuitive equiva-

lent expression for weak dominance in terms of the inverse of the cumulative
distribution function, namely the quantile. The objective Ψα , or the alloca-
tion α, is said to weakly dominate the objective Ψβ , or the allocation β, if the
following condition holds true:

weak dom: QΨα (p) ≥ QΨβ (p) for all p ∈ (0, 1) . (5.36)
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246 5 Evaluating allocations

This representation is more intuitive than (5.35), due to the "correct" direction
of the inequality.
Weak dominance is not as restrictive a condition as strong dominance: if

an allocation strongly dominates another one it also weakly dominates it, but
the opposite is not true.

For example in Figure 5.2 we consider the case:

Ψα ∼ N(1, 1) , Ψβ ∼ N(0, 1) . (5.37)

From the expression of the normal cumulative distribution function (1.68) we
obtain:

FΨα (ψ) ≡
1

2

·
1 + erf

µ
ψ − 1√
2

¶¸
(5.38)

≤ 1

2

·
1 + erf

µ
ψ√
2

¶¸
≡ FΨβ (ψ) .

Therefore, the allocation α weakly dominates β.
Assume that the two objectives are independent. Then

Ψα − Ψβ ∼ N(1, 2) , (5.39)

or equivalently

FΨα−Ψβ (0) =
1

2

·
1 + erf

µ
−1
2

¶¸
> 0. (5.40)

Therefore, from (5.32) the allocation α does not strongly dominate the allo-
cation β.

A third way to express weak dominance is the following. Suppose that v
is the realization of a random variable V which spans the unit interval, such
as the standard uniform distribution:

V ∼ U([0, 1]) . (5.41)

Applying the cumulative distribution function FΨβ to both sides of the in-
equality in (5.36) we obtain:

weak dom.: FΨβ (QΨα (V )) ≥ V in all scenarios. (5.42)

Comparing this expression with the definition of strong dominance (5.31) we
can say that the objective Ψα , or the allocation α, weakly dominates the
objective Ψβ , or the allocation β, if the distribution on the left hand side in
(5.42) strongly dominates the uniform distribution on the right hand side, see
Figure 5.1.
In particular, from (2.26) the grade of the objective is uniformly distrib-

uted on the unit interval: FΨα (Ψα)
d
= V ; and from (2.27) the quantile of the
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joint random 
sample ( ),V W

( )V FΨ≡ Ψ
α α

[ ]( )U 0,1∼

( )W FΨ≡ Ψ
β α

[ ]( )U 0,1∼

Fig. 5.3. Weak dominance in terms of strong dominance

grade is distributed as the objective: Ψα
d
= QΨα (V ). Therefore from (5.42) an

allocation α weakly dominates an allocation β if FΨβ (Ψα ) strongly dominates
FΨα (Ψα ).

Figure 5.3 refers to our example (5.37), where the allocation α weakly
dominates the allocation β. Indeed, as in Figure 5.1, all the joint outcomes
of FΨα (Ψα ) and FΨβ (Ψα) lie above the diagonal and thus FΨβ (Ψα ) strongly
dominates FΨα (Ψα).

Although weak, or first-order, dominance is not a criterion as restrictive
as strong dominance, even first-order dominance hardly ever occurs. To cope
with this problem we need to introduce even weaker types of dominance, such
as second-order stochastic dominance (SSD).
The rationale behind second-order stochastic dominance is the following:

we would be prone to choose the distribution Ψα over the distribution Ψβ
if, for any given benchmark level ψ of the objective, the events where Ψα
underperforms the benchmark level are less harmful than for Ψβ . In formulas,
for all ψ ∈ (−∞,+∞) the following inequality must hold:

SSD: E
n
(Ψα − ψ)−

o
≥ E

n
(Ψβ − ψ)−

o
, (5.43)

where the "minus" denotes the negative part. If (5.43) holds true, Ψα is said
to second-order dominate Ψβ .
An equivalent formulation of second-order stochastic dominance is the

following, see Ingersoll (1987) for a proof. The objective Ψα , or the allocation
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α, second-order dominates the objective Ψβ , or the allocation β, if for all
ψ ∈ (−∞,+∞) the following inequality holds:

SSD: I2 [fΨα ] (ψ) ≤ I2
£
fΨβ

¤
(ψ) , (5.44)

where I2 the iterated integral (B.27) of the pdf:

I2 [fΨ ] (ψ) ≡ I [FΨ ] (ψ) ≡
Z ψ

−∞
FΨ (s) ds. (5.45)

Second-order stochastic dominance is a less restrictive condition than weak
dominance. Indeed, applying the integration operator I on both sides of (5.35)
we see that first-order dominance implies second-order dominance, although
the opposite is not true in general.
If even second-order dominance does not take place, we must pursue weaker

and weaker criteria. More in general, we say that the objective Ψα , or the
allocation α, order-q dominates the objective Ψβ , or the allocation β, if for
all ψ ∈ (−∞,+∞) the following inequality holds:

q-dom.: Iq [fΨα ] (ψ) ≤ Iq
£
fΨβ

¤
(ψ) . (5.46)

Notice that first-order dominance (5.35) and second-order dominance (5.44)
are particular cases of (5.46).
Applying the integration operator to both sides of (5.46) we see that order

q dominance implies order (q + 1) dominance, although the opposite is not
true in general.
Recalling that we renamed strong dominance as zero-order dominance, we

can write all the above implications in compact form as follows:

0-dom.⇒ 1-dom.⇒ · · ·⇒ q-dom. (5.47)

Therefore in theory we only need to check that one allocation dominates
another for a certain degree, as dominance for higher degrees follows. In prac-
tice the stochastic dominance approach to evaluating allocations displays ma-
jor drawbacks.
First of all, the intuitive meaning behind dominance of orders higher than

two is not evident.
Secondly, the computation of the generic q-th cumulative distribution is

not practically feasible in most situations.
Finally, but most importantly, there is no guarantee that there exists an

order q such that a portfolio stochastically dominates or is dominated by
another: consequently, the investor might not be able to rank his potential in-
vestments and thus choose an allocation. Intuitively, this happens because the
objective is stochastic: a deterministic variable can be represented by a point
on the real line, whereas a random variable is represented by a function, such
as the cumulative distribution function. Functions are infinite-dimensional
vectors, i.e. points in an infinite-dimensional space, see Appendix B. In di-
mensions higher than one there exists no natural way to order points.
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5.3 Satisfaction

The main drawback of the dominance approach to ranking two allocations α
and β is that two generic allocations might not be comparable, in the sense
that neither of the respective objectives dominates the other.
To solve this problem, we summarize all the features of a given allocation

α into one single number S that indicates the respective degree of satisfaction:

α 7→ S (α) . (5.48)

The investor will then choose the allocation that corresponds to the highest
degree of satisfaction.

For example, the expected value of the investor’s objective is a number
that depends on the allocation:

α 7→ S (α) ≡ E {Ψα} . (5.49)

As such, it is an index of satisfaction.

Since there exists no univocal way to summarize all the information con-
tained in an allocation into one number, we discuss here potential features
that an index of satisfaction may display, see also Frittelli and Rosazza Gi-
anin (2002).

• Money-equivalence

An index of satisfaction is money-equivalent if it is naturally measured
in units of money. This is a desirable feature, as money is "the" measure in
finance.
Furthermore, money-equivalence is necessary for consistence. Indeed, con-

sider an investor with a given objective such as absolute wealth as in (5.3) or
relative wealth, as in (5.4), or net profits, as in (5.8), or possibly other specifi-
cations. In all the specifications the objective is measured in terms of money.
Since in a deterministic environment the most natural index of satisfaction is
the objective, it is intuitive to require that a generic index of satisfaction be
measured in the same units as the objective.

For example, the expected value of the objective (5.49) has the same di-
mension as the objective, which is money, and thus it is a money-equivalent
index of satisfaction.

The concept of money-equivalence contrasts that of scale-invariance, or
homogeneity of degree zero. Scale invariant indices of satisfaction are dimen-
sionless measures that satisfy the following relation:

S (λα) = S (α) , for all λ > 0. (5.50)
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Scale invariant indices of satisfaction provide a tool to normalize and evaluate
portfolios that differ in size.
Although in the sequel we will be concerned mainly with money-equivalent

indices of satisfaction, we present the most notable scale invariant index of
satisfaction, namely the Sharpe ratio, which is defined as follows:

SR (α) ≡ E {Ψα}
Sd {Ψα}

. (5.51)

The rationale behind the Sharpe ratio is the following: a high standard devi-
ation is a drawback if the expected value of the objective is positive, because
it adds uncertainty to a potentially satisfactory outcome.

• Estimability

An index of satisfaction is estimable if the satisfaction associated with a
generic allocation α is fully determined by the marginal distribution of the
investor’s objective Ψα , which can be absolute wealth, relative wealth, net
gains, etc. In other words, two allocations that give rise to two objectives
with the same distribution are fully equivalent for the investor.

For example, an allocation of a thousand dollars in cash and a thousand
dollars in a stock of a company quoted on the NYSE is considered fully equiv-
alent to an investment of a thousand dollars in a currency pegged to the dollar
and a thousand dollars in the same stock as quoted on the DAX.

In other words, when an index of the satisfaction is estimable, the satisfac-
tion associated with the allocation α is a functional of any of the equivalent
representations of the distribution of the objective Ψα , namely the probability
density function fΨα , the cumulative distribution function FΨα , or the char-
acteristic function φΨα . Therefore, in order to be estimable, the simple map
(5.48) must expand into the following chain of maps:

α 7→ Ψα 7→
¡
fΨα , FΨα , φΨα

¢
7→ S (α) . (5.52)

The concept of estimability is known in the financial literature also under the
name of law invariance, see Kusuoka (2001).

For example, the expected value is a functional of the probability density
function of the objective:

fψ 7→ E {Ψ} ≡
Z
R
ψfψ (ψ) dψ. (5.53)

Therefore, the expected value is an estimable index of satisfaction:

α 7→ Ψα 7→ fΨα 7→ E {Ψα} . (5.54)
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• Sensibility

Due to the non-satiation principle underlying the investor’s objective, if an
objective Ψα is larger than an objective Ψβ in all scenarios, then the satisfac-
tion that the investors derive from Ψα should be greater than the satisfaction
they derive from Ψβ :

Ψα ≥ Ψβ in all scenarios ⇒ S (α) ≥ S (β) . (5.55)

We call this feature sensibility because it is the minimum requirement that
any index of satisfaction needs to verify. Sensibility is also called monotonicity
in the financial literature, see Artzner, Delbaen, Eber, and Heath (1999).

For example, the expected value of the objective (5.49) is a sensible index
of satisfaction, since it trivially satisfies:

Ψα ≥ Ψβ in all scenarios ⇒ E {Ψα} ≥ E {Ψβ} . (5.56)

By comparing the sensibility condition (5.55) with (5.31) we notice that
in order for the index of satisfaction to be sensible it must be consistent with
strong dominance. In other words, if an allocation α happens to strongly
dominate an allocation β, any sensible criterion should prefer the former to
the latter.
Although we cannot rely on strong dominance as a criterion to compare al-

locations, we should always make sure that any possible criterion is consistent
with strong dominance.

• Consistence with stochastic dominance

Sensibility stems from the intuitive non-satiation argument that the larger
in a strong sense the investor’s objective, the more satisfied the investor.
Similarly, we can apply the non-satiation argument to weaker concepts of
dominance.
For instance, if the marginal distribution of the objective Ψα of an allo-

cation α is shifted upward with respect to the marginal distribution of the
objective Ψβ of an allocation β as in Figure 5.2, then the satisfaction from Ψα
should be greater than the satisfaction from Ψβ . In formulas:

QΨα (p) ≥ QΨβ (p) for all p ∈ (0, 1)⇒ S (α) ≥ S (β) . (5.57)

By comparing this expression with (5.36) we realize that an index of satisfac-
tion for which the above relation holds is consistent with weak dominance.

For example, the expected value of the objective (5.49) is consistent with
weak dominance. Indeed with a change of variable we can verify the following
equality:
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E {Ψ} ≡
Z +∞

−∞
ψfψ (ψ) dψ =

Z 1

0

QΨ (u) du. (5.58)

Therefore (5.57) is satisfied.

