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Optimizing allocations

In this chapter we determine the optimal allocation for a generic investor in
a generic market of securities.
In Section 6.1 we introduce allocation optimization by means of a fully

worked-out, non-trivial leading example. First of all, one must collect the
necessary inputs. The first input is the investor’s profile, namely his current
allocation, his market, his investment horizon, his objectives and the respec-
tive indices of satisfaction that evaluate them. The second input is information
on the investor’s market, namely the joint distribution of the prices at the in-
vestment horizon of the pool of securities in the investor’s market, as well as
information on the implementation costs associated with trading those secu-
rities. By suitably processing the above inputs we can in principle derive the
most suitable allocation for a given investor.
Except in our leading example, or in trivial cases of no practical inter-

est, the constrained optimization that yields the optimal allocation cannot
be solved analytically. In order to understand which optimization problems
are numerically tractable, in Section 6.2 we present an overview of results
on convex optimization, with particular focus on cone programming. First-
order, second-order, and semidefinite cone programming encompass a broad
class of constrained optimization problems that appear in the context of asset
allocation.
In Section 6.3 we discuss a two-step approach that approximates the so-

lution to the formal general allocation optimization by means of a tractable,
quadratic problem. The first step in this approach is the mean-variance op-
timization pioneered by Markowitz, which selects a one-parameter family of
efficient allocations among all the possible combinations of assets; the second
step is a simple one-dimensional search for the best among the efficient alloca-
tions, which can be performed numerically. We introduce the mean-variance
framework by means of geometrical arguments and discuss how to compute the
necessary inputs that feed the mean-variance optimization. We also present
the mean-variance problem in the less general, yet more common, formulation
in terms of returns.
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302 6 Optimizing allocations

The mean-variance optimization admits analytical solutions in a broad
class of cases, namely when the investment constraints are affine. In Section
6.4 we discuss these solutions, which provide insight into the properties of op-
timal portfolios in more general contexts. We discuss the two-fund separation
theorem and study the effect of the market on the optimal allocations. Among
other results, we prove wrong the common belief that a market with low cor-
relations provides better investment opportunities than a highly correlated
market.
The many advantages of the mean-variance approach at times obscure the

few problems behind it. In Section 6.5 we analyze some pitfalls of this ap-
proach. We discuss the approximate nature of the mean-variance framework.
We point out the nonsensical outcomes that can result from the common prac-
tice of considering the mean-variance formulation as an index of satisfaction.
We highlight the conditions under which the mean-variance optimization rep-
resents a quadratic programming problem. We discuss the difference between
the original mean-variance problem, which maximizes the expected value for a
given level of variance, and the dual problem, which minimizes the variance for
a given level of expected value. Finally, we discuss the drawbacks of present-
ing the mean-variance framework in terms of returns instead of prices. Indeed,
returns can be used only under restrictive assumptions on the investor’s prefer-
ences and constraints. Furthermore, even under those hypotheses, expressing
the mean-variance problem in terms of returns leads to misinterpretations
that dramatically affect the pursuit of the optimal allocation, for instance
when the investment horizon is shifted in the future.
In Section 6.6 we show an application of the analytical solutions of the

mean-variance problem: allocation against a benchmark. As it turns out, a
benchmark is not only the explicit target of some fund managers but also
the implicit target of the general investor. Indeed, we show how even so-
called "total-return" investment strategies can be considered and analyzed as
a special case of benchmark-driven allocation problems.
In Section 6.7 we conclude with a case study: allocation in the stock mar-

ket. Unlike the leading example in Section 6.1, this case cannot be solved
analytically. Therefore, we tackle it by means of the mean-variance approach.
After revisiting the complete check-list of all the steps necessary to obtain the
inputs of the mean-variance problem, we determine numerically the efficient
allocations and then compute the optimal allocation by means of Monte Carlo
simulations.

6.1 The general approach

Consider a market of N securities. We denote as Pt the prices at the generic
time t of the N securities in the investor’s market. At the time T when the
investment is made, the investor can purchase αn units of the generic n-th
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6.1 The general approach 303

security. These units are specific to the security: for example in the case of
equities the units are shares, in the case of futures the units are contracts, etc.
The N -dimensional vector α represents the outcome of the allocation de-

cision, which can be seen as a "black box" that processes two types of inputs:
the information on the investor’s profile P and the information iT on the
market available at the time the investment decision is made.

6.1.1 Collecting information on the investor

As far as the investor’s profile P is concerned, information consists of knowl-
edge of the investor’s current situation and of his outlook.
The investor’s current situation is summarized in his pre-existing, possibly

null, portfolio α(0), which corresponds to his wealth, or endowment, at the
time the investment decision is made:

wT ≡ p0Tα(0). (6.1)

The lower-case notation for the prices at the investment date highlights the
fact that these are deterministic quantities.
The investor’s outlook includes first of all his choice of a market and of an

investment horizon.

For example, for a private investor the market Pt could be a set of mutual
funds and the investment horizon τ could be three years from the time the
allocation decision is made.

Second, it is important to understand the investor’s main objective Ψα ,
which depends on the allocation α. This could be final wealth as in (5.3), or
relative wealth, as in (5.4), or net profits, as in (5.8), or possibly other speci-
fications. Nevertheless, in any specification, the objective is a linear function
of the allocation and of the market vector :

Ψα ≡ α0M, (6.2)

see (5.10). The market vector M is a simple invertible affine transformation
of the market prices at the investment horizon:

M ≡ a+BPT+τ , (6.3)

where a is a suitable conformable vector and B is a suitable conformable
invertible matrix, see (5.11).

For example, assume that the investor’s main objective is final wealth.
Then from (5.12) we obtainM ≡ PT+τ and therefore:

Ψα ≡ α0PT+τ . (6.4)
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304 6 Optimizing allocations

Third, we need to model the investor’s attitude towards risk. This step is
necessary because the markets, and thus the objective, are not deterministic.
The investor’s preferences are reflected in his index of satisfaction S, see (5.48).
The index of satisfaction depends on the allocation through the distribution
of the investor’s objective.

For instance the index of satisfaction could be the certainty-equivalent:

S (α) ≡ CE(α) ≡ u−1 (E {u (Ψα)}) . (6.5)

Assume that the utility function belongs to the exponential class:

u (ψ) ≡ −e− 1
ζψ, (6.6)

where the risk propensity coefficient is a positive number comprised in a suit-
able interval:

ζ ∈
£
ζ, ζ
¤
. (6.7)

Under these specifications, from (5.94) we obtain the expression of the index
of satisfaction:

CE(α) = −ζ ln
µ
φΨα

µ
i

ζ

¶¶
, (6.8)

where φΨα is the characteristic function of the investor’s objective.

In general an investor has multiple objectives. In other words, in addition
to the main objective Ψ there exists a set of secondary objectives eΨ that the
investor cares about. As for the main objective (6.2), any secondary objective
is a linear function of the allocation and of its respective market vector:eΨα ≡ α0fM. (6.9)

As in (6.3), the market vector of a secondary objective is an affine transfor-
mation of the prices at the investment horizon:fM ≡ ea+ eBPT+τ . (6.10)

A secondary objective is evaluated according to its specific index of satisfactioneS, see (5.48).
In our example we assume that in addition to his level of final wealth

(6.4), the investor is concerned about his net profits since the investment
date. In this case from (5.14) the market vector reads fM ≡ PT+τ − pT and
the auxiliary objective, namely the net profits, reads:

eΨα ≡ α0 (PT+τ − pT ) . (6.11)

Furthermore, we assume that the investor evaluates his net profits in terms of
their value at risk. In other words, other things equal the investor is happier
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6.1 The general approach 305

if the value at risk of his investment is smaller. Therefore from (5.158)-(5.159)
the index of satisfaction relative to the investor’s net profits reads:

eS (α) ≡ −Varc (α) ≡ QeΨα (1− c) , (6.12)

where Q denotes the quantile of the secondary objective (6.11) and c the VaR
confidence level.

The investor’s current portfolio, market, investment horizon, main objec-
tive and respective index of satisfaction, as well as his secondary objectives
and respective indices of satisfaction, complete the check list of the informa-
tion P regarding the investor’s profile.

6.1.2 Collecting information on the market

As far as the market is concerned, it is important to collect information about
the current prices of the securities pT and their future values at the investment
horizon PT+τ .
The current prices pT are deterministic variables that are publicly avail-

able at time T .
The future prices PT+τ are a random variable: therefore information on

the prices at the investment horizon corresponds to information on their dis-
tribution. We recall that the distribution of the prices is obtained as follows:
first we detect from time series analysis the invariants Xt,eτ behind the market
prices Pt relative to a suitable estimation horizon eτ , see Section 3.1; then
we estimate the distribution of the invariants Xt,eτ see Chapter 4; next, we
project these invariants Xt,eτ to the investment horizon, obtaining the dis-
tribution of XT+τ,τ , see Section 3.2; finally we map the distribution of the
invariants XT+τ,τ into the distribution of the prices at the investment horizon
of the securities PT+τ , see Section 3.3.

For example, we assume that the distribution of the prices at the invest-
ment horizon is estimated to be normal:

PT+τ ∼ N(ξ,Φ) , (6.13)

where ξ and Φ are suitable values respectively of the expected value and
covariance matrix of the market prices.

Furthermore, the process of switching from a generic allocation eα to an-
other generic allocation α is costly. We denote as T (eα,α) the transaction
costs associated with this process. Transaction costs take different forms in
different markets: for instance, traders face bid-ask spreads and commissions,
private investors face subscription fees, etc.
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306 6 Optimizing allocations

For example, the investor might be charged a commission that is propor-
tional to the number of securities transacted:

T (eα,α) ≡ k0 |eα−α| , (6.14)

where k is a given constant vector. In the sequel of our example we consider
the simplified case of null transaction costs, i.e. k ≡ 0.

The current prices of the securities in the market, the distribution of the
market at the investment horizon and the details on the transaction costs
complete the check list of the information iT regarding the market.

6.1.3 Computing the optimal allocation

A generic allocation decision processes the information on the market and on
the investor and outputs the amounts to invest in each security in the given
market:

α [·] : [iT ,P] 7→ RN . (6.15)

We stress that this is the definition of a generic allocation decision, not nec-

essarily optimal.

For example, a possible decision allocates an equal amount of the initial
wealth wT in each security in the market. This is the equally-weighted portfolio:

α [iT ,P] ≡
wT

N
diag (pT )

−1 1N , (6.16)

where 1 denotes a vector of ones. Notice that this decision uses very little
information on the market, i.e. only the current prices of the securities, and
very little information on the investor, i.e. only his initial budget.

In order to be optimal, an allocation decision ensues from carefully process-
ing all the available information about both the investor and the market.
First of all, given the distribution of the prices at the investment horizon

PT+τ , it is possible in principle to compute explicitly the distribution of the
investor’s generic objective Ψ as a function of the allocation.
Indeed, the market vector M that correspond to the investor’s objective

Ψ as in (6.2) or (6.9) is a simple invertible affine transformation of the prices
at the investment horizon, see (6.3) and (6.10). Therefore the distribution of
the market vector M is easily obtained from the distribution of PT+τ , see
(5.15). Furthermore, since the objective Ψ ≡ α0M is a linear combination
of the allocation and the market vector, we can in principle determine its
distribution from the distribution of M.
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6.1 The general approach 307

In our example, from (6.13) the market vector relative to the main objec-
tive (6.4) is normally distributed:

M ≡ PT+τ ∼ N(ξ,Φ) . (6.17)

Therefore the investor’s main objective is normally distributed with the fol-
lowing parameters:

Ψα ∼ N
¡
ξ0α,α0Φα

¢
. (6.18)

Similarly, from (6.13) the market vector relative to the secondary objective
(6.11) is normally distributed:

fM ≡ PT+τ − pT ∼ N(ξ − pT ,Φ) . (6.19)

Therefore the investor’s secondary objective is normally distributed with the
following parameters:

eΨα ∼ N ¡(ξ − pT )0α,α0Φα¢ . (6.20)

From the distribution of the investor’s primary and secondary objectives
we can compute the respective indices of satisfaction.

In our example, substituting the characteristic function (1.69) of the first
objective (6.18) in (6.8) we obtain the main index of satisfaction, namely the
certainty-equivalent of final wealth:

CE(α) = ξ0α− 1

2ζ
α0Φα. (6.21)

Similarly, substituting the quantile (1.70) of the secondary objective (6.20) in
(6.12) we obtain the (opposite of the) secondary index of satisfaction, namely
the value at risk:

Varc (α) = (pT − ξ)0α+
√
2α0Φα erf−1 (2c− 1) , (6.22)

where erf−1 is the inverse of the error function (B.75).

Finally, the investor is bound by a set of investment constraints C that
limit his feasible allocations.
One constraint that appears in different forms is the budget constraint ,

which states that the value of the initial investment cannot exceed a given
budget b net of transaction costs:

C1 : p0Tα+ T
³
α(0),α

´
− b ≤ 0, (6.23)

where α(0) is the initial portfolio (6.1).
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308 6 Optimizing allocations

Notice that we defined the constraint in terms of an inequality. In most
applications in the final optimal allocation this constraint turns out to be
binding, i.e. it is satisfied as an equality.

In our example the transaction costs (6.14) are null, and we assume that
the budget is the initial wealth. Therefore the budget constraint reads:

C1 : p0Tα = wT ≡ p0Tα(0). (6.24)

By means of additional constraints we can include the investor’s multiple
objectives in the allocation problem. Indeed, the multiple objectives are ac-
counted for by imposing that the respective index of satisfaction eS exceed a
minimum acceptable threshold es:

C2 : es− eS (α) ≤ 0. (6.25)

In our example the additional objective of the investor are his net profits
(6.11), which the investor monitors by means of the value at risk (6.12). An
allocation is acceptable for the investor only if the respective VaR does not
exceed a given budget at risk , i.e. a fraction γ of the initial endowment:

C2 : Varc (α) ≤ γwT . (6.26)

From (6.22) and (6.24) the VaR constraint reads explicitly:

C2 : (1− γ)wT − ξ0α+
√
2α0Φα erf−1 (2c− 1) ≤ 0. (6.27)

We denote an allocation that satisfies the given set of constraints C as
follows:

α ∈ C. (6.28)

The set of allocations that satisfy the constraints is called the feasible set .

To determine the feasible set in our example, we consider the plane of
coordinates:

e ≡ ξ0α, d ≡
√
α0Φα. (6.29)

As we show in Figure 6.1, in this plane the budget constraint (6.24) is satisfied
by all the points in the region to the right of a hyperbola:

d2 ≥ A

D
e2 − 2wTB

D
e+

w2TC

D
, (6.30)

where
A ≡ p0TΦ−1pT B ≡ p0TΦ−1ξ
C ≡ ξ0Φ−1ξ D ≡ AC −B2,

(6.31)
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e ≡ α 'ξ

d ≡ α ' αΦ

VaR constraint

budget 
constraint

feasible set

Fig. 6.1. Leading allocation example: constraints and feasible set

see Appendix www.6.1 for the proof.
On the other hand, the VaR constraint (6.27) is satisfied by all the points

above a straight line:

e ≥ (1− γ)wT +
√
2 erf−1 (2c− 1) d. (6.32)

This follows immediately from (6.27).

The investor evaluates the potential advantages of an allocation α based
on his primary index of satisfaction S, provided that the allocation is feasible.
Therefore, the optimal allocation is the solution to the following maximization
problem:

α∗ ≡ argmax
α∈C

{S (α)} . (6.33)

By construction, the optimal allocation is of the form (6.15), i.e. it is a "black
box" that processes both the current information on the market iT and the
investor’s profile P, and outputs a vector of amounts of each security in the
market.

In our example, from (6.5), (6.24) and (6.26) the investor solves:

α∗ ≡ argmax
p0Tα=wT

Varc(α)≤γwT

{CE(α)} . (6.34)

To compute the optimal solution we consider the plane of the following
coordinates (see Figure 6.2):
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e ≡ α 'ξ

v ≡ α' αΦ

optimal 
allocation

sub-optimal 
allocation

budget 
constraint

iso-satisfaction lines

VaR
constraint

2
ve
ζ

= +S

Fig. 6.2. Leading allocation example: optimal allocation

e ≡ ξ0α, v ≡ α0Φα. (6.35)

In these coordinates the allocations that satisfy the budget constraint plot to
the right of a parabola:

v ≥ A

D
e2 − 2wTB

D
e+

w2TC

D
. (6.36)

This follows immediately from (6.30). Similarly the allocations that satisfy
the VaR constraint plot to the left of a parabola:

v ≤ 1

2
¡
erf−1 (2c− 1)

¢2 (e− (1− γ)wT )
2 . (6.37)

This follows immediately from (6.32).

From (6.21) the iso-satisfaction contours, i.e. the allocations that give rise
to the same level of satisfaction S, plot along the following straight line:

e = S + v

2ζ
. (6.38)

The slope of this straight line is determined by the risk propensity coefficient
ζ: the higher this coefficient, the flatter the line. The level of this straight line
is determined by the amount of satisfaction: the larger S, the higher the plot
of the line (6.38) in the plane.
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To solve for the optimal allocation we need to determine the highest
iso-satisfaction line that has an intersection with the region to the right of
the budget-constraint parabola (6.36), namely the tangent line to the upper
branch of that parabola, see Figure 6.2. As long as the coefficient ζ is com-
prised between suitable limits as in (6.7), the optimal allocation automatically
satisfies the VaR constraint.
We prove in Appendix www.6.1 that the optimal allocation reads:

α∗ ≡ ζΦ−1ξ +
wT − ζp0TΦ

−1ξ
p0TΦ−1pT

Φ−1pT . (6.39)

The optimal allocation is of the form (6.15). Indeed, the information on the
market is summarized in the current prices and in expected values and co-
variances of the future prices at the investment horizon:

iT ≡ (pT , ξ,Φ) ; (6.40)

and the investor’s profile is summarized in his risk propensity and initial
budget:

P ≡ (ζ,wT ) . (6.41)

The allocation (6.39) gives rise to the maximum level of satisfaction, given
the investment constraints. We prove in Appendix www.6.1 that this level
reads:

CE(α∗) =
ζ

2
ξ0Φ−1ξ +

1

2

µ
wT − ζp0TΦ

−1ξ
p0TΦ−1PT

¶
ξ0Φ−1pT (6.42)

− 1
2ζ

¡
wT − ζp0TΦ

−1ξ
¢2

p0TΦ−1pT
.

6.2 Constrained optimization

From (6.33) we see that determining the best allocation for a given investor
boils down to solving a constrained optimization problem. In this section we
present a quick review of results on constrained optimization. The reader
is referred to Lobo, Vandenberghe, Boyd, and Lebret (1998), Ben-Tal and
Nemirovski (2001), Boyd and Vandenberghe (2004) and references therein for
more on this subject.
Consider a generic constrained optimization problem:

z∗ ≡ argmin
z∈C

Q (z) , (6.43)

where Q is the objective function, and C is a set of constraints. Here, following
the standards of the literature, we present optimization as a minimization
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problem. To consider maximization problems, it suffices to change the sign of
the objective, turning the respective problem into a minimization.
In general it is not possible to solve (6.43) analytically. Nonetheless, even

within the realm of numerical optimization, not all problems can be solved.
A broad class of constrained optimization problems that admit numerical

solutions is represented by convex programming problems: in this framework
the objective Q is a convex function and the feasible set determined by the
constraints is the intersection of a hyperplane and a convex set. More precisely,
convex programming is an optimization problem of the form:

z∗ ≡ argmin
z∈L
z∈V

Q (z) , (6.44)

where Q is a convex function, i.e. it satisfies (5.82); L is a hyperplane deter-
mined by a conformable matrix A and a conformable vector a:

L ≡ {z such that Az = a} ; (6.45)

and V is a convex set, determined implicitly by a set of inequalities on convex
functions:

V ≡ {z such that F (z) ≤ 0, F convex} . (6.46)

Although numerical solutions can be found for convex programming, these are
usually computationally too expensive for the amount of variables involved in
an asset allocation problem.
Nonetheless, a subclass of convex programming, called cone programming

(CP), admits efficient numerical solutions, which are variations of interior
point algorithms, see Nesterov and Nemirovski (1995). In conic programming
the objective is linear, and the feasible set determined by the constraints is the
intersection of a hyperplane and a cone. More precisely, convex programming
is an optimization problem of the form:

z∗ ≡ argmin
z∈L

Bz−b∈K
c0z, (6.47)

where c and b are conformable vectors; B is a conformable matrix; L is a
hyperplane as in (6.45); andK is a cone, i.e. a set with the following properties,
see Figure 6.3:
i. a cone is closed under positive multiplication, i.e. it extends to infinity

in radial directions from the origin:

y ∈ K, λ ≥ 0⇒ λy ∈ K; (6.48)

ii. a cone is closed under addition, i.e. it includes all its interior points:

y, ey ∈ K⇒ y+ ey ∈ K; (6.49)

iii. a cone is "pointed", i.e. it lies on only one side of the origin. More
formally, for any y 6= 0 the following holds:
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y ∈ K⇒−y /∈ K. (6.50)

Depending on what type of cone K defines the constraints in the conic
programming (6.47), we obtain as special cases all the problems that currently
can be solved. In particular, we distinguish three types of cones, and the
respective notable classes of conic programming.

6.2.1 Positive orthants: linear programming

Consider the positive orthant of dimension M , i.e. the subset of RM spanned
by the positive coordinates:

RM+ ≡
©
y ∈ RM such that y1 ≥ 0, . . . , yM ≥ 0

ª
. (6.51)

It is easy to check that the positive orthant RM+ is a cone, i.e. it satisfies
(6.48)-(6.50). The ensuing conic programming (6.47) problem reads:

z∗ ≡ argmin
Az=a
Bz≥b

c0z. (6.52)

This problem is called linear programming (LP), see Dantzig (1998).

6.2.2 Ice-cream cones: second-order cone programming

Consider the ice-cream cone, or Lorentz cone, of dimension M :

KM ≡
©
y ∈ RM such that

°°(y1, . . . , yM−1)0°° ≤ yM
ª
, (6.53)

where k·k is the standard norm (A.6) in RM , see Figure 6.3.
It is easy to check that the ice-cream cone KM is indeed a cone, i.e. it

satisfies (6.48)-(6.50). Furthermore, the direct product of ice-cream cones is
also cone:

K ≡ KM1 × · · · ×KMJ (6.54)

≡
©
y(1) ∈ KM1 × · · · × y(J) ∈ KMJ

ª
.

The ensuing conic programming problem (6.47) reads:

z∗ ≡ argmin
z

c0z (6.55)

subject to


Az = a°°D(1)z− q(1)

°° ≤ p0(1)z− r(1)
...°°D(J)z− q(J)

°° ≤ p0(J)z− r(J),

where D(j) are conformable matrices, q(j) are conformable vectors and r(j)
are scalars for j = 1, . . . , J . This follows by defining the matrix B and the
vector b in (6.47) as below:
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Fig. 6.3. Lorentz cone

B ≡


D(1)

p0(1)
...

D(J)

p0(J)

 , b ≡


q(1)
r(1)
...
q(J)
r(J)

 . (6.56)

The optimization problem (6.55) is called second-order cone programming
(SOCP).
Second-order cone programming problems include quadratically constrained

quadratic programming (QCQP) problems as a subclass. A generic QCQP
problem reads:

z∗ ≡ argmin
z

n
z0S(0)z+ 2u0(0)z+ v(0)

o
(6.57)

subject to


Az = a
z0S(1)z+ 2u0(1)z+ v(1) ≤ 0
...
z0S(J)z+ 2u0(J)z+ v(J) ≤ 0,

where S(j) are symmetric and positive matrices, u(j) are conformable vectors
and v(j) are scalars for j = 0, . . . , J . Consider the spectral decomposition
(A.66) of the matrices S(j):

S(j) ≡ E(j)Λ(j)E0(j), (6.58)

where Λ is the diagonal matrix of the eigenvalues and E is the juxtaposition of
the respective eigenvectors. As we show in Appendix www.6.2, by introducing

1y
1My −

My

( )1 1, , 'My y −K
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an auxiliary variable t the QCQP problem (6.57) can be written equivalently
as follows:

(z∗, t∗) ≡ argmin
(z,t)

t (6.59)

s.t.



Az = a°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°° ≤ t°°°Λ1/2(1) E
0
(1)z+Λ

−1/2
(1) E0(1)u(1)

°°° ≤qu(1)S−1(1)u(1) − v(1)
...°°°Λ1/2(J)E

0
(J)z+Λ

−1/2
(J) E

0
(J)u(J)

°°° ≤qu(J)S−1(J)u(J) − v(J).

This problem is in the SOCP form (6.55).
Quite obviously, the QCQP problem (6.57) also includes linearly con-

strained quadratic programming problems (QP) and linear programming
problems (LP) as special cases.

6.2.3 Semidefinite cones: semidefinite programming

Consider the following set of M ×M matrices:

SM+ ≡ {S º 0} , (6.60)

where S º 0 denotes symmetric and positive. It is easy to check that this set
is a cone, i.e. it satisfies (6.48)-(6.50). The cone SM+ is called the semidefinite
cone. The ensuing conic programming problem (6.47) reads:

z∗ ≡ argmin
z

c0z (6.61)

s.t.
½
Az = a
B(1)z1 + · · ·+B(N)zN −B(0) º 0,

where B(j) are symmetric, but not necessarily positive, matrices, for j =
0, . . . , N .
The optimization problem (6.61) is called semidefinite programming (SDP).