Consistence with weak dominance is a stronger requirement on the index
of satisfaction than consistence with strong dominance: if and index of sat-
isfaction is consistent with weak dominance it is sensible, i.e. it is consistent
with strong dominance, but the opposite is not true in general.
Nevertheless, in the case of estimable indices of satisfaction the two state-

ments are equivalent. Indeed, in Appendix www.5.2 we follow a personal com-
munication by D. Tasche to prove:

S estimable + S sensible ⇒ S weak dom. consistent. (5.59)

In general, an index of satisfaction S is consistent with q-th order domi-
nance if, whenever an allocation α dominates an allocation β at order q, then
the satisfaction from α is larger than the satisfaction from β:

Ψα q-dom. Ψβ ⇒ S (α) ≥ S (β) . (5.60)

In particular, sensibility corresponds to consistency with zero-order domi-
nance, see (5.55); and consistency with weak dominance corresponds to con-
sistency with first-order dominance, see (5.57).
Given the sequence of implications (5.47) on the degrees of dominance, the

reverse sequence holds for the consistency of an index of satisfaction with the
degree of dominance:

q-dom. consistence⇒ · · ·⇒ 1-dom. consistence (5.61)

⇒ 0-dom. consistence.

For example, the expected value of the objective (5.49) is consistent with
second-order dominance. We prove this result in a broader context in Section
5.4. Therefore, it is consistent with weak dominance (first-order dominance),
and therefore it is sensible, i.e. it is consistent with order-zero dominance.

• Constancy

If the markets were deterministic, the non-satiation principle would imply
that the investor’s objective, no matter whether it is absolute wealth, or rela-
tive wealth, or net profits, would serve as a suitable index of satisfaction, see
p. 241.
Therefore, if there exists an allocation b that yields a deterministic objec-

tive ψb, it is reasonable to require that the index coincide with the objective:

Ψb ≡ ψb ⇒ S (b) = ψb. (5.62)

This feature is called constancy.
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For example, the expected value of the objective (5.49) is a constant index
of satisfaction:

Ψb ≡ ψb ⇒ E {Ψb} = ψb. (5.63)

As an example of a deterministic objective, consider the case where the objec-
tive is absolute wealth and the allocation b is an investment in zero-coupon
bonds that expire at the investment horizon.

• Positive homogeneity

The investor’s objective is positive homogeneous of degree one, see (5.16).
In other words, if we rescale the allocation by a given positive factor the
objective is rescaled by the same factor:

Ψλα = λΨα , for all λ ≥ 0. (5.64)

1α
Nα

S (satisfaction)

0

Fig. 5.4. Positive homogeneity of satisfaction index

It would be intuitive if an index of satisfaction shared the same property:
loosely speaking, an index of satisfaction is homogeneous if doubling the in-
vestment makes the investor twice as happy. More precisely, a satisfaction
index is positive homogenous (of degree one) if rescaling the allocation by
a generic positive factor λ implies that satisfaction is rescaled by the same
factor:

S (λα) = λS (α) , for all λ ≥ 0. (5.65)

It is easy to interpret positive homogeneity geometrically, see Figure 5.4.
An index of satisfaction is positive homogenous if satisfaction grows linearly
in any radial direction stemming from the origin of the allocation space.
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For example, the expected value of the objective (5.49) is a positive ho-
mogeneous index of satisfaction. Indeed from (5.64) we obtain:

E {Ψλα} = E {λΨα} = λE {Ψα} . (5.66)

Positive homogeneous functions enjoy the following special property, first
discovered by Euler:

S (α) =
NX
n=1

αn
∂S (α)
∂αn

. (5.67)

In the case of positive homogeneous indices of satisfaction this property has a
nice interpretation: satisfaction is the sum of the contributions from each secu-
rity. The contribution to satisfaction from the generic n-th security in turn is
the product of the amount αn of that security times the marginal contribution
to satisfaction ∂S/∂αn which that security provides. Furthermore, the vector
of marginal contributions to satisfaction is scale-invariant: if the allocation is
multiplied by a positive factor, the marginal contribution ∂S/∂αn does not
change.

For example, if the objective is absolute wealth

Ψα ≡ α0PT+τ , (5.68)

the Euler decomposition of the expected value yields:

E {Ψα} =
NX
n=1

αn E
n
P
(n)
T+τ

o
. (5.69)

In this case the contribution to satisfaction of the n-th security factors into the
security’s amount times the expected value of that security at the investment
horizon.

• Translation invariance

The investor’s objective is not only positive homogeneous, it is also addi-
tive, see (5.17): if we add two portfolios α and β the ensuing objective is the
sum of the two separate objectives:

Ψα+β = Ψα + Ψβ . (5.70)

Since the objectives are random variables the satisfaction ensuing from the
sum of two random variables can be completely unrelated to the satisfaction
that the investor draws from the separate portfolios.
Nevertheless, consider an allocation b that yields a deterministic objective

ψb. In this case the distribution of the objective relative to the joint allocation
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α b

S (satisfaction)

Fig. 5.5. Translation invariance of satisfaction index

α + b is simply a shift of the distribution of Ψα by the fixed amount ψb. If
the index of satisfaction satisfies (5.62), this is the satisfaction provided by
the allocation b. Therefore, it would be intuitive if an index of satisfaction
shifted by the same amount:

S (α+ b) = S (α) + ψb. (5.71)

This property is called translation invariance. It is easy to interpret translation
invariance geometrically, see Figure 5.5.
Notice that translation invariance implies that the index of satisfaction is

measured in terms of money. Without loss of generality, we can normalize the
deterministic allocation to yield one unit of currency. Therefore we can restate
the translation invariance property as follows:

Ψb ≡ 1⇒ S (α+ λb) = S (α) + λ. (5.72)

This expression follows from (5.71) once we take into account the positive
homogeneity of the objective (5.64).

For example, the expected value of the objective (5.49) is a translation-
invariant index of satisfaction. Indeed, from (5.70) and (5.66) we obtain:

Ψb ≡ 1⇒ E {Ψα+λb} = E {Ψα}+ λ. (5.73)

• Sub- and super- additivity
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The translation invariance property (5.71) can be interpreted as additivity
in a deterministic environment. Indeed, the index of satisfaction of a determin-
istic allocation is the investor’s objective, see (5.62). Therefore (5.71) reads:

Ψb ≡ 1⇒ S (α+ b) = S (α) + S (b) . (5.74)

In the general non-deterministic case additivity is too strong a constraint:
the satisfaction ensuing from two portfolios together could be larger or smaller
than the sum of the separate levels of satisfaction. A measure of satisfaction
is super-additive1 if for any two allocations α and β the following inequality
is satisfied:

S (α+ β) ≥ S (α) + S (β) . (5.75)

The rationale behind this condition is that the interplay between the alloca-
tion α and the allocation β provides a diversification effect that satisfies the
investor more than the two allocations separately.
Similarly, a measure of satisfaction is sub-additive if for any two allocations

α and β:
S (α+ β) ≤ S (α) + S (β) . (5.76)

The rationale behind this condition is that the interplay between the allocation
α and the allocation β provides a diversification effect that the investor does
not appreciate.

For example, the expected value of the objective (5.49) is an additive index
of satisfaction:

E {Ψα+β} = E {Ψα}+E {Ψβ} . (5.77)

This follows immediately from the additivity of the objective (5.70). Therefore
the expected value is both sub- and super-additive.

• Co-monotonic additivity

Two allocations α and δ are co-monotonic if they give rise to co-monotonic
objectives, i.e. such that one is a deterministic increasing function of the other,
see (2.35).

For example, consider a market of two securities: a stock that trades at
the price St and a call option on that stock with strike K that expires at the
investment horizon. Consider the following two allocations:

α ≡ (1, 0)0 , δ ≡ (0, 1)0 . (5.78)

1 The financial literature that focuses on measures of risk rather than measures
of satisfaction reverses the inequalities in the following expressions, see Artzner,
Delbaen, Eber, and Heath (1999).
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In words, the allocation α is one share of the stock and the allocation δ is a
call option on one share of that stock. Consider an investor whose objective
is final wealth. Then

Ψα = ST+τ , Ψδ = max (Ψα −K, 0) . (5.79)

The objective Ψδ is an increasing function of the objective Ψα , once we regu-
larize the call payoff as in (2.37). Thus the two allocations are co-monotonic.

A combination of co-monotonic allocations does not provide a genuine
diversification effect: an extreme event in one of them is reflected in an extreme
event in the other.
An index of satisfaction is co-monotonic additive, if it properly takes this

phenomenon into account. From the remarks following (5.75), a co-monotonic
additive index of satisfaction satisfies:

(α, δ) co-monotonic ⇒ S (α+ δ) = S (α) + S (δ) . (5.80)

Loosely speaking, a co-monotonic additive index of satisfaction is "derivative-
proof".

Since from (5.77) the expected value of the objective is an additive index
of satisfaction, in particular it is co-monotonic additive.

• Concavity/convexity

We discussed above a few potential features of an index of satisfaction such
as positive homogeneity, which refers to rescaling an allocation, and transla-
tion invariance, sub-additivity, super-additivity and co-monotonic additivity,
which refer to summing allocations. These properties together help determin-
ing the level of satisfaction from a joint allocation λα + µβ in terms of the
satisfaction S (α) and S (β) from the separate portfolios α and β and the
respective amounts λ and µ of each portfolio.
In practical situations the investor is not interested in evaluating all the

possible allocations spanned by two potential investments α and β. Instead,
due to budget or liquidity constraints, investors typically focus on the sat-
isfaction they draw from weighted averages of the two potential allocations,
which include the two separate allocations as special cases.
An index of satisfaction is concave if for all λ ∈ [0, 1] the following inequal-

ity holds:
S (λα+ (1− λ)β) ≥ λS (α) + (1− λ)S (β) . (5.81)

Notice that concavity is implied by the joint assumptions of positive homo-
geneity (5.65) and super-additivity (5.75).
Similarly, an index of satisfaction is convex if for all λ ∈ [0, 1] the following

inequality holds:
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S (λα+ (1− λ)β) ≤ λS (α) + (1− λ)S (β) . (5.82)

It is immediate to verify that convexity is implied by the joint assumptions of
positive homogeneity (5.65) and of sub-additivity (5.76).

concave 
satisfaction

convex 
satisfaction

undefined 
satisfaction

S
S

S

α β
α β

α β

Fig. 5.6. Concavity/convexity of satisfaction index

We sketch in Figure 5.6 the geometrical interpretation of the above prop-
erties.
From a theoretical point of view, the most remarkable property of a con-

cave index of satisfaction is the fact that such an index promotes diversifica-
tion: the satisfaction derived by a diversified portfolio (the weighted average
of two generic allocations) exceeds the average of the satisfaction derived by
each portfolio individually. We stress that this property is independent of the
market. In other words a concave index of satisfaction promotes diversification
among two generic portfolios no matter their joint distribution: for example,
the two portfolios might be highly positively or negatively correlated. Simi-
larly, a convex index of satisfaction promotes concentration.
From a practical point of view, concavity is an important issue when we

resort to numerical solutions to determine the best allocation, see Section 6.2.

• Risk aversion/propensity/neutrality

Loosely speaking, a measure of satisfaction is risk averse (risk seeking) if
it rejects (welcomes) non-rewarded risk. More precisely, consider an allocation
b that gives rise to a deterministic objective ψb, i.e. an objective that is not
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a random variable. Consider now a fair game, i.e. an allocation f such that
its objective Ψf has zero expected value.2

For example, a fair game is a bet on the outcome of tossing a coin: the
investor wins a given amount of money if the outcome is "tail" and loses the
same amount of money if the outcome is "head".