It is possible to show that SDP includes the SOCP problem (6.55) as a spe-
cial case, see Lobo, Vandenberghe, Boyd, and Lebret (1998). Nonetheless, the
computational cost to solve generic SDP problems is much higher than the
cost to solve SOCP problems.

6.3 The mean-variance approach

Consider the general formalization (6.33) of an allocation optimization:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



316 6 Optimizing allocations

α∗ ≡ argmax
α∈C

S (α) . (6.62)

In general it is not possible to determine the analytical solution of this prob-
lem. Indeed, the leading example detailed in Section 6.1 probably represents
the only non-trivial combination of market, preferences and constraints that
gives rise to a problem which can be solved analytically in all its steps. There-
fore, we need to turn to numerical results.
Even within the domain of numerical solutions, if the primary index of

satisfaction S targeted by the investor is not concave, or if the secondary
indices of satisfaction eS that determine the constraints as in (6.25) are not
concave, then the general allocation optimization problem (6.62) is not convex.
Therefore, the allocation optimization problem is not as in (6.44) and thus
it cannot be solved numerically. For instance, this happens when one among
the primary or secondary indices of satisfaction is based on a quantile of the
investor’s objective (value at risk) or it based on its expected utility (certainty-
equivalent), see (5.153) and (5.191). Numerical solutions cannot be computed
in general for non-convex problems.
Furthermore, even if the allocation optimization problem (6.62) is convex,

the computational cost of obtaining a solution is in general prohibitive: only
the special class of conic programming problems can be computed efficiently,
see Section 6.2. Therefore it is important to cast the general allocation opti-
mization in this class, possibly by means of approximations.
In this section we discuss a two-step approximation to the general al-

location optimization problem that is both intuitive and computationally
tractable, namely the mean-variance approach. The mean-variance two-step
approach is by far the most popular approach to asset allocation: it has become
the guideline in all practical applications and the benchmark in all academic
studies on the subject.

6.3.1 The geometry of allocation optimization

To better understand the generality and the limitations of the mean-variance
approach we analyze the optimization problem (6.62) from a geometrical point
of view.
In any of the formulations considered in Chapter 5, the investor’s index

of satisfaction is law invariant, i.e. it is a functional of the distribution of
the investor’s objective, see (5.52). In turn, the distribution of the investor’s
objective is in general univocally determined by its moments, see Appendix
www.1.6. Therefore the index of satisfaction can be re-written as a function
defined on the infinite-dimensional space of the moments of the distribution
of the objective:

S (α) ≡ H (E {Ψα} ,CM2 {Ψα} ,CM3 {Ψα} , . . .) . (6.63)

In this expression CMk denotes as in (1.48) the central moment of order k of
a univariate distribution:
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CMk {Ψ} ≡ E
n
(Ψ − E {Ψ})k

o
. (6.64)

We chose to represent (6.63) in terms of the central moments, but we could
equivalently have chosen the raw moments (1.47). The explicit functional ex-
pression of H in (6.63) is determined by the specific index of satisfaction S
adopted to model the investor’s preferences. For instance, when the index of
satisfaction is the certainty-equivalent, the functional expression follows from
a Taylor expansion of the utility function, see (5.146). When the index of
satisfaction is a quantile or a spectral index, this expression follows from the
Cornish-Fisher expansion, see (5.180) and (5.232).

CM ∞

( )2 3E,CM ,CM , a b= >…H S S
E

2CM

( )2 3E,CM ,CM , b=…H S

Fig. 6.4. Iso-satisfaction surfaces in the space of moments of the investor’s objective

The iso-satisfaction surfaces in this space, i.e. the combinations of moments
of the investor’s objective that elicit an equal level of satisfaction, are defined
by implicit equations as the following:

H (E,CM2,CM3, . . .) = S, (6.65)

where S is a given constant level of satisfaction. Therefore, iso-satisfaction
surfaces are “(∞− 1)”-dimensional objects in the ∞-dimensional space of
the moments of the investor’s objective.

We represent this situation in Figure 6.4, where the ∞-dimensional space
of moments is reduced to three dimensions and the (∞− 1)-dimensional iso-
satisfaction surfaces are represented by two-dimensional surfaces.
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On the other hand, not all points in the space of the moments of the in-
vestor’s objective correspond to an allocation. Indeed, as the allocation vector
α spans RN , the corresponding moments describe an N -dimensional surface
G in the ∞-dimensional space of moments:

G : α 7→ (E {Ψα} ,CM2 {Ψα} ,CM3 {Ψα} , . . .) . (6.66)

In Figure 6.5 we sketch the case of N ≡ 2 securities: the shaded square rep-
resents RN and the two-dimensional shape in the space of moments represents
the combinations of moments that can be generated by an allocation.

E

CM ∞ 2CM

1α

Nα
C

G

Fig. 6.5. Feasible allocations in the space of moments of the investor’s objective

Finally, even within the surface (6.66), not all the allocations are viable,
because the generic allocation α ∈ RN has to satisfy a set of investment
constraints, see (6.28). Therefore the feasible set becomes a subset of RN .
This is reflected in the space of moments: the function G maps the feasible
set into a lower-dimensional/lower-size portion of the N -dimensional surface
described by (6.66).

We sketch this phenomenon in Figure 6.5 in our example of N ≡ 2 securi-
ties: the feasible set becomes a line, which is then mapped by G into the space
of moments.

Solving the allocation optimization problem (6.62) corresponds to deter-
mining an iso-satisfaction surface that contains feasible points in the space
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1α

Nα C

optimal 
allocation

CM ∞

E

2CM

G

Fig. 6.6. Optimal allocation maximizes satsifaction

of moments and that corresponds to the highest possible level of satisfac-
tion. Those feasible points corresponds to specific allocations that maximize
satisfaction.

In Figure 6.6 the highest possible level of satisfaction compatible with the
constraints in the space of moments corresponds to a specific allocation in the
shaded square, i.e. in RN .

6.3.2 Dimension reduction: the mean-variance framework

In order to solve explicitly the general allocation problem (6.62) we need to
determine the functional dependence (6.63) of the index of satisfaction on all
the moments and the dependence of each moment on the allocation.
Suppose that we can focus on the two first moments only and neglect all

the higher moments. In other words, assume that (6.63) can be approximated
as follows:

S (α) ≈ eH (E {Ψα} ,Var {Ψα}) , (6.67)

for a suitable bivariate function eH. This approximation is quite satisfactory
in a wide range of applications, see Section 6.5.1. In this case the general
allocation problem (6.62) is much easier to solve.
Indeed, since all the indices of satisfaction S discussed in Chapter 5 are

consistent with weak stochastic dominance, for a given level of variance of the
objective, higher expected values of the objective are always appreciated, no
matter the functional expression of eH. Therefore, if for each target value of
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variance of the investor’s objective we pursue its maximum possible expected
value, we are guaranteed to capture the solution to the general allocation
problem. In other words, the optimal allocation α∗ that solves (6.62) must
belong to the one-parameter family α (v) defined as follows:

α (v) ≡ argmax
α∈C

Var{Ψα }=v
E {Ψα} , (6.68)

where v ≥ 0. The optimization problem (6.68) is the mean-variance approach
pioneered by Markowitz, see Markowitz (1991). Its solution is called themean-
variance efficient frontier .
Therefore the general problem (6.62) is reduced to a two-step recipe. The

first step is the computation of the mean-variance efficient frontier, which
can be performed easily as described in Section 6.3.3. The second step is the
following one-dimensional search:

α∗ ≡ α (v∗) ≡ argmax
v≥0

S (α (v)) , (6.69)

which can be computed numerically when analytical results are not available,
see the case study in Section 6.7.
The mean-variance approach appeals intuition. The target variance v of

the investor’s objective Ψα in the mean-variance optimization (6.68) can be
interpreted as the riskiness of the solution α (v): for a given level of risk v, the
investor seeks the allocation that maximizes the expected value of his objec-
tive. As the risk level v spans all the positive numbers, the one-parameter fam-
ily of solutions α (v) describes a one-dimensional curve in the N -dimensional
space of all possible allocations, and the optimal allocation α∗ must lie on
this curve.
Making use of the Lagrangian formulation in (6.68), we can express the

optimal allocation (6.69) as follows:

α∗, λ∗ ≡ argmax
α∈C,λ∈R

{E {Ψα}− λ (Var {Ψα}− v∗)} . (6.70)

The Lagrange coefficient λ∗ that solves (6.70) can be interpreted as a coef-
ficient of risk aversion. If λ∗ is null the investor is risk neutral: indeed, the
argument in curly brackets in (6.70) becomes the expected value. Thus the
risk premium required by the investor to be exposed to market risk is null,
see (5.89). On the other hand, if λ∗ is positive the investor is risk averse:
indeed, allocations with the same expected value but with larger variance are
penalized in (6.70). Similarly, if λ∗ is negative the investor is risk prone.

6.3.3 Setting up the mean-variance optimization

We recall that the investor’s objective that appears in the mean-variance
problem (6.68) is a linear function of the allocation and of the market vector:
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Ψα ≡ α0M, (6.71)

see (6.2). Using the affine equivariance (2.56) and (2.71) of the expected value
and the covariance respectively we obtain:

E {Ψα} = α0 E {M} (6.72)

Var {Ψα} = α0Cov {M}α. (6.73)

Therefore we can re-express the mean-variance efficient frontier (6.68) in the
following form:

α (v) ≡ argmax
α∈C

α 0 Cov{M}α=v

α0 E {M} , (6.74)

where v ≥ 0.
In addition to the set of constraints C, the only inputs required to compute

the mean-variance efficient frontier (6.74) are the expected values of the mar-
ket vector E {M} and the respective covariance matrix Cov {M}. In order to
compute these inputs, we have to follow the steps below, adapting from the
discussion in Section 6.1:
Step 1. Detect the invariants Xt,eτ behind the market relative to a suitable

estimation horizon eτ , see Section 3.1.
Step 2. Estimate the distribution of the invariants Xt,eτ , see Chapter 4.
Step 3. Project the invariants Xt,eτ to the investment horizon, obtaining

the distribution of XT+τ,τ , see Section 3.2.
Step 4. Map the distribution of the invariants XT+τ,τ into the distribution

of the prices at the investment horizon of the securities PT+τ , see Section 3.3.
Step 5. Compute the expected value E {PT+τ} and the covariance matrix

Cov {PT+τ} of the distribution of the market prices.
Step 6. Compute the inputs for the optimization (6.74), i.e. the expected

value and the covariance matrix of the market vector M. The market vector
is an affine transformation of the market prices M ≡ a +BPT+τ , see (6.3).
Therefore the inputs of the optimization follow from the affine equivariance
(2.56) and (2.71) of the expected value and of the covariance matrix respec-
tively:

E {M} = a+BE {PT+τ} (6.75)

Cov {M} = BCov {PT+τ}B0. (6.76)

If the market is composed of equity-like and fixed-income security without
derivative products, we can bypass some of the above steps. Indeed, in this
case the invariants Xt,eτ are the compounded returns and the changes in yield
to maturity respectively. From (3.100) we obtain the expected value of the
prices PT+τ directly from the distribution of the market invariants relative
to the estimation interval:

E
n
P
(n)
T+τ

o
= eγ

0δ(n)
h
φXt,eτ

³
−idiag (ε) δ(n)

´i τeτ
, (6.77)
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where φ is the characteristic function of the market invariants, γ and ε are
constant vectors defined in (3.84) and (3.85), and δ is the canonical basis
(A.15). Similarly, form (3.100) we obtain:

E
n
P
(n)
T+τP

(m)
T+τ

o
= eγ

0(δ(n)+δ(m)) (6.78)h
φXt,eτ

³
−idiag (ε)

³
δ(n) + δ(m)

´´i τeτ
.

This expression with (6.77) in turn yields the covariance matrix:

Cov
n
P
(n)
T+τ , P

(m)
T+τ

o
= E

n
P
(n)
T+τP

(m)
T+τ

o
− E

n
P
(n)
T+τ

o
E
n
P
(m)
T+τ

o
. (6.79)

The inputs for the optimization (6.74) then follow from (6.75) and (6.76). For
an application of these formulas, see the case study in Section 6.7.

If the constraints C in (6.74) are not too complex the computation of the
mean-variance efficient frontier represents a quadratic programming problem
which can be easily solved numerically, see Section 6.5.3.