The joint allocation b + f presents the investor with some risk, the fair
game, which is not rewarded, since from (5.77) the expected value of the risky
allocation is the same as the value of the risk-free allocation.

allocations    with same expected value

( )S αsatisfaction

risk 
premium 

( )RP α

(distribution of 
investor’s  objective)fΨ α

{ }E Ψ α

α

Fig. 5.7. Risk aversion and risk premium

An index of satisfaction is risk averse if the risk-free allocation b is pre-
ferred to the risky joint allocation b+ f for any level of the risk-free outcome
ψb and any fair game f :

Ψb ≡ ψb, E {Ψf} ≡ 0 ⇒ S (b) ≥ S (b+ f) . (5.83)

In words, the satisfaction of the risky joint allocation is less than the satisfac-
tion of the deterministic allocation.
The risk premium is the dissatisfaction due to the uncertainty of a risky

allocation:
RP ≡ S (b)− S (b+ f) . (5.84)

2 One can define a fair game in many different ways. We consider this definition
because it is the most widely accepted in the financial literature.
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If satisfaction is measured in terms of money, the risk premium is the com-
pensation that the investor needs in order to make up for the uncertainty of
his investment.
Any random variable Ψ for which the expected value is defined can be

factored into the sum of a deterministic component E {Ψ} and a fair game
Ψ − E {Ψ}. Therefore we can define the risk premium associated with an
allocation as the difference between the satisfaction arising from the expected
objective and that arising from the risky allocation. In particular, if an index
satisfies the constancy property (5.62) then the risk premium (5.84) associated
with an allocation becomes:

RP(α) ≡ E {Ψα}− S (α) . (5.85)

In terms of the risk premium, an equivalent way to restate the definition
of risk aversion (5.83) is the following: an index of satisfaction is risk averse
if the risk premium is positive for any allocation:

risk aversion: RP(α) ≥ 0, (5.86)

see Figure 5.7.
Similarly, an index of satisfaction is risk seeking if a risky allocation is

preferred to a risk-free allocation with the same expected value. In other
words, the risk premium associated with a risk seeking index of satisfaction
is negative, as the investor is willing to pay a positive amount to play a risky
game:

risk propensity: RP(α) ≤ 0. (5.87)

Finally, an index of satisfaction is risk neutral if a risky allocation is per-
ceived as equivalent to a risk-free allocation with the same expected value. In
other words, the risk premium is zero:

risk neutrality: RP(α) ≡ 0. (5.88)

For example, the expected value of the objective (5.49) is trivially a risk
neutral index of satisfaction:

RP(α) ≡ E {Ψα}− E {Ψα} ≡ 0. (5.89)

5.4 Certainty-equivalent (expected utility)

In Section 5.3 we supported the abstract discussion on indices of satisfaction
with the example (5.49) of the expected value of the investor’s objective. This
example in practical applications is too simplistic. In this section we discuss
the first of three broad and flexible classes of indices that allow us to model
the investor’s satisfaction in a variety of situations.
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Consider an investor with a given objective Ψ such as absolute wealth, as in
(5.3), or relative wealth, as in (5.4), or net profits, as in (5.8), or possibly other
specifications. Consider a generic allocation α that gives rise to the objective
Ψα . A utility function u (ψ) describes the extent to which the investor enjoys
the generic outcome Ψα = ψ of the objective, in case that realization takes
place.
To build an index of satisfaction we can weight the utility from every pos-

sible outcome by the probability of that outcome. In other words, we consider
the expected utility from the given allocation:

α 7→ E {u (Ψα)} ≡
Z
R
u (ψ) fΨα (ψ) dψ, (5.90)

where fΨ is the probability density function of the objective. This expression
is in the form (5.48) and thus it qualifies as a potential index of satisfaction.
Indeed, this is the Von Neumann-Morgenstern specification of expected utility
as an index of satisfaction, see Varian (1992): the investor prefers an allocation
that gives rise to a higher expected utility.

fΨ α

( )uf Ψ α

( )u ψ

ψ

( ){ }E u Ψ α

( )CE α

(utility distribution)u

{ }E Ψ α

(distribution of 
investor’s  objective)

Fig. 5.8. Expected utility and certainty-equivalent

For example, consider the exponential utility function:

u (ψ) ≡ −e− 1
ζψ, (5.91)

where ζ is a constant. Since the objective has the dimensions of [money], in
order to make the argument of the exponential function dimensionless, this
constant must have the dimensions of [money]. The expected utility reads:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



262 5 Evaluating allocations

E {u (Ψα)} = −E
n
e−

1
ζΨα

o
= −φΨα

µ
i

ζ

¶
, (5.92)

where φ denotes the characteristic function (1.12) of the objective.

Nevertheless, utility cannot be measured in natural units (a meter of util-
ity? a watt of utility?). Furthermore, for practitioners it is more intuitive to
measure satisfaction in terms of money. In order to satisfy this requirement,
we consider the certainty-equivalent of an allocation, which is the risk-free
amount of money that would make the investor as satisfied as the risky allo-
cation:

α 7→ CE(α) ≡ u−1 (E {u (Ψα)}) , (5.93)

see Figure 5.8.
The certainty-equivalent is measured in the same units as the objective

Ψα , which is money. Therefore, instead of (5.90), we choose the certainty-
equivalent (5.93) as an index of satisfaction.

For example, consider the exponential utility function (5.91). From (5.92)
the certainty-equivalent reads:

α 7→ CE(α) ≡ −ζ ln
µ
φΨα

µ
i

ζ

¶¶
. (5.94)

Since ζ has the dimensions of [money] and the characteristic function is di-
mensionless, the certainty-equivalent has the dimensions of [money].

Notice that at this stage the symbol u−1 in (5.93) is a pseudo-inverse, i.e.
just a notational convention to denote one, if any, solution to the following
implicit equation:

u (CE (α)) ≡ E {u (Ψα )} . (5.95)

Nevertheless, we will see below that the inverse is always defined and thus
there always exists a unique certainty-equivalent.

5.4.1 Properties

In this section we revisit the properties of a generic index of satisfaction
discussed in Section 5.3 to ascertain which are satisfied by the certainty-
equivalent.

• Money-equivalence

By construction the certainty-equivalent (5.93) has the same dimensions
as the objective and thus it is measured in terms of money. Therefore the
certainty-equivalent is a money-equivalent index of satisfaction.
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• Estimability

The certainty-equivalent is an estimable index of satisfaction. Indeed, from
the formulation (5.90) we see that the expected utility of an allocation is a
functional of the probability density function of the investor’s objective. Since
the certainty-equivalent is defined in terms of the expected utility as in (5.93),
the certainty-equivalent is also a functional of the probability density func-
tion of the investor’s objective. Therefore the certainty-equivalent is defined
through a chain such as (5.52) and thus it is an estimable index of satisfaction:

α 7→ Ψα 7→ fΨα 7→ CE(α) . (5.96)

Depending on the situation, it might be more natural to represent the distri-
bution of the objective equivalently in terms of the characteristic function or
the cumulative distribution function.

For example, in the case of the exponential utility function (5.91) the
certainty-equivalent (5.94) is defined through the following chain:

α 7→ Ψα 7→ φΨα 7→ CE(α) ≡ −ζ ln
µ
φΨα

µ
i

ζ

¶¶
, (5.97)

which is in the form (5.52). Therefore the exponential certainty-equivalent is
estimable.

• Sensibility

Due to the non-satiation principle, investors pursue the largest possible
amount of their respective objectives. Therefore utility must be an increasing
function of the objective. Assuming that the utility function is smooth, this
corresponds to the condition that the first derivative of the utility be positive
for all values in the range of the investor’s objective:

Du ≥ 0, (5.98)

where D is the derivative operator (B.25). This is the only, though essential,
restriction that we impose on the utility function, and thus on the definition
of the certainty-equivalent.

For example, consider the exponential utility function (5.91). In order for
the utility to be an increasing function of the objective, we impose the con-
straint ζ > 0.

The consequences of restricting the utility to the set of increasing functions
are manifold.
In the first place, the Von Neumann-Morgenstern specification (5.90) and

the certainty-equivalent specification (5.93) as indices of satisfaction become
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equivalent. In other words, if the utility function u is increasing, its inverse
u−1 is well-defined and increasing. Therefore the certainty-equivalent is an
increasing function of the expected utility and an allocation α gives rise to a
larger expected utility than an allocation β if and only if that allocation α
gives rise to a larger certainty-equivalent than β:

E {u (Ψα)} ≥ E {u (Ψβ )}⇔ CE(α) ≥ CE(β) . (5.99)

Secondly, if the utility function is increasing, the certainty-equivalent is
sensible, i.e. consistent with strong dominance. Indeed, from (5.99) and the
fact that u is increasing we derive:

Ψα ≥ Ψβ in all scenarios ⇒ CE(α) ≥ CE(β) , (5.100)

which is the definition (5.55) of sensibility applied to the certainty-equivalent.
Finally, we can relate the utility function to the investor’s subjective prob-

ability , see Castagnoli and LiCalzi (1996) and Bordley and LiCalzi (2000).
Suppose that the investor has an a-priori hunch as to how his investment

will perform, no matter the actual investment decision. We can describe this
hunch in terms of a subjective distribution of the objective Ψ , whose pdf (cdf)
we denote as fSΨ (F

S
Ψ ).

Now consider a specific allocation α. We can compare this allocation with
the investor’s hunch by means of (5.42). In other words, we consider the
variable:

W (V ) ≡ F SΨ (QΨα (V )) , (5.101)

where V ∼ U([0, 1]).
If the joint outcomes of V and W plot above the diagonal as in Figure

5.3, the investor is a pessimist. Indeed in this case the objective α weakly
dominates the investor’s hunch, which means that the allocation α is better
than the investor thinks. On the other hand, if the joint outcomes of V and
W plot below the diagonal, the investor is an optimist, as the allocation α is
worse than the investor thinks.
No matter the degree of optimism of the investor, the higher the graph,

the better the investment. Therefore the investor’s satisfaction is an increas-
ing function of the "aboveness" of the graph (5.101). To quantify the degree
of "aboveness" of the graph, the most natural approach is to compute its
expected value:

E {W (V )} ≡
Z 1

0

F SΨ (QΨα (v)) dv (5.102)

=

Z
R
F SΨ (ψ) fΨα (ψ) dψ.

Comparing this expression with (5.90) we see that the utility function u rep-
resents the cumulative distribution function FSΨ of the investor’s subjective
a-priori hunch on the result of his investments.
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For this interpretation to make sense, the utility function must be in-
creasing and satisfy the normalization properties (1.10) of any cumulative
distribution function:

u (ψinf) ≡ 0, u
¡
ψsup

¢
≡ 1, (5.103)

where
£
ψinf , ψsup

¤
is the (possibly unbounded) domain of the utility function,

i.e. the range of the investor’s objective.
Although (5.103) seems a very restrictive assumption on the utility, we

notice that the certainty-equivalent is unaffected by positive affine transfor-
mations of the utility function. In other words, if in (5.95) we shift and stretch
the investor’s utility function as follows:

u (ψ) 7→ a+ bu (ψ) , (5.104)

where b is a positive number, the certainty-equivalent is unaffected. Therefore
we can always normalize any utility function in such a way that (5.103) holds.3

For example, assume that the investor’s objective is positive: ψ ∈ [0,+∞)
and consider the exponential utility function (5.91). This function is equivalent
to:

u (ψ) ≡ 1− e−
1
ζψ, (5.105)

which satisfies (5.103) if ζ > 0. The first derivative of this expression yields
the probability density function of the investor’s subjective view on his in-
vestments:

fSΨ (ψ) =
1

ζ
e−

1
ζψ. (5.106)

This is a decreasing function: in other words, an investor whose utility is
exponential is a pessimist who believes that the worst scenarios are the most
likely to occur.

We remark that the interpretation of the utility function u as a subjec-
tive cumulative distribution function F SΨ reduces the certainty-equivalent to
a quantile-based index of satisfaction like the value at risk, see Section 5.5.
Indeed, denoting as QSΨ the quantile of the subjective distribution of the ob-
jective, from the definition of the certainty-equivalent (5.93) we obtain:

CE(α) = QSΨ (cα) , (5.107)

where the confidence level reads:

cα ≡ E
©
F SΨ (Ψα )

ª
. (5.108)

In words, the certainty-equivalent is the quantile of the investor’s subjective
distribution, where the confidence level is the expected subjective grade.
3 If the domain [πinf , πsup] is unbounded, the utility function should be bounded
for the normalization to make sense. If this is not the case, we can overcome this
problem by restricting [πinf , πsup] to a bounded, yet arbitrarily large, domain.
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• Consistence with stochastic dominance

To guarantee that the certainty-equivalent (5.93) is a sensible index of
satisfaction we imposed the condition that the utility function be increasing.
This condition also implies that the certainty-equivalent is consistent with
weak dominance. In other words, if u is increasing then the following impli-
cation holds true:

QΨα (p) ≥ QΨβ (p) for all p ∈ (0, 1)⇒ CE(α) ≥ CE(β) , (5.109)

which is (5.57) in this context. This follows from (5.59).
Consistence of the certainty-equivalent with second-order dominance is

guaranteed if the utility function is increasing and concave. Assuming that
the utility is a smooth function, these conditions can be stated in terms of the
derivative operator (B.25) as follows:

Du ≥ 0, D2u ≤ 0. (5.110)

In general, as far as consistence with higher order dominance is concerned,
the certainty-equivalent is consistent with q-th order stochastic dominance if
the following condition holds on the whole range of the investor’s objective:

(−1)kDku ≤ 0, k = 1, 2, . . . , q, (5.111)

see Ingersoll (1987). A comparison of this condition with (5.98) and (5.110)
shows that this result includes consistency with weak (first-order) and second-
order stochastic dominance respectively.

• Constancy

If the investor’s objective is deterministic, the certainty-equivalent (5.93)
coincides with the objective. In other words, the certainty-equivalent satisfies
the constancy requirement:

Ψb ≡ ψb ⇒ CE(b) = ψb, (5.112)

which is (5.62) in this context.