α

risk/reward profile

portfolio composition

{ }E Ψα

{ }Sd Ψα

{ }Sd Ψα

Fig. 6.7. Mean-variance efficient frontier

In Figure 6.7 we computed the solutions for the standard problem where
the investor is bound by a budget constraint and a no-short-sale constraint:
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C : α0pT = wT , α ≥ 0. (6.80)

Refer to symmys.com for the details on the market and on the computations.

If the constraints are affine, it is even possible to compute the analytical
solution of the mean-variance problem, see Section 6.4 for the theory and
Section 6.6 for an application.

6.3.4 Mean-variance in terms of returns

Recall from (3.10) that the linear return from the investment date T to the
investment horizon τ of a security/portfolio that at time t trades at the price
Pt is defined as follows:

L ≡ PT+τ
PT

− 1. (6.81)

The mean-variance approach (6.74) is often presented and solved in terms
of the returns (6.81) instead of the market vector as in (6.74). Nevertheless,
this formulation presents a few drawbacks.
To present the formulation in terms of returns we need to make two re-

strictive assumptions. First, we assume that the investor’s objective is final
wealth, or equivalently that the market vector in (6.71) is represented by the
prices of the securities at the investment horizon:

Ψα ≡ α0PT+τ . (6.82)

Second, we assume that the investor’s initial capital is not null:

wT ≡ α0pT 6= 0. (6.83)

Consider the linear return on wealth:

LΨα ≡ Ψα
wT
− 1. (6.84)

As we show in Appendix www.6.6, under the assumptions (6.82) and (6.83)
the mean-variance efficient frontier (6.68) can be expressed equivalently in
terms of the linear return on wealth as follows:

α (v) = argmax
α∈C

Var{LΨα}=v
E
©
LΨα

ª
, (6.85)

where v ≥ 0.
Consider now the relative weights w of a generic allocation:

w ≡ diag (pT )
α0pT

α. (6.86)
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Since the current prices pT are known, the relative weights w are a scale-
independent equivalent representation of the allocation α.
As we show in Appendix www.6.6, we can express the linear return on

wealth in terms of the linear returns (6.81) of the securities in the market and
the respective relative weights:

LΨα = w0L. (6.87)

Therefore, using the affine equivariance properties (2.56) and (2.71) of the
expected value and of the covariance matrix respectively, we can write (6.85)
equivalently as follows:

w (v) = argmax
w∈C

w0 Cov{L}w=v

w0 E {L} , (6.88)

where v ≥ 0. The efficient frontier in terms of the allocation vector α (v) is
then recovered from the relative weights (6.88) by inverting (6.86).
In order to set up the optimization in terms of linear returns and rela-

tive weights (6.88) we proceed like in the more general mean-variance case
(6.74). Indeed, the inputs necessary to solve (6.88) are the expected value of
the horizon-specific linear returns E {L} and the respective covariance matrix
Cov {L}. These parameters are obtained by following steps similar to those
on p. 321:
Step 1. Detect the invariants Xt,eτ behind the market relative to a suitable

estimation horizon eτ , see Section 3.1.
Step 2. Estimate the distribution of the invariants Xt,eτ , see Chapter 4.
Step 3. Project these invariants Xt,eτ to the investment horizon, obtaining

the distribution of XT+τ,τ , see Section 3.2.
Step 4. Map the distribution of the invariants XT+τ,τ into the distribution

of the prices at the investment horizon of the securities PT+τ , see Section 3.3.
Step 5. Compute the expected value E {PT+τ} and the covariance matrix

Cov {PT+τ} from the distribution of the market prices.
Step 6. Compute the inputs for the optimization (6.74), i.e. the expected

value and the covariance matrix of the linear returns, from (6.81) using the
affine equivariance (2.56) and (2.71) of the expected value and of the covari-
ance matrix respectively:

E {L} = diag (pT )−1 E {PT+τ}− 1 (6.89)

Cov {L} = diag (pT )−1Cov {PT+τ}diag (pT )−1 . (6.90)

If the constraints C in (6.88) are not too complex, the optimization problem
in terms of linear returns and relative weights is quadratic and therefore it can
be solved easily either analytically or numerically, just like the more general
problem (6.74).
On the other hand, expressing an allocation in terms relative weights is

somewhat more intuitive than expressing it in absolute terms. In other words,
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it is easier to interpret a statement such as "thirty percent of one’s budget is
invested in xyz" than "his investment consists, among others, of a thousand
shares of xyz". Furthermore, in the formulation in terms of linear returns and
relative weights a few expressions assume a simpler form.

{ }E LΨα

w

{ }Sd LΨα

{ }Sd LΨα

risk/reward profile

portfolio relative composition
1

0

Fig. 6.8. MV efficient frontier in terms of returns and relative weights

For instance, the standard problem where the investor is bound by a budget
constraint and a no-short-sale constraint as in (6.80) simplifies as follows:

C : w01 = 1, w ≥ 0. (6.91)

In Figure 6.8 we computed the efficient frontier under these constraints: com-
pare with the respective plots in Figure 6.7. Refer to symmys.com for the
details on the market and on the computations.

For the above reasons, the mean-variance framework is often presented in
terms of returns and relative weights.
Nevertheless, we stress that the specification in terms of returns is not

as general as the specification in terms of the investor’s objective, because it
applies only under the hypotheses (6.82) and (6.83). For instance, the linear
returns on wealth are not defined when the initial investment is null. This
prevents the analysis of market-neutral strategies, namely highly leveraged
portfolios that pursue the largest possible final wealth by allocating zero initial
net capital.
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Furthermore, the formulation of the mean-variance problem in terms of
returns and relative weights gives rise to misunderstandings. Indeed it makes
it harder to separate the estimation process from the optimization process,
see Section 6.5.4, and it gives rise to confusion when implementing allocation
at different horizons, see Section 6.5.5.

6.4 Analytical solutions of the mean-variance problem

In Section 6.3.3 we set up the general mean-variance optimization of the in-
vestor’s objective:

α (v) ≡ argmax
α∈C

α 0 Cov{M}α=v

α0 E {M} , (6.92)

where v ≥ 0, and we discussed the steps necessary to compute the inputs of
this problem, namely the expected values of the market vector E {M} and the
respective covariance matrix Cov {M}.
In this section we assume knowledge of these inputs and we analyze the

explicit solution of the mean-variance optimization assuming that the con-
straints in (6.92) are affine:

C : Dα = c, (6.93)

where D is a full-rank K ×N matrix whose rows are not collinear with the
expectation on the market E {M}, and c is a K-dimensional vector. When
the constraints are affine the mean-variance efficient allocations (6.92) can be
computed analytically. The analytical solution provides insight into the effect
of the constraints and of the market parameters on the efficient frontier and
on the investor’s satisfaction in more general situations.
In particular, we focus one affine constraint. In other words (6.93) becomes:

C : d0α = c, (6.94)

where d is a generic constant vector not collinear with the expectation on
the market E {M} and c is a scalar. The one-dimensional case is still general
enough to cover a variety of practical situations. Furthermore, in the one-
dimensional case the analytical solution is very intuitive and easy to interpret
geometrically. The computations and respective interpretations for the general
case (6.93) follow similarly to the one-dimensional case.

The most notable example of affine constraint is the budget constraint:

C : α0pT = wT , (6.95)

where wT is the investor’s initial capital.
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6.4.1 Efficient frontier with affine constraints

In the general case where c 6= 0 in (6.94), the mean-variance efficient frontier
(6.92) is the set of non-empty solutions to this problem:

α (v) ≡ argmax
α 0d=c

Var{Ψα }=v
E {Ψα} , (6.96)

where v ≥ 0.

affine constraintefficient allocations

MVα
SRα

1α

Nα

2α

: c=C �  α'd

Fig. 6.9. MV efficient allocations under affine constraint: two-fund separation

In Appendix www.6.3 we prove that the above solutions are more easily
parametrized in terms of the expected value of the investor’s objective e ≡
E {Ψα} and read explicitly:

α (e) = αMV + [e− E {ΨαMV }]
αSR −αMV

E {ΨαSR}− E {ΨαMV }
. (6.97)

In this expression the scalar e varies in an infinite range:

e ∈ [E {ΨαMV } ,∞) ; (6.98)

and the two allocations αSR and αMV are defined as follows:

αMV ≡
cCov {M}−1 d
d0Cov {M}−1 d

. (6.99)

αSR ≡
cCov {M}−1 E {M}
d0Cov {M}−1 E {M}

. (6.100)
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In other words, the mean-variance efficient frontier (6.97) is a straight semi-
line in the N -dimensional space of allocations that lies on the (N − 1)-
dimensional hyperplane determined by the affine constraint. This straight
semi-line stems from the allocation αMV and passes through the allocation
αSR, see Figure 6.9.
This result is known as the two-fund separation theorem: a linear combi-

nation of two specific portfolios (mutual funds) suffices to generate the whole
mean-variance efficient frontier.

MVα

SRα

2A 2cB c C=
D D D

2v e - e +

{ }= Ee Ψ α

{ }= Varv Ψ α

feasible allocations

Fig. 6.10. Risk/reward profile of MV efficient allocations: expected value and vari-
ance

To evaluate the investor’s satisfaction ensuing from the efficient alloca-
tions, we recall that in the mean-variance setting the investor’s satisfaction
by assumption only depends on the expected value and the variance of the
investor’s objective, see (6.67). Therefore we consider the plane of these two
moments:

(v, e) ≡ (Var {Ψ} ,E {Ψ}) . (6.101)

In Appendix www.6.3 we show that the feasible set in these coordinates is the
region to the right of the following parabola, see Figure 6.10:

v =
A

D
e2 − 2cB

D
e+

c2C

D
, (6.102)

where (A,B,C,D) are four scalars that do not depend on the allocations:

A ≡ d0Cov {M}−1 d B ≡ d0Cov {M}−1 E {M}
C ≡ E {M}0Cov {M}−1 E {M} D ≡ AC −B2,

(6.103)
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From (6.96), the mean-variance efficient frontier (6.97) corresponds to the
allocations that give rise to the upper branch of this parabola.
The allocations αSR and αMV that generate the efficient frontier (6.97)

are very special in terms of their risk/reward profile.
As we show in Appendix www.6.3, αMV is the allocation that displays

the least possible variance. Therefore αMV is called the global minimum vari-
ance portfolio: in the risk/reward plane of Figure 6.10 the allocation αMV

corresponds to the "belly" of the parabola (6.102).
To interpret the allocation αSR, we recall that the Sharpe ratio (5.51) is

defined as the ratio of the expected value of the investor’s objective over its
standard deviation:

SR (α) ≡ E {Ψα}
Sd {Ψα}

. (6.104)

As we show in Appendix www.6.3, αSR is the allocation that displays the
highest possible Sharpe ratio. Therefore αSR is called the maximum Sharpe
ratio portfolio: in the risk/reward plane of Figure 6.10 the allocation αSR rep-
resents the intersection of the efficient frontier with the straight line through
the origin and the minimum variance portfolio, see Appendix www.6.3.

MVα

SRα

{ }= Ee Ψ α

{ }= Sdd Ψ α

2A 2cB c C=
D D D

2 2d e - e +

feasible allocations

Fig. 6.11. Risk/reward profile of MV efficient allocations: expected value and stan-
dard deviation

Due to the interpretation in terms of the Sharpe ratio, it is convenient to
represent the risk/reward profile of the objective also in terms of the expected
value and standard deviation:

(d, e) ≡ (Sd {Ψ} ,E {Ψ}) . (6.105)
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In this plane the boundary of the feasible set, namely the parabola (6.102),
becomes the following hyperbola, see Figure 6.11:

d2 =
A

D
e2 − 2cB

D
e+

c2C

D
, d > 0. (6.106)

In turn, the global minimum variance portfolio is also the global minimum
standard-deviation portfolio and therefore it plots as the "belly" of the hy-
perbola. On the other hand, from the definition of the Sharpe ratio (6.104),
the maximum Sharpe ratio portfolio corresponds to the point of tangency of
the hyperbola with a straight line stemming from the origin.

6.4.2 Efficient frontier with linear constraints

When c ≡ 0 in the affine constraint (6.94), the constraint becomes linear
and the mean-variance efficient frontier (6.92) becomes the set of non-empty
solutions to this problem:

α (v) ≡ argmax
α 0d=0

Var{Ψα }=v
E {Ψα} , (6.107)

where v ≥ 0. This special case recurs in many applications.

A notable example is provided by market-neutral strategies which invest
with infinite leverage: by selling short some securities one can finance the
purchase of other securities and thus set up positions that have zero initial
value:

C : α0pT = 0. (6.108)

Another important example is provided by allocations against a benchmark,
which we discuss extensively in Section 6.6.

In Appendix www.6.3 we prove that the above solutions are more easily
parametrized in terms of the expected value of the investor’s objective e ≡
E {Ψα} and read explicitly:

α (e) = eα0, (6.109)

where α0 is a specific fixed allocation, defined in terms of the constants (6.103)
as follows:

α0 ≡ Cov {M}−1 (AE {M}−Bd) . (6.110)

In other words, when the investment constraint is linear, the ensuing mean-
variance efficient allocations (6.109) describe a straight semi-line stemming
from the origin that passes through the specific allocation α0 and lies on the
(N − 1)-dimensional hyperplane determined by the constraint α0d = 0, see
Figure 6.12.
This result can be seen as a special case of (6.97) and Figure 6.9 in the

limit where the constant c in (6.96) tends to zero. Indeed, in this limit the
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efficient allocations

= ≡SR MVα α 0

1α

Nα

2α

linear constraint : 0=C �  α'd

Fig. 6.12. MV efficient allocations under linear constraint

two portfolios αSR and αMV , defined in (6.99) and (6.100) respectively, both
shrink to zero. Nevertheless, the direction of departure of the straight semi-
line (6.97) from the global minimum-variance portfolio does not depend on c
and thus remains constant:

α0 =
αSR −αMV

E {ΨαSR}− E {ΨαMV }
. (6.111)

Therefore, as c → 0 in the constraint (6.94), the straight semi-line in Figure
6.9 shifts in a parallel way towards the origin.
As in the case of a generic affine constraint, also for the special case c ≡ 0 in

order to analyze the satisfaction ensuing from the mean-variance efficient allo-
cations we only need to focus on the first two moments of the objective (6.101),
or equivalently (6.105). In the latter coordinates, the hyperbola (6.106) which
limits the feasible set in Figure 6.11 degenerates into the following locus:

e = ±
r

D

A
d, d ≥ 0. (6.112)

This locus represents two straight semi-lines that stem from the origin, see
Figure 6.13. The efficient frontier corresponds to the upper branch of this
degenerate hyperbola, i.e. the straight line in the positive quadrant. Therefore
all the efficient allocations share the same Sharpe ratio which is the highest
possible in the feasible set and is equal to

p
D/A.
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{ }= Sdd Ψ α

D=
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e d

feasible allocations

{ }= Ee Ψ α

Fig. 6.13. Risk/reward profile of MV efficient allocations under linear constraint

6.4.3 Effects of correlations and other parameters

The only market parameters necessary to determine the mean-variance effi-
cient frontier (6.92) are the expected values of the market vector E {M} and
the covariance matrix Cov {M}, which we factor into the respective standard
deviations and correlations:

Cov {M} ≡ diag (Sd {M})Cor {M}diag (Sd {M}) . (6.113)

In this section we discuss the impact of changes in these parameters on the
investor’s satisfaction.
In the mean-variance setting the investor’s satisfaction only depends on

the expected value and the variance of his objective, see (6.67), or equivalently
on the expected value and the standard deviation of his objective. Therefore
we analyze the effects of changes in the market parameters in the plane of
these coordinates:

(d, e) ≡ (Sd {Ψ} ,E {Ψ}) . (6.114)

Since all the indices of satisfaction S discussed in Chapter 5 are consistent
with weak stochastic dominance, for a given level of standard deviation of
the objective, higher expected values of the objective are always appreciated.
Therefore a given market presents better investment opportunities than an-
other market if, other things equal, the upper boundary of its feasible set in
the coordinates (6.114) plots above the upper boundary of the feasible set of
the other market for all values of the standard deviation.
It is immediate to determine the effect of changes in expected values E {M}

and standard deviations Sd {M} on the feasible set. Indeed, larger expected
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values of the market vector shift the feasible set upward in the coordinates
(6.114) and larger standard deviations shift the feasible set to the right.
To analyze the effect of the correlations, we consider the simplest case

of a two-security market, which gives rise to a bivariate market vector M ≡
(M1,M2)

0. In this case there exists only one correlation ρ ≡ Cor {M1,M2}.
We consider the generic case where with a higher expected value of the

investor’s objective is associated a higher standard deviation. Therefore we
assume without loss of generality:

e(1) < e(2), d(1) < d(2), (6.115)

where the index j = 1, 2 denotes the coordinates (6.114) of a full allocation
in the j-th security. The boundary of the feasible set (6.106) becomes fully
determined by the value of the correlation ρ. In Figure 6.14 we show the effect
of different values of the market correlation ρ on the feasible set, see Appendix
www.6.4 for the analytical expressions behind these plots and the statements
that follow.

( ) ( )( )2 2d ,e

{ }d Sd≡ Ψ α

MVα

correlation=1

correlation=0

( ) ( )( )1 1d ,e

correlation=-1

MVα

MVα
“long-only” region

{ }e E≡ Ψ α

Fig. 6.14. Diversification effect of correlation

We distinguish three cases for the correlation: total correlation ρ ≡ 1, null
correlation, ρ ≡ 0 and total anti-correlation ρ ≡ −1; and two cases for the
allocation: long-only positions, where the amounts (α1, α2) of both securities
in an allocation are positive, and short positions, where one of the two amounts
α1 or α2 is negative.
In the case of perfect positive correlation the two securities are perceived

as equivalent. The efficient frontier degenerates into a straight line that joins
the coordinates of the two assets in the plane (6.114):
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ρ ≡ 1 ⇒ e = e(1) +
³
d− d(1)

´ e(2) − e(1)

d(2) − d(1)
. (6.116)

By shorting one of the assets it is possible to completely hedge the risk of the
other asset and achieve a global minimum-variance portfolio αMV such that
the investor’s objective has null standard deviation. Nevertheless, the perfect
hedge comes at a price: the expected value of the investor’s objective delivered
by the zero-variance allocation is worse than the expected value delivered by
a full allocation in the asset with the lower expected value:

ρ ≡ 1 ⇒ Sd {ΨαMV } = 0, E {ΨαMV } < e(1). (6.117)

As the correlation decreases toward zero, the securities give rise to an
increasingly diversified market: the diversification effect makes the expected
value of the global minimum-variance portfolio to rise, although the variance
of this portfolio is no longer zero. In the long-only region the efficient frontier
swells upwards, providing better investment opportunities than the straight-
line (6.116).
As the market become fully anti-correlated, the efficient frontier degener-

ates into another straight line:

ρ ≡ −1 ⇒ e = e(1) +
³
d+ d(1)

´ e(2) − e(1)

d(2) + d(1)
. (6.118)

Like in the case of perfect positive correlation, also in this situation it is
possible to completely hedge the risk of one asset with the other one, ob-
taining a minimum-variance portfolio αMV whose standard deviation is zero.
Nevertheless, in the case of perfect negative correlation this can be achieved
without shorting any of the securities. Furthermore, the expected value of the
investor’s objective delivered by the zero-variance allocation is better than
the expected value delivered by a full allocation in the asset with the lower
expected value:

ρ ≡ −1 ⇒ Sd {ΨαMV } = 0, E {ΨαMV } > e(1). (6.119)

A comparison of (6.117) and (6.119) shows the benefits of diversification for
low-variance portfolios.
Nevertheless, the perfect-correlation efficient frontier (6.116) is steeper

than the perfect-anticorrelation efficient frontier (6.118). The two lines in-
tersect at the point

¡
d(2), e(2)

¢
, which corresponds to a full-investment in the

riskier asset. When the investor is willing to increase his risk in pursuit of
higher expected values by abandoning the long-only region, the best oppor-
tunities are provided by a highly correlated market. Therefore, contrary to
a common belief, markets with low correlations do not necessarily provide
better investment opportunities.
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6.4.4 Effects of the market dimension

So far we have assumed that the dimension N of the market is fixed. Suppose
that we allow new securities in the market. As intuition suggests, the ensuing
investment opportunities can only improve. Indeed, if for a given level of stan-
dard deviation of the investor’s objective it is possible to achieve a determined
expected value, we can obtain the same result with a larger set of assets by
simply allocating zero wealth in the new securities.
Nevertheless, from the above discussion on the effect of diversification we

can guess that enlarging the market not only does not worsen, but actually
substantially improves the efficient frontier. In order to verify this ansatz, we
consider a market of an increasing number of securities, where we screen the
effect of correlations, variances and expected values.

N=5

N=2

N=10

N=20

N=100

{ }Sd Ψ α

{ }E Ψ α

Fig. 6.15. Diversification effect of the dimension of the market

We consider a numberN of assets whose expected values are equally spaced
between two fixed extremes elo and ehi:

E {M } ≡ (elo, elo +∆N , . . . , ehi −∆N , ehi)
0 , (6.120)

where ∆N ≡ (ehi − elo) / (N − 1). Similarly, we assume the standard devia-
tions of these assets to be equally spaced between two fixed extremes dlo and
dhi:

Sd {M} ≡ (dlo, dlo + ΓN , . . . , dhi − ΓN , dhi)
0 , (6.121)

where ΓN ≡ (dhi − dlo) / (N − 1). In order to screen out the effect of the cross-
correlations, we assume zero correlation between all pairs of different entries
of the market vectorM.
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In Figure 6.15 we plot the efficient frontier in the above market as a func-
tion of the number N of securities. As expected, adding new assets shifts the
frontier toward the upper-left region, giving rise to better investment opportu-
nities: this effect is more pronounced when the number of assets in the market
is relatively low.

6.5 Pitfalls of the mean-variance framework

In this section we discuss some common pitfalls in the interpretation and
implementation of the mean-variance framework. Indeed, the very reasons
that led to the success of the mean-variance approach also made it susceptible
to misinterpretations.

6.5.1 MV as an approximation

We recall from (6.63) that the investor’s satisfaction depends on all the mo-
ments of the distribution of the investor’s objective:

S (α) = H (E {Ψα} ,CM2 {Ψα} ,CM3 {Ψα} , . . .) , (6.122)

where as in (6.2) the objective is a linear function of the allocation and of the
market vector:

Ψα ≡ α0M. (6.123)

The mean-variance approach relies on the approximation (6.67), according
to which the investor’s satisfaction is determined by the first two moments of
the distribution of his objective:

S (α) ≈ eH (E {Ψα} ,Var {Ψα}) , (6.124)

where eH is a suitable bivariate function. This approximation is never exact.
For this to be the case, the special conditions discussed below should apply
to either the index of satisfaction S or to the distribution of the market M.
The only index of satisfaction S such that the approximation (6.124) is

exact no matter the market is the certainty-equivalent in the case of quadratic
utility:

u (ψ) = ψ − 1

2ζ
ψ2. (6.125)

Indeed in this case the expected utility becomes a function of the expected
value and variance of the objective, and therefore so does the certainty-
equivalent.
Nevertheless the quadratic utility is not flexible enough to model the whole

spectrum of the investor’s preferences. Furthermore, for values of the objective
such that ψ > ζ the quadratic utility becomes nonsensical, as it violates the
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non-satiation principle underlying the investor’s objective: larger values of the
objective make the investor less satisfied, see (5.134) and comments thereafter.
The only markets such that the approximation (6.124) is exact no matter

the index of satisfaction are elliptically distributed markets:

M ∼ El (µ,Σ, gN ) , (6.126)

where µ is the location parameter, Σ is the scatter matrix and gN is the
probability density generator for the N -dimensional case, see (2.268).

CM ∞

E

2CM
CM 4

Fig. 6.16. Elliptical markets: the space of moments of the investor’s objective is
two-dimensional

Indeed, in this case from (2.270) and (2.276) the investor’s objective is also
elliptically distributed:

Ψα ∼ El (E {Ψα} , γVar {Ψα} , g1) , (6.127)

where g1 is the pdf generator for the one-dimensional case and γ is a scalar
that does not depend on the allocation. In other words, if the market M is
elliptically distributed, the infinite-dimensional space of moments is reduced
to a two-dimensional manifold parametrized by expected value and variance,
see Figure 6.16. As a result, also the index of satisfaction (6.122) becomes a
function of expected value and variance only.
Nevertheless, the assumption that a market is elliptical is very strong. For

instance, in highly asymmetric markets with derivative products the ellipti-
cal assumption cannot be accepted. Even in the absence of derivatives, the
standard distribution to model prices in the stock market is the multivariate
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lognormal distribution, which extends to a multivariate setting the classical
framework of Black and Scholes (1973). If the stock market is very volatile or
the investment horizon is large, approximating the lognormal distribution in
the mean-variance problem with an elliptical distribution leads to incorrect
results.
Although the approximation (6.124) is never exact, it is quite accurate

in many practical applications, namely when the combined effects of the dis-
tribution of the market M and of the functional expression of H in (6.122)
make the relative importance of higher moments negligible. Therefore, the
applicability of the approximation (6.124) must be checked on a case-by-case
basis.