• Positive homogeneity

In order for the certainty-equivalent (5.93) to be a positive homogeneous
index of satisfaction it has to satisfy (5.65), which in this context reads:

CE(λα) = λCE(α) . (5.113)

In Appendix www.5.3 we show that the class of utility functions that gives
rise to a positive homogeneous certainty-equivalent is the power class:

u (ψ) ≡ ψ1−
1
γ , (5.114)
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where γ ≥ 1. Indeed, Figure 5.4 was generated using the certainty-equivalent
relative to a power utility function.
We discuss this type of utility in a more general context below, see (5.135).

In particular, if the utility function is of the power class, the Euler decompo-
sition (5.67) of the certainty-equivalent holds, see (5.152) below.

• Translation invariance

In order for the certainty-equivalent (5.93) to be a translation invariant
index of satisfaction it has to satisfy (5.72), which in this context reads:

Ψb ≡ 1⇒ CE(α+ λb) = CE(α) + λ. (5.115)

In Appendix www.5.3 we show that the class of utility functions that give rise
to a translation invariant certainty-equivalent is the exponential class (5.91).
Indeed, Figure 5.5 was generated using the certainty-equivalent relative to an
exponential utility function. We discuss this type of utility function in a more
general context below, see (5.133).

• Super-/sub- additivity

The certainty-equivalent (5.93) is not a super-additive index of satisfaction.
For this to be the case, the certainty-equivalent should satisfy the following
relation for any two allocations α and β:

CE(α+ β) ≥ CE(α) + CE(β) , (5.116)

which is (5.75) in this context. The only utility function such that (5.116) is
true no matter the market distribution is the linear utility, in which case the
certainty-equivalent becomes the expected value of the objective:

u (ψ) ≡ ψ ⇔ CE(α) = E {Ψα} . (5.117)

In this situation from (5.77) the certainty-equivalent is additive, and thus
(5.116) holds as an equality.
Similarly, the certainty-equivalent is not a sub-additive index of satisfac-

tion unless the utility is linear.

• Co-monotonic additivity

The certainty-equivalent (5.93) is not a co-monotonic additive index of
satisfaction. In other words, if an allocation δ gives rise to an objective that
is an increasing function of the objective of another allocation α as in (2.35),
the certainty-equivalent of the total portfolio is not necessarily the sum of the
certainty-equivalents of the separate allocations:

(α, δ) co-monotonic ; CE(α+ δ) = CE(α) + CE(δ) . (5.118)

This can be proved easily with a counterexample. The only utility function
such that (5.118) is true no matter the market distribution is the linear utility
u (ψ) ≡ ψ, in which case the co-monotonicity is a consequence of the additivity
property (5.77).
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• Concavity/convexity

One might think that the concavity/convexity properties of the certainty-
equivalent are a straightforward consequence of the concavity/convexity prop-
erties of the utility function. This is not the case.
Intuitively, in the definition of the certainty-equivalent (5.93) the expected

utility is a concave function of α if and only if the utility function is concave.
On the other hand, if u is concave, the inverse u−1 in the definition of the
certainty-equivalent is convex, and the two effects tend to cancel each other.

1α
Nα

CE

Fig. 5.9. Certainty equivalent as function of allocation

Therefore, in general the certainty-equivalent is neither concave nor con-
vex, see Figure 5.9. We present this argument more formally in the context of
the second-order sensitivity analysis in Section 5.4.4.

• Risk aversion/propensity

The certainty-equivalent (5.93) satisfies the constancy property, see (5.112).
Therefore the risk premium associated with an allocation is given by (5.85),
which in this context reads:

RP(α) = E {Ψα}−CE(α) . (5.119)

In Appendix www.5.3 we prove that for any allocation α the following result
holds:

u concave ⇔ RP(α) ≥ 0. (5.120)

Therefore from (5.86) the certainty-equivalent is a risk averse index of satis-
faction if and only if the utility function is concave. This is the situation for
instance in Figure 5.8, where (5.120) is satisfied.
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Similarly, the certainty-equivalent is a risk prone index of satisfaction if
and only if the utility function is convex. Finally, the certainty-equivalent is
a risk neutral index of satisfaction if and only if the utility function is linear.
Risk aversion is a global feature: the risk premium of a risk averse investor

is positive no matter the allocation. Similarly, risk propensity is a global fea-
ture. Nevertheless, depending on their objectives and conditions, investors
might display different attitudes toward risk in different situations, and thus
the risk premium they require can change sign.
For instance, prospect theory asserts that the investor’s objective are the

net profits as in (5.8). In this context, investors tend to be cautious in their
pursuit of new gains, but are unwilling to cut their losses in the hope of a
recovery, see Kahneman and Tversky (1979). The ensuing utility function is
S-shaped, i.e. it is concave (= risk averse) for profits and convex (= risk prone)
for losses, see the fourth plot in Figure 5.10.
To better describe the investor’s attitude toward risk we need a more local

measure. The Arrow-Pratt absolute risk aversion is defined as follows:

A(ψ) ≡ −
D2u (ψ)
Du (ψ) , (5.121)

where D is the derivative operator (B.25). In Appendix www.5.3 we show that
if an allocation α gives rise to an objective which is not too volatile, i.e. an
objective whose distribution is highly concentrated around its expected value,
the following factorization yields a good approximation of the risk premium:

RP(α) ≈ 1
2
A (E {Ψα})Var {Ψα} . (5.122)

In other words, the money necessary to compensate for the riskiness of an
allocation is the product of a quantity that depends on the investor’s pref-
erences, namely the Arrow-Pratt risk aversion, and a quantity that does not
depend on the investor’s preferences, namely the variance of the allocation,
which in turn summarizes its riskiness.
The Arrow-Pratt risk aversion (5.121) is a function: as such, it is a local

measure of risk aversion that depends on the expected value of the objective.
Since the first derivative of the utility function is always positive, the Arrow-
Pratt risk aversion is positive if and only if the second derivative of the utility
function is negative, which means that the utility function is concave. In other
words, from (5.120) the Arrow-Pratt risk aversion is positive if and only if
the investor is locally risk averse. Similarly, the Arrow-Pratt risk aversion is
negative if and only if the investor is locally risk prone.

For example, assume a prospect-theory framework where the objective are
net profits as in (5.8). We use the error function (B.75) to model the investor’s
utility:

u (ψ) ≡ erf
µ

ψ√
2η

¶
. (5.123)
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In this expression η is a constant with the dimensions of [money]2 that makes
the argument of the error function dimensionless. The error function is S-
shaped, with a flex point in zero, see the fourth plot in Figure 5.10.
The domain of this utility function is the whole real axis: this function

describes the attitude towards risk in the case of both profits, i.e. positive
values of the objective, and losses, i.e. negative values of the objective. The
Arrow-Pratt risk aversion (5.121) corresponding to the error function utility
(5.123) reads:

A(ψ) =
ψ

η
. (5.124)

Consider the case where η is positive. When facing net gains, i.e. when ψ is
positive, the Arrow-Pratt risk aversion is positive: the investor is risk averse
and seeks a compensation for the non-rewarded risk. On the other hand,
when facing net losses, i.e. when ψ is negative, the Arrow-Pratt risk aversion
is negative: the investor is risk prone and is willing to pay a premium to hold
on to a risky allocation.

Notice that the Arrow-Pratt risk aversion is not a dimensionless number:
instead, it as has the dimensions of [money]−1. This follows from the definition
(5.121) and is a necessary condition for the dimensional consistency of (5.122).

For example, in (5.124) the objective has the dimensions of [money] and
the constant η has the dimensions of [money]2. Therefore their ratio has the
dimensions of [money]−1.

Unlike the second derivative of the utility function, not only the sign, but
also the absolute value of the Arrow-Pratt risk aversion is meaningful. In-
deed, from (5.104) any utility function is defined only modulo positive affine
transformations: such transformations affect the value of the first and sec-
ond derivative of the utility function, but leave the Arrow-Pratt risk aversion
(5.121) unaltered. Alternatively, the fact that the Arrow-Pratt risk aversion
has the dimensions of [money]−1 is proof of its importance.

5.4.2 Building utility functions

According to the certainty-equivalent approach, the attitude toward risk of
an investor is described by his utility function. Therefore we should use a
tailor-made utility function for each specific case. Since this is impossible, we
specify the functional form of the utility function by means of parsimonious yet
flexible parametrizations. We present below two methods to build parametric
utility functions.
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Basis

One way to build utility functions starts by specifying a basis. In other words,
we specify a one-parameter set of (generalized) functions b that can generate
a whole class of utility functions as weighted averages:

u (ψ) ≡
Z
R
g (θ) b (θ, ψ) dθ, (5.125)

where the weight function g is positive and sums to one:

g ≥ 0,
Z
R
g (θ) dθ = 1. (5.126)

For example, consider a basis defined in terms of the Heaviside function
(B.74) as follows:

b (θ, ψ) ≡ H(θ) (ψ) . (5.127)

This basis is very broad, as it can in principle generate all sensible utility
functions. Indeed, any increasing function u can be expressed in terms of this
basis as in (5.125), if the weight function is defined as the derivative of the
utility function:

g ≡ Du. (5.128)

The proof follows immediately from the definition of the Heaviside step func-
tion. Also notice that the condition (5.103) guarantees that the normalization
(5.126) is satisfied.

The representation of utility functions in terms of a basis is useful in two
ways. In the first place, it allows us to build classes of utility functions that
share the same properties.

For example, consider the min-function basis:

b (θ, ψ) ≡ min (ψ, θ) . (5.129)

This basis can generate all concave utility functions. Therefore the min-
function basis can be used to describe risk averse investors, see Gollier (2001).

Secondly, the representation of utility functions in terms of a basis pro-
vides a probabilistic interpretation of the expected utility and therefore of the
certainty-equivalent:

E {u (Ψ)} =
Z
R2

b (θ, ψ) g (θ) fΨ (ψ) dθdψ (5.130)

= E {b (Θ,Ψ)} .
In other words, the expected utility is the expected value of a function of two
random variables. The first random variable Θ models the investor’s prefer-
ences and attitude toward risk. The second random variable Ψ , i.e. the ob-
jective, models the market. These two random variables are independent and

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



272 5 Evaluating allocations

thus fully determined by their marginal distributions. The distribution of the
preferences is described by the weight function g, which due to (5.126) can be
interpreted as a probability density function; the distribution of the market
is described by the probability density function of the investor’s objective fΨ .

Arrow-Pratt risk aversion

A different approach to building utility functions focuses on the Arrow-Pratt
risk aversion.
First of all notice that the Arrow-Pratt risk aversion is an equivalent, yet

more efficient, representation of the utility function. Indeed, from (5.121) the
specification of the utility function yields the Arrow-Pratt risk aversion. In
turn, integrating the Arrow-Pratt risk aversion, we can recover the utility
function, modulo a positive affine transformation:

(I◦ exp ◦I) [−A] = a+ bu, (5.131)

where I is the integration operator (B.27). From (5.104), positive affine trans-
formations are irrelevant to the determination of the certainty-equivalent:
therefore, the Arrow-Pratt risk aversion contains all and only the informa-
tion about the utility function that matters in determining the investor’s
satisfaction.
Therefore, an efficient way to define parametric forms of the investor’s

preferences is to specify flexible, although parsimonious, functional forms for
the Arrow-Pratt risk aversion, rather than for the utility function. A possible
such specification appears in LiCalzi and Sorato (2003):

A(ψ) ≡
ψ

γψ2 + ζψ + η
. (5.132)

This specification depends on only three constant parameters4 and yet it in-
cludes as special cases most of the parametrizations studied in the financial
literature. Since Pearson (1895) discussed a similar parametrization in a differ-
ent context, (5.132) is called the Pearson specification of the utility function.
In the special case where η ≡ 0 in (5.132) we obtain the Hyperbolic Absolute

Risk Aversion (HARA) class of utility functions. The HARA class includes in
turn a few notable parametrizations as special cases. The results below can
be obtained by applying (5.131) or by checking the derivatives of the utility
function in the definition (5.121) of the Arrow-Pratt risk aversion coefficient.
If ζ > 0 and γ ≡ 0 the HARA class yields the exponential utility :

u (ψ) = −e− 1
ζψ, (5.133)

where ζ > 0, see Figure 5.10.
4 By adding one more parameter ξ as follows A(ψ, ξ) ≡ A(ψ − ξ), all the ensuing
utility functions are shifted along the horizontal axis by ξ.
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Fig. 5.10. Parametric utility functions

If ζ > 0 and γ ≡ −1 the HARA class yields the quadratic utility :

u (ψ) = ψ − 1

2ζ
ψ2. (5.134)

We remark that the certainty-equivalent stemming from the quadratic utility
function is not sensible for ψ > ζ because in that region a larger value of the
objective ψ decreases the investor’s satisfaction: therefore this utility function
can be used in principle only when the objective is bounded from above, see
Figure 5.10.
If ζ ≡ 0 and γ ≥ 1 the HARA class yields the power utility :

u (ψ) ≡ ψ1−
1
γ , (5.135)

see Figure 5.10. In the limit γ → 1 the power utility (5.135) yields, modulo a
positive affine transformation, the logarithmic utility function:

u (ψ) ≡ lnψ. (5.136)

In the limit γ →∞ the power utility (5.135) becomes the linear utility :

u (ψ) ≡ ψ. (5.137)

The utility functions in the HARA class are very flexible, but always con-
cave. Therefore the HARA specification cannot properly model the framework
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of prospect theory, where the objective are the net profits and the utility func-
tion must be S-shaped. Nevertheless, the more general Pearson specification
(5.132) allows such flexibility. To see this in a specific case, we set γ ≡ 0 and
ζ ≡ 0, obtaining the error function utility :

u (ψ) ≡ erf
µ

ψ√
2η

¶
, (5.138)

see Figure 5.10.