6.5.2 MV as an index of satisfaction

Consider the mean-variance optimization (6.68), which we report here:

α (v) ≡ argmax
α∈C

Var{Ψα }=v
E {Ψα} , (6.128)

where v ≥ 0. To solve this problem we can parametrize the set of solutions
α (v) in terms of a Lagrange multiplier λ as follows:

α (λ) ≡ argmax
α∈C

{E {Ψα}− λVar {Ψα}} , (6.129)

where λ ∈ R can be interpreted as a level of risk aversion, see also (6.70) and
comments thereafter.
From (6.69), the optimal allocation lies on the curve α (λ). In other words,

in order to determine the proper level of risk aversion λ∗ and thus the optimal
allocation α∗ ≡ α (λ∗), we perform the following one-dimensional optimiza-
tion based on the investor’s index of satisfaction:

λ∗ ≡ argmax
λ∈R

S (α (λ)) . (6.130)

Consider an investor whose initial budget is one unit of currency. Assume
that his objective is final wealth, and that he evaluates the riskiness of an
allocation by means of a sensible index of satisfaction.
Suppose that the market consists of only two securities, that trade at the

following price today:
p
(1)
T ≡ 1, p

(2)
T ≡ 1. (6.131)

At the investment horizon the value of the first security, which is non-
stochastic, remains unaltered; the second security on the other hand has a
50% chance of doubling in value:

P
(1)
T+τ ≡ 1, P

(2)
T+τ =

½
1 (probability = 50%)
2 (probability = 50%).

(6.132)
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Taking into account the budget constraint and the no-short-sale constraint,
the investor’s objective is completely determined by the investment α in the
risky security:

Ψα ≡ (1− α)P
(1)
T+τ + αP

(2)
T+τ , α ∈ [0, 1] . (6.133)

From this expression and (6.132) it is immediate to compute the first two
moments of the objective:

E {Ψα} = 1 +
α

2
, Var {Ψα} =

α2

4
. (6.134)

In turn, from the first-order condition in the Lagrange formulation (6.129) we
obtain the mean-variance curve:

α (λ) =
1

λ
. (6.135)

To compute the optimal level λ∗ that gives rise to the optimal alloca-
tion α (λ∗) we do not need to specify the investor’s preferences by means of
a specific index of satisfaction, as long as such an index is sensible. Indeed,
sensibility implies a full investment in the risky security, which strongly dom-
inates the risk-free asset. In other words, the optimal allocation is α∗ ≡ 1 and
the respective optimal value for the Lagrange multiplier reads:

λ∗ ≡ 1. (6.136)

A common misinterpretation of the Lagrangian reformulation consists in
considering the level of risk aversion λ∗ as a feature of the investor that is
independent of the market. In other words, one is tempted to first define a
pseudo-index of satisfaction as follows:

S∗ (α) ≡ E {Ψα}− λ∗Var {Ψα} ; (6.137)

and then to solve for the optimal allocation as follows:

α∗ ≡ argmax
α∈C

S∗ (α) . (6.138)

This is a quadratic function of the allocation, and thus an easier problem to
solve than the two-step optimization (6.129)-(6.130).
Nevertheless, the definition of the pseudo-index of satisfaction (6.137) is

incorrect, because it depends on the market through λ∗. In other words, the
same investor displays different risk aversion coefficients λ∗ when facing dif-
ferent markets. Therefore the pseudo-index of satisfaction (6.137) does not
represent a description of the investor’s preferences. Using it as if λ∗ did not
depend on the market might lead to nonsensical results.

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



340 6 Optimizing allocations

Consider the previous example, where instead of the market (6.132) we
have:

P
(1)
T+τ ≡ 1, P

(2)
T+τ =

½
1 (probability = 50%)
3 (probability = 50%).

(6.139)

Then
E {Ψα} = 1 + α, Var {Ψα} = α2. (6.140)

From the first-order condition in the Lagrange formulation (6.129) we obtain
the mean-variance curve:

α (λ) =
1

2λ
. (6.141)

Since the optimal allocation is a full investment in the risky asset α∗ ≡ 1, in
this market we obtain:

λ∗ ≡ 1
2
. (6.142)

Using in the mean-variance curve (6.141) the value (6.136) obtained in the
previous market would give rise to a nonsensical positive allocation in the
risk-free asset.

6.5.3 Quadratic programming and dual formulation

We recall that since all the indices of satisfaction S discussed in Chapter 5 are
consistent with weak stochastic dominance, the mean-variance approach aims
at maximizing the expected value of the investor’s objective for a given level of
variance. Therefore the mean-variance efficient allocations are the non-empty
solutions of (6.68), which we report here:

α (v) ≡ argmax
α∈C

Var{Ψα }=v
E {Ψα} , (6.143)

where v ≥ 0. Notice that the variance constraint appears as an equality.
Consider the plane of coordinates v ≡ Var {Ψα} and e ≡ E {Ψα}. If the

upper limit of the feasible set determined by the constraints increases as we
shift to the right on the horizontal axis, then (6.143) is equivalent to a problem
with an inequality for the variance:

α (v) ≡ argmax
α∈C

Var{Ψα }≤v
E {Ψα} , (6.144)

where v ≥ 0.

This is not the case in the example in Figure 6.17: the allocations on the
thick line in the north-east region would not be captured by (6.144), although
they are efficient according to (6.143).
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budget constraint

{ }= Ee Ψ α

{ }= Varv Ψ α

feasible set efficient 
allocations

Fig. 6.17. MV efficient frontier as expected value maximization

On the other hand, we cannot rule out such allocations. For instance, in
a prospect theoretical setting the investor becomes risk prone when facing
losses, see the example in the shaded box on p. 269.

If the optimization with an inequality (6.144) is equivalent to the original
problem (6.143) and if the investment constraints C are at most quadratic
in the allocation, the optimization with an inequality is a quadratically con-
strained quadratic programming problem, see (6.57):

α (v) ≡ argmax
α∈C

α 0 Cov{M}α≤v

α0 E {M} , (6.145)

where v ≥ 0. Therefore this problem can be solved numerically.
At times the inequality-based mean-variance problem (6.144) is presented

in its dual formulation as the non-empty set of the solutions to the following
problem:

α (e) ≡ argmin
α∈C

E{Ψα }≥e
Var {Ψα} , (6.146)

where e ∈ (−∞,+∞).
Under regularity conditions for the constraints C the dual formulation

(6.146) is equivalent to (6.144), which in turn is equivalent to the original
problem (6.143). The equivalence of these formulations must be checked on a
case-by-case basis. For instance, the three formulations are equivalent when
the constraints are affine, see (6.93), or for the standard no-short-sale con-
straint that appears in (6.80).
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6.5.4 MV on returns: estimation versus optimization

In Section 6.3.4 we discussed how under the hypothesis (6.82) that the in-
vestor’s objective is final wealth and the assumption (6.83) that the initial
investment is not null, the general mean-variance formulation (6.74) is equiv-
alent to the formulation (6.88) in terms of linear returns L and portfolio
weights w, defined in (6.81) and (6.86) respectively. We report here this for-
mulation, emphasizing the realization time and the investment horizon in the
notation for the linear returns:

w (v) = argmax
w∈C

w0 Cov{LT+τ,τ}w=v

w0 E {LT+τ,τ} , (6.147)

where v ≥ 0.
In the process of computing the necessary inputs, namely the expected val-

ues E {LT+τ,τ} and the covariance matrix Cov {LT+τ,τ}, there exists a clear
distinction between estimation, which is performed on the market invariants
Xt,eτ , and optimization, which acts on functions of the projected invariants
LT+τ,τ , see the steps 1-6 on p. 324.
Now let us make two further assumptions. Assume that the market consists

of equity-like securities as in Section 3.1.1, in which case the linear returns
are market invariants:

Xt,eτ ≡ Lt,eτ . (6.148)

Furthermore, assume that the investment horizon and the estimation interval
coincide:

τ ≡ eτ . (6.149)

Under the above combined assumptions it is possible to bypass many of the
steps that lead to the inputs E {LT+τ,τ} and Cov {LT+τ,τ}. Indeed, instead of
estimating the whole distribution of the invariants Lt,eτ as in Step 2 on p. 324,
we estimate directly only its expected value E {Lt,eτ} and its covariance matrix
Cov {Lt,eτ}. Since by assumption the investment horizon is the estimation
interval and since Lt,eτ are invariants, the following holds:

E {LT+τ,τ} = E {Lt,eτ} , Cov {LT+τ,τ} = Cov {Lt,eτ} . (6.150)

Therefore we can skip Step 3, Step 4, Step 5 and Step 6 and plug (6.150)
directly in the mean-variance problem (6.147).
We stress that the above shortcut is not viable in general. For instance, in

the fixed-income market the linear returns are not market invariants. Instead,
the market invariants are the changes in yield to maturity, see Section 3.1.2.
Therefore in order to perform the mean-variance analysis in the fixed-income
market in terms of relative weights and linear returns we need to go through all
the steps 1-6 on p. 324. Nonetheless, one is dangerously tempted to estimate
the returns as if they were invariants and proceed with the shortcut (6.150).
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6.5.5 MV on returns: investment at different horizons

Another misunderstanding regarding the mean-variance framework occurs
when the investment horizon τ is shifted farther in the future and the mean-
variance optimization is formulated in terms of returns, see also Meucci (2001).
As in (6.147) we make the assumptions that the investor’s objective is

final wealth and that the initial investment is not zero, in such a way that the
general mean-variance formulation (6.74) is equivalent to the formulation in
term of linear returns and portfolio weights.
As in (6.148) we consider the case where the market consists of equity-like

securities, in which case the linear returns are market invariants.
Nevertheless, unlike (6.149), we consider an investment horizon that is

different, typically longer, than the estimation interval:

τ > eτ . (6.151)

In this case the shortcut (6.150) does not apply. Instead, we need to project
the distribution of the invariants to the investment horizon and then compute
the quantities of interest E {LT+τ,τ} and Cov {LT+τ,τ} as described in the
steps 1-6 on p. 324. As we see below, only when the market is not too volatile
and both the investment horizon and the estimation interval are short is the
shortcut (6.150) approximately correct, see also Meucci (2004).
Since we are dealing with equity-like securities, the projection of the in-

variants into the moments of the linear returns takes a simpler form than in
the more general case discussed in Section 6.3.4. This is the same argument
that leads to (6.78) and (6.79) in the mean-variance formulation in terms of
prices. Therefore it applies also to the fixed-income market. Here we present
this argument explicitly in the case of equity-like securities.
We recall from (3.11) that for a generic security or portfolio that is worth

Pt at time t, the τ -horizon compounded return at time t is defined as follows:

Ct,τ ≡ ln
µ

Pt
Pt−τ

¶
. (6.152)

Therefore the linear returns (6.81) are the following function of the com-
pounded returns:

1 + Lt,τ ≡ eCt,τ . (6.153)

From the above equality we obtain the following relation for the expected
value of the linear returns:

E
n
1 + L

(n)
T+τ,τ

o
= E

n
eC

(n)
T+τ,τ

o
(6.154)

= φCT+τ,τ

³
−iδ(n)

´
.

In this expression φCT+τ,τ
is the joint characteristic function of the com-

pounded returns relative to the investment horizon and δ(n) is the n-th el-
ement canonical basis (A.15), i.e. it is a vector of zeros, except for the n-th
entry, which is one. Similarly, from (6.153) we obtain:
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E
n³
1 + L

(m)
T+τ,τ

´³
1 + L

(n)
T+τ,τ

´o
= E

n
eC

(m)
T+τ,τ+C

(n)
T+τ,τ

o
(6.155)

= φCT+τ,τ

³
−i
³
δ(m) + δ(n)

´´
.

From these expressions in turn we immediately obtain the desired quantities:

E
n
L
(n)
T+τ,τ

o
= φCT+τ,τ

³
−iδ(n)

´
− 1 (6.156)

and

Cov
n
L
(m)
T+τ,τ , L

(n)
T+τ,τ

o
= Cov

n
1 + L

(m)
T+τ,τ , 1 + L

(n)
T+τ,τ

o
(6.157)

= φCT+τ,τ

³
−i
³
δ(m) + δ(n)

´´
−φCT+τ,τ

³
−iδ(m)

´
φCT+τ,τ

³
−iδ(n)

´
.