5.4.3 Explicit dependence on allocation

We recall from (5.10) that the investor’s objective, namely absolute wealth,
relative wealth, net profits, or other specifications, is a simple linear function
of the allocation and the market vector:

Ψα = α0M. (5.139)

Therefore the certainty-equivalent (5.93) depends on the allocation as follows:

α 7→ CE(α) ≡ u−1 (E {u (α0M)}) . (5.140)

In this section we tackle the problem of computing explicitly the certainty-
equivalent of an allocation for a given distribution of the market vector M
and a given choice of the utility function u.
For very special combinations of the distribution of the market and of the

choice of the utility functions the dependence of the certainty-equivalent on
the allocation can be computed analytically.

For example, we can represent the distribution of the market in terms of its
characteristic function φM. Then the distribution of the investor’s objective
(5.139) is represented in terms of its characteristic function as follows:

φΨα (ω) = φM (ωα) , (5.141)

see Appendix www.2.4.
Suppose that the investor’s satisfaction is determined by an exponen-

tial utility function (5.91). Then from (5.94) the explicit dependence of the
certainty-equivalent on allocation reads:

CE(α) = −ζ ln
µ
φM

µ
i

ζ
α

¶¶
. (5.142)

Consider a market which at the investment horizon is normally distributed
and assume that the investor’s objective is final wealth. From (5.11) and (5.12)
the market vector is normally distributed:

M ≡ PT+τ ∼ N(µ,Σ) . (5.143)
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From (5.142) and the characteristic function of the normal distribution (2.157)
we obtain:

α 7→ CE(α) = α0µ− α0Σα
2ζ

. (5.144)

Notice that the expected value of the market prices µ has the dimensions of
[money] and the covariance matrix of the market prices Σ has the dimensions
of [money]2. The allocation vector α is a dimensionless number. Since ζ has
the dimensions of [money], so does the certainty-equivalent.

Nevertheless, for a generic utility function u and a generic market M the
certainty-equivalent is a complex expression of the objective.

For example, consider a market for which the gamma approximation (5.24)
holds, and an investor whose utility function is exponential. In this case from
(5.94) and the expression of the characteristic function of the objective (5.30)
we obtain:

CE(α) =
ζ

2
ln

¯̄̄̄
IK +

1

ζ
ΓαΣ

¯̄̄̄
+

µ
θα +∆

0
αµ+

1

2
µ0Γαµ

¶
(5.145)

+
ζ

2
[∆α + Γαµ]

0Σ
µ
IK +

1

ζ
ΓαΣ

¶−1
[∆α + Γαµ] ,

where the explicit dependence on the allocation α is given by (5.26)-(5.28).

When the explicit dependence of the certainty-equivalent on the alloca-
tion vector α cannot be computed analytically, we can gain insight on this
dependence by means of a first-order approximate expression, the Arrow-Pratt
approximation:

CE(α) ≈ E {Ψα}−
A(E {Ψα})

2
Var {Ψα} . (5.146)

In this expression A is the Arrow-Pratt coefficient of risk aversion (5.121), see
Appendix www.5.3 for a proof. This approximation shows that high expected
values of the objective are always appreciated, whereas the investor’s attitude
towards the variance of its objective can vary, depending on the investor’s
local risk aversion.
If the moments of the market vector M are known, (5.146) yields the

(approximate) explicit dependence of the certainty-equivalent on the alloca-
tion vector α. This follows from (5.139) and the affine equivariance properties
(2.56) and (2.71) of expected value and covariance respectively.
If the moments of the market vectorM are not known, we can replace the

objective Ψα with its gamma approximation Ξα as in (5.25). This corresponds
to replacing the moments of Ψα that appear in (5.146) with the moments of
Ξα , which can be computed from the derivatives of the characteristic function
(5.30) as illustrated in Appendix www.5.1.
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In the very special case of exponential utility and normal markets the
approximation (5.146) becomes exact, as we see from (5.144).

5.4.4 Sensitivity analysis

Suppose that the investor has already chosen an allocation α which yields
a level of satisfaction CE(α) and that he is interested in rebalancing his
portfolio marginally by means of a small change δα in the current allocation.
In this case a local analysis in terms of a Taylor expansion is useful:

CE(α+ δα) ≈ CE(α) + δα0
∂CE(α)

∂α
(5.147)

+
1

2
δα0

∂2CE(α)

∂α∂α0
δα.

We prove in Appendix www.5.3 that the first-order derivatives read:

∂ CE(α)

∂α
=
E {Du (α0M)M}
Du (CE (α)) , (5.148)

where D is the derivative operator (B.25) andM is the random vector (5.139)
that represents the market. The investor will focus on the entries of the vector
(5.148) that display a large absolute value.

For example, consider a prospect theory setting where the investor’s ob-
jective are the net profits. We model the investor’s utility by means of the
error function:

u (ψ) ≡ erf
µ

ψ√
2η

¶
. (5.149)

Assume a normally distributed market:

PT+τ ∼ N(µ,Σ) . (5.150)

We prove in Appendix www.5.3 that the sensitivity of the certainty-equivalent
to the allocation reads:

∂CE(α)

∂α
= γ (α)

·
1

η
αα0 +Σ−1

¸−1
Σ−1 (µ− pT ) , (5.151)

where γ (α) is a scalar and thus equally affects all the entries of the vector of
the first derivatives.

We remark that when the utility function belongs to the power class (5.114)
the certainty-equivalent is positive homogeneous and thus it can be expressed
in terms of the contribution to satisfaction from each security by means of
the Euler decomposition (5.67). Substituting the expression of the derivative
of power utility function in (5.148) we obtain:
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u (ψ) ≡ ψ1−
1
γ ⇒ (5.152)

CE(α) =
NX
n=1

αn

h
E
n
Mn (α

0M)−
1
γ

o
(CE (α))

1
γ

i
.

The contribution to satisfaction from each security in turn factors into the
product of the amount of that security times the marginal contribution to sat-
isfaction from that security. The marginal contribution to satisfaction, which
is the term in square brackets in (5.152), is insensitive to a rescaling of the
portfolio, although it depends on the allocation.
The study of the second-order cross-derivatives provides insight on the

local convexity/concavity of the certainty-equivalent. In Appendix www.5.3
we prove the following result:

∂2CE(α)

∂α∂α
=
E
©
D2u (Ψα)MM0ª−D2u (CE (α))ww0

Du (CE (α)) , (5.153)

where D is the derivative operator (B.25) and the deterministic vector w is
defined as follows:

w ≡ E
½

Du (Ψα )
Du (CE (α))M

¾
. (5.154)

In (5.153) the matrices MM0 and ww0are always positive, and so is Du by
assumption. Nevertheless, even when the sign of D2u is consistently either
negative or positive, we cannot be sure of the sign of the cross-derivatives
(5.153). Therefore, the certainty-equivalent is neither a concave nor a convex
index of satisfaction. We can see this in Figure 5.9, that refers to a prospect
theory setting where utility is modeled by the error function (5.138).

5.5 Quantile (value at risk)

In Section 5.4 we discussed the certainty-equivalent, which is a very subjec-
tive index of satisfaction. Indeed, the certainty-equivalent is determined by
the choice of a utility function, which is specific to each investor. In this sec-
tion we discuss the second of three broad approaches to model the investor’s
satisfaction.
To introduce this index of satisfaction, consider a financial institution with

a capital of, say, one billion dollars. The financial institution aims at investing
its capital in such a way that at a given time horizon the maximum loss
does not exceed, say, ten million dollars. Since in a stochastic environment
there is no guarantee that the maximum loss will not be exceeded, it is more
reasonable to require that the maximum loss is not exceeded within a given
confidence margin of, say, ninety-five percent.
We rephrase the above situation in our notation. The investor is the finan-

cial institution, which has an initial capital wT (one billion in the example)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



278 5 Evaluating allocations

at the time the investment decision is made. The institution focuses on the
potential loss at the investment horizon, which is the difference between the
initial capital wT and the stochastic capital at the the investment horizon
WT+τ . This loss should not exceed the threshold Lmax (ten million) with a
confidence of at least c (ninety-five percent):

P {wT −WT+τ < Lmax} ≥ c. (5.155)

In other words, the investor’s objective are net profits, which as in (5.8) depend
on the allocation decision

Ψα ≡WT+τ (α)− wT ; (5.156)

and from the definition of quantile (1.18) the financial institution manages
its investments in such a way that the lower-tail quantile of the net profits,
corresponding to a confidence level 1−c (five percent), be above the maximum
acceptable loss:

QΨα (1− c) ≥ −Lmax. (5.157)

When the required confidence level c is high, the quantile in (5.157) is typically
a negative amount, i.e. it represents a loss: the purpose of the financial insti-
tution is to make sure that its absolute value does not exceed the maximum
loss Lmax.
The absolute value of the quantile of the objective, when the objective

are net profits, is known among practitioners as the value at risk (VaR) with
confidence c of the allocation α:

VaRc (α) ≡ −QΨα (1− c) . (5.158)

The value at risk has become extremely popular among practitioners especially
after the Basel Accord, see Crouhy, Galai, and Mark (1998).
More in general the objective Ψα , which depends on the allocation α, could

be absolute wealth as in (5.3) or relative wealth, as in (5.4), or net profits, as
in (5.8), or possibly other specifications. Therefore (5.157) suggests to define
a quantile-based index of satisfaction of a given allocation α for a generic
investor in terms of the quantile of the investor’s objective as follows:

α 7→ Qc (α) ≡ QΨα (1− c) , (5.159)

where c ∈ (0, 1) is a fixed confidence level . This expression is in the form (5.48)
and thus it qualifies as a potential index of satisfaction. We see in Figure 5.11
the graphical interpretation of the quantile-based index of satisfaction. We
also plot the interpretation of the VaR, which only applies when the investor’s
objective are the net profits.

5.5.1 Properties

In this section we revisit the properties of a generic index of satisfaction dis-
cussed in Section 5.3 to ascertain which are satisfied by the quantile.
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area =  

( )1Q cΨ −
α

1 c−

VaR c

fΨ α

ψ (objective’s 
values)

(distribution of 
investor’s  objective)

Fig. 5.11. VaR and quantile-based index of satisfaction

• Money-equivalence

The quantile of the distribution of the investor’s objective has the same
dimensions as the objective, which is money. Therefore the quantile-based
index of satisfaction (5.159) is a money-equivalent index of satisfaction.

• Estimability

The quantile is the inverse of the cumulative distribution function of the
objective. Therefore the quantile-based index of satisfaction is defined through
a chain such as (5.52) and thus it is estimable:

α 7→ Ψα 7→ FΨα 7→ Qc (α) . (5.160)

• Consistence with stochastic dominance

The quantile-based index of satisfaction (5.159) is consistent with weak
stochastic dominance. The proof is almost tautological. Indeed the quantile
satisfies the following relation:

QΨα (p) ≥ QΨβ (p) for all p ∈ (0, 1)⇒ Qc (α) ≥ Qc (β) , (5.161)

which is the definition of consistence with weak dominance (5.57) in this
context.
On the other hand, the quantile is not consistent with second-order domi-

nance. The interested reader can find a counterexample in the context of value
at risk in Guthoff, Pfingsten, and Wolf (1997). Since the quantile is not consis-
tent with second-order dominance, (5.61) implies that it cannot be consistent
with higher-order dominance.
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• Sensibility

Since from (5.161) the quantile-based index of satisfaction is consistent
with first-order dominance, from (5.61) it is a-fortiori consistent with strong
dominance, or order zero dominance. In other words, the quantile-based index
of satisfaction satisfies:

Ψα ≥ Ψβ in all scenarios ⇒ Qc (α) ≥ Qc (β) , (5.162)

which is the definition of sensibility (5.55) in this context.