Therefore, in order to compute the inputs of the mean-variance optimiza-
tion (6.156) and (6.157) we need to derive the expression of the characteristic
function φCT+τ,τ

from the distribution of the market invariants (6.148). In or-
der to do this, we notice that if the linear returns Lt,eτ are market invariants,
so are the compounded returns Ct,eτ . For the compounded returns the simple
projection formula (3.64) holds, which in this context reads:

φCT+τ,τ
=
³
φCt,eτ

´ τeτ
. (6.158)

Notice that this formula does not hold for the linear returns, whose projection
formula relies on the much more complex expression (3.78).
Substituting (6.158) into (6.156) and (6.157) we obtain the desired inputs

of the mean-variance problem directly in terms of the distribution of the
market invariants:

E
n
L
(n)
T+τ,τ

o
=
h
φCt,eτ

³
−iδ(n)

´i τeτ − 1 (6.159)

and

Cov
n
L
(m)
T+τ,τ , L

(n)
T+τ,τ

o
=
h
φCt,eτ

³
−i
³
δ(m) + δ(n)

´´i τeτ
(6.160)

−
h
φCt,eτ

³
−iδ(m)

´i τeτ h
φCt,eτ

³
−iδ(n)

´i τeτ
.

For instance, assuming as in Black and Scholes (1973) that the com-
pounded returns are normally distributed, from (2.157) we obtain their char-
acteristic function:

φCt,eτ (ω) = eiω
0µ− 1

2ω
0Σω . (6.161)

Therefore from (6.159) the expected values read:
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E
n
L
(n)
T+τ,τ

o
= e

τeτ (µn+ 1
2Σnn) − 1; (6.162)

and from (6.160) the covariances read:

Cov
n
L
(m)
T+τ,τ , L

(n)
T+τ,τ

o
= e

τeτ (µm+µn+ 1
2Σmm+

1
2Σnn) ¡e τeτΣmn − 1

¢
. (6.163)

The reader is invited to consider the limit of the expressions (6.162) and
(6.163) when the market volatility is low and the investment horizon τ is
short.

Instead of using the correct formulas (6.159) and (6.160) in the mean-
variance optimization (6.147), some practitioners replace the linear returns
with compounded returns. In other words, they define the mean-variance ef-
ficient frontier as follows:

ew (v) ≡ argmax
w∈C

w0 Cov{CT+τ,τ}w=v

w0 E {CT+τ,τ} , (6.164)

where v ≥ 0. In this formulation, the "square-root rule" (3.75) and (3.76),
which is a consequence of (6.158), applies:

E {CT+τ,τ} =
τeτ E {Ct,eτ} , Cov {CT+τ,τ} =

τeτ Cov {Ct,eτ} . (6.165)

Therefore, it suffices to estimate the expected values and the covariance matrix
of the compounded return for a given estimation interval eτ , and use the results
for any investment horizon τ .
Nevertheless, the definition (6.164) of the mean-variance problem is incor-

rect.
In the first place, unlike the formulation in terms of linear returns (6.147),

this formulation is not equivalent to the general mean-variance problem (6.74),
because the identity (6.87) does not hold for the compounded returns:

CΨα
T+τ,τ 6= w0CT+τ,τ . (6.166)

More in general, the quantity w0CT+τ,τ does not represent any feature of
the investor’s portfolio, not only it does not represent its compounded return.
Therefore also the quantities w0 E {C} and w0Cov {CT+τ,τ}w that appear
in (6.164) are not related to the investor’s portfolio.
Secondly, from the square-root rule (6.165) it follows that the mean-

variance efficient allocations (6.164) do not depend on the investment horizon.
This is incorrect and counterintuitive.
Notice that in the case of a short investment horizon τ and a not-too-

volatile market, a first-order Taylor expansion shows that the linear and the
compounded returns are approximately the same:
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Fig. 6.18. MV efficient allocations at different investment horizons

LT+τ,τ ≡
PT+τ
PT

− 1 ≈ ln
µ
PT+τ
PT

¶
≡ CT+τ,τ . (6.167)

In this case the correct mean-variance efficient allocations obtained from the
formulation in terms of the linear returns (6.147) are approximately equal to
the mean-variance efficient allocations obtained from the formulation in terms
of the compounded returns (6.164), and therefore they are approximately
independent of the investment horizon τ :

w (v) ≡ argmax
w∈C

w0 Cov{LT+τ,τ}w=v

w0 E {LT+τ,τ}

≈ argmax
w∈C

w0 Cov{CT+τ,τ}w=v

w0 E {CT+τ,τ} (6.168)

= argmax
w∈C

w0 Cov{CT,eτ}w= eτ
τ v

τeτw0 E {Ct,eτ}
= ew (s) ,

where s ≡ veτ/τ ≥ 0. Indeed, in the limit case of a dynamic setting, where the
investor can rebalance continuously his portfolio and thus the investment hori-
zon tends to zero, the formulation in terms of compounded returns becomes
correct, and an equality holds in (6.166), see Merton (1992).
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Nevertheless, for longer investment horizons and more volatile markets the
first-order Taylor approximation (6.167) is not accurate. Indeed, the efficient
frontiers relative to different investment horizons are different.

We see this Figure 6.18, where we plot the efficient combination of eight
securities at a horizon of one and three years respectively under the normal
assumption (6.161). Refer to symmys.com for the details on this market of
securities and on the computations that generated the plots.

6.6 Total-return versus benchmark allocation

In this section we present an application of the analytical solutions of the
mean-variance problem discussed in Section 6.4. We analyze two standard
allocation strategies in the mutual fund industry: total-return allocation and
benchmark allocation. As it turns out, benchmark allocation is the implicit
strategy of the generic investor.
In the total-return strategy the investor’s objective is final wealth at the

investment horizon, see (5.3):

Ψα ≡ α0PT+τ . (6.169)

In the benchmark strategy the investor’s objective is to overperform a
benchmark whose allocation is eβ. In this case, the investor’s objective is the
overperformance, see (5.4):

Φα ≡ α0PT+τ − γeβ0PT+τ , (6.170)

where the normalization scalar is meant to make the comparison between the
portfolio and the benchmark fair:

γ ≡ α0pTeβ0pT . (6.171)

In both the total-return and the benchmark strategies the investor is bound
by the same budget constraint:

C : α0pT = w > 0. (6.172)

In order to cast the total-return allocation problem in the mean-variance
framework, we assume as in (6.67) that the investor’s satisfaction only depends
on the first two moments of his objective, namely final wealth:

S (α) ≈ eH (E {Ψα} ,Var {Ψα}) , (6.173)

where eH is a suitable bivariate function. Given the constraint (6.172), the
mean-variance efficient frontier solves an affine constraint problem of the form
(6.96), which in this context reads:
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eα (v) = argmax
α 0pT=w
Var{Ψα }=v

E {Ψα} , (6.174)

where v ≥ 0.
The non-empty solutions of this optimization, namely the total-return ef-

ficient frontier, follow from (6.97). They represent a straight semi-line para-
metrized by the expected value of final wealth e ≡ E {Ψeα}, which we report
here:

eα = αMV + [e− E {ΨαMV }]
αSR −αMV

E {ΨαSR}− E {ΨαMV
} , (6.175)

where e ∈ [E {ΨαM } ,+∞). The global minimum variance portfolio and the
maximum Sharpe ratio portfolio in this expression follow from (6.99) and
(6.100) respectively and read in this context as follows:

αMV ≡
wCov {PT+τ}−1 pT
p0T Cov {PT+τ}−1 pT

(6.176)

αSR ≡
wCov {PT+τ}−1 E {PT+τ}
p0T Cov {PT+τ}−1 E {PT+τ}

. (6.177)

In order to cast the benchmark allocation problem in the mean-variance
framework, we first introduce some jargon used by practitioners. The expected
value of the investor’s objective (6.170) is called expected overperformance,
which we denote as follows:

EOP(α) ≡ E {Φα} . (6.178)

The standard deviation of the investor’s objective is called the tracking error 1 ,
which we denote as follows:

TE(α) ≡ Sd {Φα} . (6.179)

The Sharpe ratio, i.e. the ratio of the above two parameters, is called the
information ratio, which we denote as follows:

IR (α) ≡ EOP(α)
TE (α)

. (6.180)

1 Some authors define the tracking error differently: Roll (1992) defines it as the
overperformance:

TE(α) ≡ Φα ;

Leibowitz, Bader, and Kogelman (1996) define it as follows:

TE {α} ≡
q
E {Φ2α }.
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As in (6.67), we assume that the satisfaction of an investor whose purpose
is to overperform a benchmark only depends on the first two moments of his
objective:

S (α) ≈ eK ¡EOP(α) ,TE2 (α)¢ , (6.181)

where eK is a suitable bivariate function. Therefore the mean-variance efficient
frontier of the benchmark strategy solves an affine constraint problem of the
form (6.96), which in the newly introduced notation reads:

bα (u) = argmax
α 0pT=w
TE2(α)=u

EOP(α) , (6.182)

where u ≥ 0.
To solve this problem we could cast the benchmark-relative objective in the

form Φα ≡ α0M for the market vector defined in (5.11) and (5.13) and then
write the solution in the form (6.97). Nevertheless, we gain more insight into
the differences and similarities between total-return allocation and benchmark
allocation if we re-formulate the benchmark problem in terms of relative bets,
which represent the difference between the allocation chosen by the investor
and the allocation of the benchmark.
First of all we define the normalized benchmark allocation as follows:

β ≡ w

p0T eβ eβ. (6.183)

It is immediate to check that the normalized benchmark is a rescaled version
of the original benchmark which has the same value as the investor’s portfolio
at the time the investment is made. The relative bets are defined as the vector
ρ such that:

α ≡ β + ρ. (6.184)

Since the benchmark allocation β is fixed, it is equivalent to determine and
express the efficient frontier in terms of the allocations α or in terms of the
relative bets ρ.
In terms of the relative bets, it is easy to check that the benchmark-relative

objective (6.170) takes the form of a total-return objective:

Φα = (α− β)0PT+τ = ρ0PT+τ ≡ Ψρ , (6.185)

compare with (6.169). Furthermore, the budget constraint (6.172) simplifies
to a linear constraint:

C : ρ0pT = (α− β)0 pT = 0. (6.186)

Therefore the efficient frontier of the benchmark strategy (6.182) can be
written in terms of the relative bets that solve the following problem:

bρ (u) = argmax
ρ0pT=0

Var{Ψρ }=u

E {Ψρ} , (6.187)
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where u ≥ 0. This linear constraint problem is of the from (6.107). The non-
empty solutions to this optimization, namely the benchmark-relative efficient
frontier, follow from (6.109) and (6.111). They represent a straight semi-line
parametrized by the expected value of the overperformance p ≡ E

©
Ψbρª:

bρ = p
αSR −αMV

E {ΨαSR}− E {ΨαMV }
, (6.188)

where p ≥ 0.
From the definition of the relative bets (6.184) and the definition of the

overperformance (6.185) we recover the efficient frontier of the benchmark
strategy. This is a straight line parameterized by the expected final wealth of
the benchmark-relative efficient allocations:

e ≡ E {Ψbα} ∈ [E {Ψβ} ,+∞) , (6.189)

and reads explicitly:

bα = β + [e− E {Ψβ}]
αSR −αMV

E {ΨαSR}− E {ΨαMV }
. (6.190)

A comparison of this expression with (6.175) shows that the total-return
allocations eα can be interpreted as benchmark-relative allocations bα, where
the benchmark is represented by the global minimum-variance portfolio.

budget constrainttotal-return efficient 
allocations

benchmark-relative 
efficient allocations

MVα

SRα

β

1α

Nα

2α

Fig. 6.19. Total-return vs. benchmark-relative MV efficient allocations

Geometrically, we can interpret these results as in Figure 6.19. In the N -
dimensional space of allocations, the mean-variance efficient frontiers of both
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the total-return strategy and the benchmark-relative strategy are straight
semi-lines that lie in the (N − 1)-dimensional hyperplane determined by the
budget constraint.
The direction of departure of the efficient straight semi-line from its start-

ing point is determined by a two-fund separation principle. This direction of
departure is the same for both the total-return strategy and the benchmark-
relative strategy, no matter the specific composition of the benchmark.
On the other hand, the starting point of the efficient straight line is the in-

vestor’s benchmark. In particular, in the total-return case where the investor’s
objective is final wealth, the starting point of the efficient straight line is the
global minimum-variance portfolio.
We can now analyze the satisfaction stemming from the efficient alloca-

tions, see Roll (1992). First we consider the satisfaction of the total-return
investor (6.173), which depends on the first two moments of the distribution
of final wealth:

v ≡ Var {Ψα} (6.191)

= α0Cov {PT+τ}α
e ≡ E {Ψα} (6.192)

= α0 E {PT+τ} .