• Constancy

The quantile-based index of satisfaction (5.159) satisfies the constancy
requirement. In other words, we prove in Appendix www.5.4 that for any
confidence level c ∈ (0, 1) and any deterministic allocation b the following
relation holds:

Ψb = ψb ⇒ Qc (b) = ψb, (5.163)

which is (5.62) in this context.

• Positive homogeneity

Q c

1α
Nα

0

Fig. 5.12. Quantile-based satisfaction index as function of allocation

The quantile-based index of satisfaction is positive homogenous, i.e. it
satisfies (5.65), which in this context reads:

Qc (λα) = λQc (α) , for all λ ≥ 0, (5.164)
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see Appendix www.5.4 for the proof. In other words, the quantile grows lin-
early in any radial direction stemming from the origin of the allocation space,
see Figure 5.12 and compare with Figure 5.4. Refer to symmys.com for details
on these figures.

• Translation invariance

The quantile-based index of satisfaction is a translation invariant index of
satisfaction, i.e. it satisfies (5.72), which in this context reads:

Ψb ≡ 1⇒ Qc (α+ λb) = Qc (α) + λ, (5.165)

see Appendix www.5.4 for the proof and Figure 5.5 for a geometrical inter-
pretation.

• Super-/sub- additivity

The quantile-based index of satisfaction is not super-additive, i.e. in generic
markets we have:

Qc (α+ β) ¤ Qc (α) + Qc (β) . (5.166)

Therefore (5.75) is not satisfied. This is best proved by means of counterex-
amples, see for instance Artzner, Delbaen, Eber, and Heath (1999) for a coun-
terexample with discrete distributions and Tasche (2002) for a counterexample
with continuous distributions, both in the context of value at risk.
Therefore the quantile-based index of satisfaction, and in particular the

value at risk, fails to promote diversification. This is the main reason why
alternative measures of satisfaction such as the expected shortfall were devel-
oped, refer to Section 5.6.
Similarly, the quantile-based index of satisfaction is not sub-additive.

• Co-monotonic additivity

The quantile-based index of satisfaction is co-monotonic additive. Indeed,
we prove in Appendix www.5.4 that if an allocation δ gives rise to an objec-
tive which is an increasing function of the objective corresponding to another
allocation α, the satisfaction from the total portfolio is the sum of the satis-
factions from the separate allocations:

(α, δ) co-monotonic ⇒ Qc (α+ δ) = Qc (α) + Qc (δ) . (5.167)

This is the definition of co-monotonic additivity (5.80) in this context.
In other words, the combined portfolio is not perceived as providing a

diversification effect: the quantile, and in particular the value at risk, are not
"fooled" by derivatives.

• Concavity/convexity
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The quantile-based index of satisfaction (5.159) is neither a concave nor
a convex function of the allocation, see Figure 5.12 and refer to symmys.com
for details on the market behind this figure.
Indeed, the matrix of second-order cross-derivatives of the quantile with

respect to the allocation is neither negative definite nor positive definite, see
(5.191) and comments thereafter. In other words, quantile-based indices of
satisfaction fail to promote diversification, see the discussion on p. 258. This
is one of the major critiques that have been directed to the value at risk.

• Risk aversion/propensity

The quantile-based index of satisfaction is neither risk averse, nor risk
prone, nor risk neural. Indeed, depending on the distribution of the investor’s
objective and on the level of confidence required, the risk premium (5.85) can
assume any sign.

For example, assume that the investor’s objective has a Cauchy distribu-
tion:

Ψα ∼ Ca
¡
µ, σ2

¢
. (5.168)

Then from (1.82) we obtain:

RP(α) ≡ E {Ψα}−QΨα (1− c) = −σ tan
µ
π

µ
1

2
− c

¶¶
, (5.169)

which can be larger than, equal to, or less than zero depending on the confi-
dence level c.

5.5.2 Explicit dependence on allocation

We recall from (5.10) that the investor’s objective, namely absolute wealth,
relative wealth, net profits, or other specifications, is a simple linear function
of the allocation and the market vector:

Ψα = α0M. (5.170)

Therefore the quantile-based index of satisfaction (5.159) depends on the al-
location as follows:

α 7→ Qc (α) ≡ Qα 0M (1− c) . (5.171)

In this section we tackle the problem of computing explicitly the quantile-
based index of satisfaction of an allocation for a given distribution of the
marketM and a given choice of the confidence level c.

For example, consider a market which is normally distributed at the in-
vestment horizon:

PT+τ ∼ N(µ,Σ) . (5.172)
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Assume that the investor’s objective are the net profits as in (5.8). In this
case from (5.11) and (5.14) the distribution of the objective reads:

Ψα ≡ α0M ∼ N
¡
µα , σ

2
α

¢
, (5.173)

where
µα ≡ α0 (µ−PT ) , σ2α ≡ α0Σα. (5.174)

Therefore from (1.70) we have:

Qc (α) = µα + σα erf
−1 (1− 2c) . (5.175)

Although the objective is a simple linear function of the allocation and
the market, the quantile is in general a complex expression of the allocation.
Therefore in general the explicit dependence of the index of satisfaction on
the allocation cannot be computed analytically.
There exists a vast literature regarding the computation of the quantile,

and in particular of the VaR, using different techniques and under different
distributional assumptions for the market, see for instance the list of references
at gloriamundi.org. We mention here two cases that play a major role in the
financial literature: the gamma approximation and the extreme value theory.

Delta-gamma approximation

When the market can be described by the gamma approximation (5.24) and
the market invariants are approximately normal, (5.30) yields an approximate
expression for the characteristic function of the objective Ψα :

φΨα (ω) ≈ |IK − iωΓαΣ|−
1
2 eiω(θα+∆

0
α µ+

1
2µ

0Γα µ) (5.176)

e−
1
2 [∆α+Γα µ]

0Σ(IK−iωΓαΣ)−1[∆α+Γα µ].

The explicit dependence of θ, ∆ and Γ on the allocation α is given in (5.26)-
(5.28).
From the characteristic function (5.176) we can compute the probability

density function of the approximate objective with a numerical inverse Fourier
transform as in (1.15) and thus we can compute the quantile Q by solving
numerically the following implicit equation:Z Q

−∞
F−1

£
φΨα

¤
(x) dx ≡ 1− c. (5.177)

Nevertheless, this approach does not highlight the explicit dependence of the
quantile on the allocation.
To tackle this issue, we can make use of a technique developed by Cornish

and Fisher (1937), which expresses the quantile of a generic random variableX
in terms of its moments and the quantile of the standard normal distribution:
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z (p) ≡
√
2 erf−1 (2p− 1) , (5.178)

see (1.70). The Cornish-Fisher expansion is an infinite series whose terms can
be easily computed up to any order by means of software packages. The first
terms read:

QX (p) = E {X}+ Sd {X} [z (p) +
1

6

¡
z2 (p)− 1

¢
Sk {X}] + · · · , (5.179)

see Kotz, Balakrishnan, and Johnson (1994).
From the characteristic function (5.176) we can recover all the moments

of the investor’s objective as detailed in Appendix www.5.1. Therefore we can
apply the Cornish-Fisher expansion to the investor’s objective Ψα to compute
its generic quantile, and thus in turn the quantile-based index of satisfaction
(5.159).
In particular, in Appendix www.5.4 we derive the following approximation:

Qc (α) ≈ Aα +Bαz (1− c) +Cαz
2 (1− c) . (5.180)

where

A ≡ E {Ψα}−
E
©
Ψ3α
ª
− 3E

©
Ψ2α
ª
E {Ψα}+ 2E {Ψα}3

6
³
E {Ψ2α}− E {Ψα}

2
´

B ≡
q
E {Ψ2α}− E {Ψα}

2 (5.181)

C ≡ E
©
Ψ3α
ª
− 3E

©
Ψ2α
ª
E {Ψα}+ 2E {Ψα}3

6
³
E {Ψ2α}− E {Ψα}

2
´ .

Refer to Appendix www.5.1 for the explicit dependence on the allocation of
the moments that appear in these coefficient.
Approximations of order higher than (5.180) can be obtained similarly.

Extreme value theory

Extreme value theory (EVT) tackles the computation of the quantile when the
confidence level in (5.171) is very high, i.e. c ∼ 1, see Embrechts, Klueppelberg,
and Mikosch (1997) and references therein.
Consider the conditional excess function of a generic random variable X

which is defined as follows:

Leψ (z) ≡ P
n
X ≤ eψ − z | X ≤ eψo = FX

³eψ − z
´

FX
³eψ´ , (5.182)

where FX denotes the cumulative distribution function of X. The conditional
excess function describes the probability that X is less than a generic value
below a given threshold, conditioned on X being less than the given threshold.
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Consider now the generalized Pareto cumulative distribution function, de-
fined for positive z and v and all values of ξ (possibly taking limits for ξ = 0)
as follows:

Gξ,v (z) ≡ 1−
µ
1 +

ξ

v
z

¶−1/ξ
. (5.183)

A theorem in Pickands (1975) and Balkema and De Haan (1974) states that
under fairly general conditions for very low values of the threshold eψ in (5.182)
there exist suitable values of the parameters ξ and v such that the following
approximation holds:

1− Leψ (z) ≈ Gξ,v (z) . (5.184)

Substituting (5.183) in (5.184) and applying this result to the investor’s ob-
jective X ≡ Ψα we obtain an approximation for the cumulative distribution
function of the objective for very low values of its range:

FΨα (ψ) ≈ FΨα

³eψ´µ1 + ξ (α)

v (α)

³eψ − ψ
´¶−1/ξ

. (5.185)

Inverting this relation we obtain the approximate expression for the quantile-
based index of satisfaction:

Qc (α) ≈ eψ + v (α)

ξ (α)

1−
 1− c

FΨα

³eψ´
−ξ(α)

 . (5.186)

Nevertheless, the applicability of this formula in this context is limited be-
cause the dependence on the allocation α of the parameters v and ξ and of
the threshold cdf FΨα

³eψ´ is non-trivial.
5.5.3 Sensitivity analysis

Suppose that the investor has already chosen an allocation α which yields a
level of satisfaction Qc (α) and that he is interested in rebalancing his portfolio
marginally by means of a small change δα in the current allocation. In this
case a local analysis in terms of a Taylor expansion is useful:

Qc (α+ δα) ≈ Qc (α) + δα0
∂Qc (α)

∂α
(5.187)

+
1

2
δα0

∂2Qc (α)

∂α∂α0
δα.

We prove in Appendix www.5.4 that the first-order derivatives read:

∂Qc (α)

∂α
= E {M|α0M = Qc (α)} , (5.188)
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whereM is the random vector (5.170) that represents the market, see Haller-
bach (2003), Gourieroux, Laurent, and Scaillet (2000), Tasche (2002). The
investor will focus on the entries of the vector (5.188) that display a large
absolute value.

For example, in the case of normal markets from (5.175) we obtain directly
the first-order derivatives:

∂Qc (α)

∂α
= µ− pT +

Σα√
α0Σα

√
2 erf−1 (1− 2c) . (5.189)

The quantile-based index of satisfaction is positive homogeneous, see
(5.164). Therefore it can be expressed in terms of the contribution to satis-
faction from each security by means of the Euler decomposition (5.67), which
in this context reads:

Qc (α) =
NX
n=1

αn E {Mn|α0M = Qc (α)} . (5.190)

The contribution to satisfaction from each security in turn factors into the
product of the amount of that security times the marginal contribution to
satisfaction of that security. The marginal contribution to satisfaction, i.e.
the conditional expectation of the market vector (5.188), is insensitive to a
rescaling of the portfolio, although it depends on the allocation.

For example, consider the case of normal markets. Left-multiplying the
marginal contributions to satisfaction (5.189) by the amount of each security
α0 we obtain the quantile-based index of satisfaction (5.175). Also, a rescaling
α 7→ λα does not affect (5.189).

The study of the second-order cross-derivatives provides insight in the
local convexity/concavity of the certainty-equivalent. In Appendix www.5.4
we adapt from Gourieroux, Laurent, and Scaillet (2000) to prove the following
result:

∂2Qc (α)

∂α0∂α
= − ∂ ln fΨα (ψ)

∂ψ

¯̄̄̄
ψ=Qc(α)

Cov {M|Ψα = Qc (α)} (5.191)

− ∂Cov {M|Ψα = ψ}
∂ψ

¯̄̄̄
ψ=Qc(α)

,

where fΨα is the probability density function of the investor’s objective Ψα ≡
α0M.
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For example, consider the case of normal markets. By direct derivation of
(5.189) we obtain:

∂2Qc (α)

∂α0∂α
= Σ

µ
IN −

αα0Σ
α0Σα

¶ √
2 erf−1 (1− 2c)√

α0Σα
. (5.192)

In the normal case the second term in (5.191) vanishes because the conditional
covariance in does not depend on the value on which it is conditioned.
In Appendix www.5.4 we prove that the matrix (5.192) is negative definite

for high confidence levels, namely c > 0.5, and positive definite for low confi-
dence levels, namely c < 0.5. Therefore for high confidence levels the quantile
is concave and for low confidence levels the quantile is convex.

In general the first term in (5.191) is fairly easy to analyze: the conditional
covariance is always positive definite and the elasticity of the marginal density
is typically positive in the lower tail, which corresponds to a high level of
confidence c ∼ 1 in the quantile. Therefore for high levels of confidence the
first term is negative definite and tends to make the quantile a concave index
of satisfaction. Similarly, the elasticity of the marginal density is typically
negative in the upper tail, which corresponds to a low level of confidence
c ∼ 0 in the quantile. Therefore for low levels of confidence the first term is
positive definite and tends to make the quantile a convex index of satisfaction.
On the other hand, the sign of the second term in (5.191) is not determined.

Therefore in general the quantile-based index of satisfaction is neither convex
nor concave, see Figure 5.12.

5.6 Coherent indices (expected shortfall)

In Section 5.4 we discussed a first class of indices of satisfaction based on
expected utility, namely the certainty-equivalent, and in Section 5.5 we intro-
duced a second class of indices, namely the quantile-based indices of satisfac-
tion. In this section, following the recent literature on measures of risk, we
discuss a third approach to model the investor’s satisfaction, namely coherent
indices of satisfaction, a class of indices of satisfaction that are defined directly
in terms of the properties that they are supposed to feature, see Artzner, Del-
baen, Eber, and Heath (1997) and Artzner, Delbaen, Eber, and Heath (1999).
Such indices originated from the critiques directed to the value at risk for

not promoting diversification. Indeed, the quantile-based index of satisfaction
is not a concave function of allocation, see Figure 5.12. Therefore it fails to
promote diversification. Although diversification is not necessarily a require-
ment for the portfolio of a private investor, it is an important requirement in
the investment policy of a financial institution.
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5.6.1 Properties

In this section we introduce the broad class of coherent indices of satisfaction,
namely functions that with a generic allocation α associate a level of satis-
faction Coh (α) in such a way to satisfy the properties discussed below. Since
these indices are defined axiomatically in terms of their properties, we re-
visit the properties of a generic index of satisfaction introduced in Section 5.3
highlighting which of them define coherent indices of satisfaction and which
of them are consequences of the definitions.
Consider an investor with a given objective Ψ such as absolute wealth, as

in (5.3), or relative wealth, as in (5.4), or net profits, as in (5.8), or possibly
other specifications. As usual, we denote as Ψα the the objective relative to a
generic allocation α, see (5.10).

• Sensibility (definition)

A coherent index of satisfaction must be sensible, i.e. consistent with strong
dominance:

Ψα ≥ Ψβ in all scenarios ⇒ Coh (α) ≥ Coh (β) , (5.193)

which is (5.55) in this context.

• Positive homogeneity (definition)

Coh

1α
Nα

0

Fig. 5.13. Coherent satisfaction index as function of allocation

A coherent index of satisfaction must be positive homogeneous:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



5.6 Coherent indices (expected shortfall) 289

Coh (λα) = λCoh (α) , for all λ ≥ 0, (5.194)

which is (5.65) in this context. In other words, the coherent index grows
linearly in any radial direction stemming from the origin of the allocation
space, see Figure 5.13, which refers to the same market as Figure 5.12. Refer
to symmys.com for details on these figures.
Notice that the requirement of positive homogeneity rules out the certainty-

equivalent as a coherent index of satisfaction, unless the utility function is of
the power class.

• Translation invariance (definition)

A coherent index of satisfaction must be translation invariant:

Ψb ≡ 1⇒ Coh (α+ λb) = Coh (α) + λ, (5.195)

which is (5.72) in this context, see Figure 5.5 for a geometrical interpretation.
Notice that the requirement of translation invariance rules out the certainty-

equivalent as a coherent index of satisfaction, unless the utility function is of
the exponential class.

The only intersection between the exponential class and the power class
is the trivial linear utility function, in which case the certainty-equivalent be-
comes the expected value of the investor’s objective, which is our first example
of coherent index of satisfaction:

Coh (α) ≡ CE(α) ≡ E {Ψα} . (5.196)

• Super-additivity (definition)

A coherent index of satisfaction must be super-additive:

Coh (α+ β) ≥ Coh (α) + Coh (β) , (5.197)

which is (5.75) in this context. Notice that this requirement rules out the
quantile-based index of satisfaction, see (5.166). Also, this requirement rules
out the certainty-equivalent as a coherent index of satisfaction, except for the
trivial case of a linear utility function (5.196).

A notable class of coherent indices of satisfaction are the one-sided mo-
ments, see Fischer (2003):

Coh (α) ≡ E {Ψα}− γ kmin (0, Ψα − E {Ψα})kM;p . (5.198)

In this expression γ ≥ 0 and k·kM;p is the market-based expectation norm
(B.57), which in terms of the market probability density function fM reads:
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kgkM;p ≡
µZ

|g (m)|p fM (m) dm
¶ 1

p

. (5.199)

Notice that (5.198) is defined in terms of the distribution of the objective Ψα
and as such it is law invariant, or estimable, see also below.
The trivial case γ ≡ 0 recovers the expected value (5.196) as a coherent

index of satisfaction.
The specific case γ ≡ 1 and p ≡ 2 gives rise to the mean/semistandard

deviation, which practitioners use extensively.

The above four defining properties imply other features.

• Money-equivalence (consequence of definition)

The joint assumptions of positive homogeneity and translation invariance
imply that a coherent index of satisfaction is naturally measured in terms of
money.

• Concavity (consequence of definition)

The joint assumptions of positive homogeneity and super-additivity imply
that a coherent index of satisfaction is concave, i.e. for all λ ∈ [0, 1] the
following holds true:

Coh (λα+ (1− λ)β) ≥ λCoh (α) + (1− λ)Coh (β) , (5.200)

which is (5.81) in this context.
In other words, coherent indices of satisfaction promote diversification by

construction, see Figure 5.13. We recall that this is not the case for quantile-
based indices of satisfaction such as the value at risk, see Figure 5.12, which
refers to the same market as Figure 5.13. Refer to symmys.com for details on
these figures.
The above properties of the coherent indices of satisfaction cover many

but not all the potential features of a generic index of satisfaction discussed
in Section 5.3.
Adding a few more intuitive requirements, Acerbi (2002) introduced the

sub-class of coherent indices known as spectral indices of satisfaction5. Spec-
tral indices of satisfaction are functions that with a generic allocation α asso-
ciate a level of satisfaction Spc (α) which satisfies the properties of coherent
indices of satisfaction and the additional properties discussed below. Indeed,
spectral indices of satisfaction cover all the potential features of a generic
index of satisfaction discussed in Section 5.3. Again, we distinguish between
truly new defining features and simple consequences of the definitions.

• Estimability (definition)

5 The reason for this terminology will become apparent in Section 5.6.2.
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A spectral index of satisfaction is fully determined by the distribution of
the investor’s objective Ψα , as represented by either its probability density
function, cumulative distribution function, or characteristic function. In other
words, a spectral index of satisfaction is defined in terms of the following
chain:

α 7→ Ψα 7→
¡
fΨα , FΨα , φΨα

¢
7→ Spc (α) , (5.201)

which is (5.52) in this context.

• Co-monotonic additivity (definition)

A spectral index of satisfaction is co-monotonic additive:

(α, δ) co-monotonic ⇒ Spc (α+ δ) = Spc (α) + Spc (δ) , (5.202)

which is (5.80) in this context. In other words, like (non-coherent) quantile-
based indices of satisfaction such as the value at risk, the spectral indices of
satisfaction are not "fooled" by derivatives: whenever the objective relative
to one allocation is an increasing function of the objective stemming from
another allocation, the combined portfolio is not perceived as providing a
diversification effect.

For example the one-sided moments (5.198) are estimable, but not co-
monotonic additive. Therefore they give rise to coherent indices of satisfaction,
but not to spectral indices of satisfaction. On the other hand, consider the
expected value of the objective:

Spc (α) ≡ E {Ψα} . (5.203)

From (5.77) the expected value is additive and thus in particular it is co-
monotonic additive. Furthermore, from (5.54) it is estimable and from (5.196)
it is coherent. Therefore the expected value of the investor’s objective is a
spectral index of satisfaction.

The above defining properties of spectral indices of satisfaction imply the
following features.

• Consistence with weak stochastic dominance (consequence of de-
finition)

From (5.59) sensibility and estimability imply consistence with weak sto-
chastic dominance. Therefore the spectral indices of satisfaction are consistent
with weak stochastic dominance:

QΨα (p) ≥ QΨβ (p) for all p ∈ (0, 1)⇒ Spc (α) ≥ Spc (β) , (5.204)

which is (5.57) in this context.

• Constancy (consequence of definition)
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Translation invariance and homogeneity imply constancy, see Appendix
www.5.2. Therefore the spectral indices of satisfaction satisfy:

Ψb ≡ ψb ⇒ Spc (b) = ψb, (5.205)

which is (5.62) in this context.

• Risk aversion (consequence of definition)

Spectral indices of satisfaction are risk averse. Indeed, we prove in Appen-
dix www.5.5 that the risk premium of an allocation associated with a spectral
index of satisfaction is positive: this is the definition of risk aversion (5.86).

5.6.2 Building coherent indices

In this section we discuss how to build coherent indices of satisfaction. More
precisely, we focus on spectral indices. We proceed as in the case of the
certainty-equivalent, see Section 5.4.2. In other words, we specify a basis for
the spectral indices of satisfaction and then we obtain all possible indices as
weighted averages of the basis.
To define a basis, we start from the only example of spectral index intro-

duced so far, namely the expected value of the investor’s objective (5.203). In
order to build other elements for the basis of the spectral indices we generalize
the expected value, which, with a change of variables, we can express as the
average of all the quantiles:

E {Ψα} =
Z
R
ψfΨα (ψ) dψ (5.206)

=

Z 1

0

QΨα (s) ds.

One the one hand, it is important to start with the quantiles. Indeed,
the quantile is co-monotonic additive, see (5.167), and estimable, see (5.160).
These are exactly the two new features required of spectral indices of satis-
faction.
On the other hand, it is important to suitably average a given range of

quantiles, because the quantile per se is not super-additive, see (5.166). Super-
additivity is a key feature of coherent measures of risk, and thus in particular
it is a key feature of spectral indices of satisfaction.
Therefore, we define new indices of satisfaction as averages of quantiles.

To make the ensuing index of satisfaction more conservative, we average the
quantiles over the worst scenarios. This way we obtain the definition of ex-
pected shortfall6(ES):

6 The name expected shortfall applies specifically to the case where the investor’s
objective are net profits, much like the value at risk in the context of quantile-
based indices of satisfaction. For simplicity, we extend the terminology to a generic
objective, such as absolute or relative wealth.
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ESc (α) ≡
1

1− c

Z 1−c

0

QΨα (s) ds, (5.207)

where c ∈ [0, 1] is a fixed confidence level . The expected shortfall is indeed a
generalization of the expected value, which represents the specific case c ≡ 0.
Notice that the expected shortfall is the expected value of the investor’s

objective, conditioned on the realization of the objective being less than the
quantile-based index of satisfaction (5.159). Therefore the expected shortfall
is the tail conditional expectation (TCE), also known as conditional value at
risk7 (CVaR):

ESc (α) = TCEc (α) = CVaRc (α) (5.208)

≡ E {Ψα |Ψα ≤ Qc (α)} .

We now verify that, just like the expected value, the expected shortfall
satisfies the defining properties of a spectral index of satisfaction.

• Sensibility

The expected shortfall is sensible:

Ψα ≥ Ψβ in all scenarios ⇒ ESc (α) ≥ ESc (β) . (5.209)

Indeed, from (5.57) and (5.207) it is consistent with first-order dominance,
and thus from (5.61) it is consistent with strong dominance.

• Positive homogeneity

The expected shortfall is positive homogeneous:

ESc (λα) = λESc (α) , λ ≥ 0, (5.210)

see Figure 5.13. This follows from the linearity of the integral in the definition
of expected shortfall and the positive homogeneity of the quantile proved in
Appendix www.5.4.

• Translation invariance

The expected shortfall is translation invariant:

ESc (α+ λb) = ESc (α) + λ, (5.211)

see Figure 5.5 for a geometrical interpretation. This follows from the linear-
ity of the integral in the definition of expected shortfall and the translation
invariance of the quantile proved in Appendix www.5.4.

• Super-additivity
7 We assume that the probability density function of the objective fΨα is smooth,
otherwise this is not true, see Acerbi and Tasche (2002) for a counterexample.
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The expected shortfall is super-additive:

ESc (α+ β) ≥ ESc (α) + ESc (β) . (5.212)

For the proof of super-additivity we refer the interested reader to Acerbi and
Tasche (2002).
We stress that in particular the joint assumptions of positive homogeneity

and super-additivity imply that, unlike the value at risk, the expected shortfall
is concave. In other words, for all λ ∈ [0, 1] the following holds true:

ESc (λα+ (1− λ)β) ≥ λESc (α) + (1− λ)ESc (β) . (5.213)

We see this in Figure 5.13, which refers to a market of two securities. Compare
also with Figure 5.12, which refers to the value at risk in the same market.
See symmys.com for details on these figures.

• Estimability

The expected shortfall is estimable, since the quantile in the definition
(5.207) of expected shortfall is the inverse of the cumulative distribution
function FΨα of the investor’s objective. Therefore a chain-definition such
as (5.201) applies:

α 7→ Ψα 7→ FΨα 7→ ESc (α) . (5.214)

• Co-monotonic additivity

The expected shortfall is co-monotonic additive:

(α, δ) co-monotonic ⇒ ESc (α+ δ) = ESc (α) + ESc (δ) . (5.215)

This follows from the linearity of the integral in the definition (5.207) of
expected shortfall and the co-monotonic additivity of the quantile proved in
Appendix www.5.4.
Since it satisfies the defining properties of spectral indices of satisfaction,

the expected shortfall belongs to this class for any value of the confidence level
c. Therefore we choose the expected shortfall as a basis to generate other spec-
tral indices of satisfaction. In other words, we consider all weighted averages of
the expected shortfall, in a way completely similar to the construction of util-
ity functions (5.125). As we prove in Appendix www.5.5, this way we obtain
the following class of spectral indices of satisfaction:

Spcϕ (α) ≡
Z 1

0

ϕ (p)QΨα (p) dp, (5.216)

where the spectrum ϕ is a function that satisfies:

ϕ decreasing, ϕ (1) ≡ 0,
Z 1

0

ϕ (p) dp ≡ 1. (5.217)
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Fig. 5.14. Spectral indices of satisfaction emphasize adverse scenarios

In other words, spectral indices of satisfaction give relatively speaking more
importance to the unwelcome scenarios in which the investor’s objective is
low, see Figure 5.14. This feature makes spectral indices of satisfaction risk
averse.
As it turns out, the class (5.216) is exhaustive, as any spectral index of

satisfaction can be expressed this way for a suitable choice of the spectrum ϕ,
see Kusuoka (2001) or Tasche (2002). This clarifies why this class of indices
of satisfaction is called "spectral".

For example, the expected shortfall can be represented in the form (5.216)
by the following spectrum:

ϕESc (p) ≡
H(c−1) (−p)

1− c
, (5.218)

where H(x) is the Heaviside step function (B.74). It is easy to check that this
spectrum satisfies the requirements (5.217).

The requirements (5.217) on the spectrum are essential to obtain a coher-
ent index.

For example, also the quantile-based index of satisfaction can be repre-
sented in the form (5.216) by the following spectrum:

ϕQc ≡ δ(1−c), (5.219)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



296 5 Evaluating allocations

where δ is the Dirac delta (B.16). Nevertheless, the Dirac-delta is (the limit
of) a bell-shaped function (B.18). Therefore, the spectrum is not decreasing
as prescribed in (5.217). Indeed, quantile-based indices of satisfaction, and in
particular the value at risk, are not coherent.

We remark that with a change of variable in (5.216) any spectral index of
satisfaction can be written as follows:

Spcϕ (α) =

Z +∞

−∞
ψϕ (FΨα (ψ)) fΨα (ψ) dψ. (5.220)

This is the expression of the expected utility (5.90), where the utility function
is defined as follows:

u (ψ) ≡ ψϕ (FΨα (ψ)) . (5.221)

Therefore, as in (5.102) we can interpret the utility function as a subjective
cumulative distribution function that reflects the investor’s a-priori view on
the outcome of his investment. Nevertheless, in this case the utility func-
tion depends not only on the investor’s attitude toward risk, i.e. the spectral
function ϕ, but also on the market and the allocation decision through the
cumulative distribution function FΨα .

5.6.3 Explicit dependence on allocation

We recall from (5.10) that the investor’s objective, namely absolute wealth,
relative wealth, net profits, or other specifications, is a simple linear function
of the allocation and the market vector:

Ψα = α0M. (5.222)

Therefore the spectral indices of satisfaction (5.216) depends on the allocation
as follows:

α 7→ Spcϕ (α) ≡
Z 1

0

ϕ (p)Qα 0M (p) dp. (5.223)

Notice that the quantile depends on the allocation and on the distribution of
the market, whereas the spectrum does not.
In this section we tackle the problem of computing explicitly spectral in-

dices of satisfaction for a given distribution of the market M and a given
choice of the spectrum ϕ.

For example, consider a market that at the investment horizon is normally
distributed:

PT+τ ∼ N(µ,Σ) . (5.224)

Assume that the investor’s objective are the net profits as in (5.8). In this
case from (5.11) and (5.14) the distribution of the objective reads:
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Ψα ≡ α0M ∼ N
¡
µα , σ

2
α

¢
, (5.225)

where
µα ≡ α0 (µ−PT ) , σ2α ≡ α0Σα. (5.226)

From (1.70) the quantile of the investor’s objective reads:

Qα 0M (p) = µα + σαz (p) , (5.227)

where z is the quantile of the standard normal distribution:

z (p) ≡
√
2 erf−1 (2p− 1) . (5.228)

Therefore in this market the generic spectral index of satisfaction reads:

Spcϕ (α) = µα + σαI [ϕz] , (5.229)

where I denotes the integration operator (B.27). Notice that the integral does
not depend on the allocation.

In generic markets the quantile of the objective in (5.223) is a complex
expression of the allocation. Therefore in general the explicit dependence of a
spectral index of satisfaction on allocation cannot be computed analytically.
Nevertheless, as for the quantile-based indices of satisfaction, we men-

tion here two special quite general cases where we can compute approximate
expressions for the expected shortfall: the delta-gamma approximation and
extreme value theory.

Delta-gamma approximation

When the market can be described by the gamma approximation (5.24) and
the market invariants are approximately normal, (5.30) yields an approximate
expression for the characteristic function of the objective Ψα :

φΨα (ω) ≈ |IK − iωΓαΣ|−
1
2 eiω(θα+∆

0
α µ+

1
2µ

0Γα µ) (5.230)

e−
1
2 [∆α+Γα µ]

0Σ(IK−iωΓαΣ)−1[∆α+Γα µ].

The explicit dependence of θ, ∆ and Γ on the allocation α is given in (5.26)-
(5.28).
From the characteristic function we can compute the probability density

function of the approximate objective with a numerical inverse Fourier trans-
form as in (1.15) and then we can compute the quantile by solving numerically
the following implicit equation:Z Q

−∞
F−1

£
φΨα

¤
(x) dx ≡ p. (5.231)
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Finally, a third numerical integration yields the spectral index of satisfaction
(5.223). Nevertheless, this approach is computationally intensive and unsta-
ble and does not highlight the explicit dependence of the spectral index on
allocation on the allocation.
To tackle this issue, we can use the Cornish-Fisher expansion (5.179). In

Appendix www.5.5 we show that an approximate expression of the spectral
index of satisfaction in terms of the integration operator (B.27) reads:

Spcϕ (α) ≈ Aα +BαI [ϕz] +CαI
£
ϕz2

¤
, (5.232)

where the coefficients A,B,C are defined in (5.181). Notice that the integrals
in this expression do not depend on the allocation: therefore they can be
evaluated numerically once and for all. Higher-order approximations can be
obtained similarly.

Extreme value theory

Extreme value theory does not apply to the computation of spectral measures
of satisfaction in general. Nevertheless, it does apply to the computation of
the most notable among the spectral measures of satisfaction, namely the
expected shortfall, when the confidence level in (5.207) is very high, i.e. c ∼ 1.
As we show in Appendix www.5.5 there exist functions of the allocation

v (α) and ξ (α) such that the expected shortfall can be approximated as fol-
lows:

ESc (α) ≈ Qc (α)−
v (α)

1− ξ (α)
, (5.233)

where the parameters v and ξ and the extreme quantile Qc (α) are as in
(5.186). Nevertheless, the applicability of this formula in this context is limited
because the explicit dependence on the allocation of the parameters v and ξ
and of the quantile-based index of satisfaction Qc is non-trivial.

5.6.4 Sensitivity analysis

Suppose that the investor has already chosen an allocation α which yields
a level of satisfaction Spcϕ (α) and that he is interested in rebalancing his
portfolio marginally by means of a small change δα in the current allocation.
In this case a local analysis in terms of a Taylor expansion is useful:

Spcϕ (α+ δα) ≈ Spcϕ (α) + δα0
∂ Spcϕ (α)

∂α
(5.234)

+
1

2
δα0

∂2 Spcϕ (α)

∂α∂α0
δα.

In Appendix www.5.5 we show that the first-order derivatives read:
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∂ Spcϕ (α)

∂α
= −

Z 1

0
E {M|α0M ≤ Qα 0M (p)} pϕ0 (p) dp, (5.235)

whereM is the random vector (5.222) that represents the market. The investor
will focus on the entries of the vector (5.235) that display a large absolute
value.

For example, in the case of normal markets, from (5.229) we obtain directly
the first-order derivatives:

∂ Spcϕ (α)

∂α
= (µ−PT ) +

Σα√
α0Σα

I [ϕz] . (5.236)

In this expression z is the quantile of the standard normal distribution (5.228).

In particular in the case of the expected shortfall the spectrum is (5.218).
From (B.50) we obtain:

ϕ0ESc (p) = −
δ(1−c) (p)
1− c

, (5.237)

where δ is the Dirac delta (B.17). Therefore (5.235) becomes the following
expression:

∂ ESc
∂α

= E {M|α0M ≤ Qc (α)} , (5.238)

see Tasche (1999), Hallerbach (2003), Gourieroux, Laurent, and Scaillet
(2000).
We remark that since spectral indices of satisfaction are positive homoge-

nous, they satisfy the Euler decomposition (5.67). From (5.235) this reads:

Spcϕ (α) =
NX
n=1

αn

·Z 1

0
E {Mn|Ψα ≤ QΨα (p)} [−pϕ0 (p)] dp

¸
. (5.239)

The contribution to satisfaction from each security in turn factors into the
product of the amount of that security times the marginal contribution to
satisfaction of that security. The marginal contribution to satisfaction (5.235)
is insensitive to a rescaling of the portfolio, although it depends on the allo-
cation.
The study of the second-order cross-derivatives provides insight on the

local convexity/concavity of the certainty-equivalent. In Appendix www.5.5
we prove the following result:

∂2 Spcϕ (α)

∂α∂α0
=

Z 1

0

Cov {M|Ψα = QΨα (p)} fΨα (QΨα (p))ϕ
0 (p) dp, (5.240)

where fΨα is the marginal probability density function of the investor’s ob-
jective Ψα ≡ α0M.
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Since any covariance matrix and any probability density function are pos-
itive, whereas the derivative of the spectrum from (5.217) is negative, the
second-order cross-derivatives define a negative definite matrix. Therefore the
spectral indices of satisfaction are concave, see Figure 5.13, which refers to
the expected shortfall.

For example, consider the case of normal markets. By direct derivation of
(5.236) we obtain:

∂2 Spcϕ (α)

∂α0∂α
= Σ

µ
I− αα0Σ

α0Σα

¶
I [ϕz]√
α0Σα

. (5.241)

In this expression z is the quantile of the standard normal distribution (5.228).
Notice that the integral I [ϕz] is negative, since the spectrum ϕ weighs the
negative values of the quantile z more than the positive values. Therefore, by
the same argument used in (5.192), the second derivative (5.241) is always
negative definite and thus the spectral index of satisfaction is concave.

In particular, in the case of the expected shortfall, substituting (5.237) in
(5.240), we obtain:

∂2 ESc (α)

∂α∂α0
= −fΨα (Qc (α))

1− c
Cov {M|Ψα = Qc (α)} , (5.242)

see Rau-Bredow (2002).
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