Since both the total-return investor and the benchmark-relative investor
share the same affine budget constraint (6.172), their feasible set is the same.
Like in Figure 6.10, the feasible set plots as the internal portion of a parabola,
see Figure 6.20.
The total-return mean-variance efficient allocations (6.175) generate the

upper branch of this parabola. From (6.102) the equation of this parabola
reads: eα : v =

A

D
e2 − 2wB

D
e+

w2C

D
, (6.193)

where (A,B,C,D) are the four scalars (6.103) that do not depend on the
allocation and which in this context read:

A ≡ p0T Cov {PT+τ}−1 pT
B ≡ p0T Cov {PT+τ}−1 E {PT+τ} (6.194)

C ≡ E {PT+τ}0Cov {PT+τ}−1 E {PT+τ}
D ≡ AC −B2.

The benchmark-relative efficient allocations (6.190) are sub-optimal in
these coordinates and thus do not lie on the upper branch of the parabola. As
we prove in Appendix www.6.5, the benchmark-relative optimal allocations
give rise to the portion of a parabola above the coordinates of the bench-
mark, see Figure 6.20. This parabola represents a right translation of the
mean-variance efficient parabola (6.193) generated by the total-return effi-
cient allocations. Indeed, the equation of this parabola reads:
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total-return 
efficient frontier

benchmark-relative 
efficient frontier

{ }Varv ≡ Ψ α

MVα

SRα

β

δ β feasible allocations

{ }Ee ≡ Ψ α

Fig. 6.20. Risk/reward profile of efficient allocations: total-return coordinates

bα : v =
A

D
e2 − 2wB

D
e+

w2C

D
+ δβ . (6.195)

In this expression δβ is a benchmark-dependent, non-negative scalar:

δβ ≡ Var {Ψβ}−
A

D
E {Ψβ}2 +

2wB

D
E {Ψβ}−

w2C

D
≥ 0, (6.196)

As we show in Appendix www.6.5, the equality holds in (6.196) if and only if
the benchmark is mean-variance efficient from a total-return point of view.
Now we discuss the satisfaction (6.181) of the investor who aims at out-

performing a benchmark, which depends on the first two moments of the
overperformance:

u ≡ Var {Φα} ≡ TE2 (α) (6.197)

= (α− β)0Cov {PT+τ} (α− β)
p ≡ E {Φα} ≡ EOP(α) (6.198)

= (α− β)0 E {PT+τ} .

Since both the total-return investor and the benchmark-relative investor
share the linear budget constraint (6.186), their feasible set is the same. From
the discussion on p. 331, the feasible set plots as the internal region of a
parabola through the origin, which represents an allocation that fully repli-
cates the benchmark, see Figure 6.21.
The benchmark-relative efficient allocations (6.190) generate the upper

branch of this parabola. From (6.112) the equation of the parabola reads:
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total return 
efficient frontier

benchmark-relative 
efficient frontier

{ } ( )2Var TEu ≡ Φ =α α

δ β

MVα

SRα

β

{ } ( )E EOPp ≡ Φ =α α

feasible allocations

Fig. 6.21. Risk/reward profile of efficient allocations: benchmark-relative coordi-
nates

bα : u =
A

D
p2, (6.199)

where A and D are defined in (6.194).
The total-return mean-variance efficient allocations (6.175) are sub-optimal

in these coordinates, and thus they do not lie on the optimal parabola. In
Appendix www.6.5 we prove that the total-return mean-variance efficient al-
locations give rise to the portion of a parabola above the coordinates of the
global minimum-variance portfolio, see Figure 6.21. This parabola represents a
right translation of the parabola (6.199) generated by the benchmark-relative
efficient allocations. Indeed the equation of this parabola reads:

eα : u =
A

D
p2 + δβ . (6.200)

In this expression δβ is the same non-negative constant as (6.196), which is
null if and only if the benchmark is mean-variance efficient from a total-return
point of view.
Finally, it is interesting to look at the risk/reward profile of the total-return

and benchmark-relative efficient allocations in the plane of the tracking error
and expected overperformance plane, see Figure 6.22. Much like in (6.112),
in these coordinates the boundary of the feasible set degenerates into two
straight lines.
The total-return efficient allocations plot as a portion of the upper branch

of a hyperbola within the feasible set. On the other hand, the benchmark-
relative efficient allocations represent the straight line in the positive quadrant
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total return 
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( )EOP α

( )TE α

Fig. 6.22. Risk-reward profile of efficient allocations: expected overperformance and
tracking error

that limits the feasible set. From (6.199) and the definitions (6.197)-(6.198),
the equation of this line reads:

EOP(bα) =rD

A
TE(bα) . (6.201)

As we see in Figure 6.22, such allocations give rise to the highest possible
information ratio, defined in (6.180): as the investor is willing to accept a larger
tracking error, the attainable expected overperformance increases linearly.
Depending on their specific index of satisfaction, some investors will aban-

don the benchmark, aggressively pursuing a higher expected overperformance.
On the other hand, other investors will closely track the benchmark, minimiz-
ing their relative risk: this is the case for index funds, whose aim is to replicate
the performance of a benchmark at the minimum possible cost. Refer to Sec-
tion 3.4.5 for a routine to implement portfolio replication.

6.7 Case study: allocation in stocks

In this section we revisit all the steps of a real allocation problem that lead
to the optimal portfolio for a given investor. Unlike the leading example in
Section 6.1, this case study cannot be solved analytically. Therefore, after
collecting the necessary information on the investor and on his market, we
simplify the problem according to the two-step mean variance recipe, as dis-
cussed in Section 6.3 and we compute the optimal portfolio numerically.
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We stress that at this stage little importance is given to the yet very
important issue of estimation risk. We discuss this issue in depth in the third
part of the book.

6.7.1 Collecting information on the investor

The investor starts in general with a pre-existing allocation α(0). In this case
we assume that the investor’s initial wealth is a given amount of cash w, say
ten thousand dollars.
The investor determines a market. We assume that he chooses a set of

N ≡ 8 well-diversified stocks and that he plans to re-invest any dividends. We
denote as Pt the prices at the generic time t of one share of the stocks.
The investor determines his investment horizon τ : in this example we set

τ equal to one year.
The investor specifies his objective. In this example we assume that he

focuses on final wealth:
Ψα ≡ α0PT+τ , (6.202)

where T denotes the current time.
We model the investor’s satisfaction. We assume that the investor bases

his decisions according to the certainty-equivalent of his expected utility as in
(5.93), where his utility function is of the power type. Therefore the investor’s
satisfaction reads:

S (α) ≡
µ
γ E

½
Ψγ
α

γ

¾¶ 1
γ

. (6.203)

Notice that the power utility function is defined only for positive values of the
investor’s objective. This is consistent with the fact that prices are positive
and that the investor can only hold long positions in the stocks. In our example
we set the specific value γ ≡ −9 for the risk aversion parameter of the power
utility functions.

6.7.2 Collecting information on the market

In order to collect information on the market we turn to data providers and
we retrieve the time-series of the stock prices, which are available, say, for the
past five years.
We determine the market invariants. After performing the analysis of Sec-

tion 3.1, we determine that the non-overlapping compounded returns of the
stocks can be modeled as independent and identically distributed across time:

C
(n)
t,eτ ≡ ln

Ã
P
(n)
t

P
(n)
t−eτ

!
, (6.204)

where n = 1, . . . , N ≡ 8. In our example, an estimation horizon eτ of one week
provides a good balance in the trade-off between the number of independent
observations and the homogeneity of the data.
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We estimate the distribution of the invariants from currently available
information. In this example, information becomes the time series of weekly
compounded returns for the past five years. This is a series of approximately
250 observations. We fit the weekly compounded returns to a multivariate
normal distribution:

Ct,eτ ∼ N³bµ, bΣ´ . (6.205)

To estimate bµ and bΣ we first compute the sample mean and the sample
covariance matrix:

bm ≡ 1

T

TX
t=1

ct,eτ , bS ≡ 1

T

TX
t=1

(ct,eτ − bm) (ct,eτ − bm)0 . (6.206)

Then as in (4.160) we shrink the covariance matrix toward a spherical esti-
mator: bΣ ≡ (1− �) bS+ �

N

NX
n=1

bSnnIN , (6.207)

where from (4.161) the shrinkage weight reads:

� ≡ 1

T

1
T

PT
t=1 tr

½³
ct,eτc0t,eτ − bS´2¾

tr

½³bS− 1
N

PN
n=1

bSnnIN´2¾ . (6.208)

Finally, as in (4.138) we shrink the sample mean towards a target vector:

bµ ≡ (1− γ) bm+ γb. (6.209)

In this expression the shrinkage target follows from (4.142):

b ≡ 1
0 bΣ−1 bm
10 bΣ−11 1; (6.210)

and the shrinkage weight follows from (4.139) and reads in terms of the highest
eigenvalue λ1 of bΣ as follows:

γ ≡ 1

T

PN
n=1

bΣnn − 2λ1
( bm− b)0 ( bm− b) . (6.211)

We project the distribution of the invariants to the investment horizon by
means of (3.64). As in (3.74) we obtain that compounded returns from the
investment date to the investment horizon are normally distributed:

CT+τ,τ ∼ N
³τeτ bµ, τeτ bΣ´ . (6.212)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



6.7 Case study: allocation in stocks 357

We determine the transaction costs in the market. In this case we as-
sume that the transaction costs grow quadratically with the number of shares
transacted:

T (eα,α) = k0 (eα−α) + (eα−α)0D (eα−α) , (6.213)

where D is a diagonal matrix of positive entries. The non-linear growth of the
transaction costs accounts for the market impact of large stock transactions.

6.7.3 Computing the optimal allocation

First, we formulate the investor’s constraints. We assume that the investor
has a budget constraint:

C1 : α0pT ≤ w − T
³
α(0),α

´
, (6.214)

where w is his initial capital of ten thousand dollars, and T are the transaction
costs (6.213). Furthermore, we assume that he can only hold long positions:

C2 : α ≥ 0. (6.215)

With the information on the investor’s profile, his market and his con-
straints we can set up the optimization problem (6.33), which in this context
reads:

α∗ ≡ argmax
α≥0

α0pT≤w−α 0Dα

E

½¡
α0 diag (pT ) eCT+τ,τ

¢ γ−1
γ

¾
, (6.216)

where the distribution of C is provided in (6.212). Since it is not possible
to determine the solution α∗ analytically, we resort to the mean-variance
framework to restrict the search to a limited number of portfolios.
We compute the inputs of the mean-variance problem (6.74), namely the

expected value and the covariance of the market prices at the investment hori-
zon. To do this, consider the characteristic function (2.157) of the compounded
returns (6.205), which reads:

φCt,eτ (ω) = eiω
0bµ− 1

2ω
0 bΣω . (6.217)

From (6.77) we obtain the expected value of the market prices:

E
n
P
(n)
T+τ

o
= P

(n)
T

h
φCt,eτ

³
−iδ(n)

´i τeτ
(6.218)

= P
(n)
T e

τeτ
³bµn+ bΣnn

2

´
.

Similarly, from (6.78) we obtain:
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E
n
P
(m)
T+τ , P

(n)
T+τ

o
= P

(m)
T P

(n)
T

h
φCt,eτ

³
−iδ(m) − iδ(n)

´i τeτ
(6.219)

= P
(m)
T P

(n)
T e

τeτ (bµm+bµn)e 12 τeτ ( bΣmm+ bΣnn+2 bΣmn).

Therefore from (6.79) we obtain the covariance matrix of the market:

Cov
n
P
(m)
T+τ , P

(n)
T+τ

o
= P

(m)
T P

(n)
T e

τeτ (bµm+bµn) (6.220)

e
1
2
τeτ ( bΣmm+ bΣnn)

³
e
τeτ bΣmn − 1

´
.

With the inputs (6.218) and (6.220) we compute numerically the mean-
variance efficient curve (6.74). In order to do this, we choose a significative
grid of, say I ≡ 100 target variances

©
v(1), . . . , v(I)

ª
and solve numerically

each time the following optimization:

α(i) ≡ argmax
α

α0 E {PT+τ} (6.221)

subject to

α0Cov {PT+τ}α ≤ v(i)

α0pT ≤ w −α0Dα
α ≥ 0.

Each optimization (6.221) is a quadratically constrained linear programming
problem, i.e. a subclass of (6.57). Therefore it can be efficiently solved numer-
ically.
In the top plot of Figure 6.23 we display the risk/reward profile of the

mean-variance efficient allocations (6.221) in terms of expected value and
standard deviation of final wealth:

E {Ψα} = α0 E {PT+τ} , Sd {Ψα} =
p
α0Cov {PT+τ}α. (6.222)

In the middle plot of Figure 6.23 we display the mean-variance efficient allo-
cations (6.221) in terms of their relative weights:

w(i) ≡
diag

¡
α(i)

¢
pT

p0Tα(i)
. (6.223)

According to the mean-variance optimization, the optimal allocation is the
portfolio (6.221) that gives rise to the higher level of satisfaction. To determine
this portfolio we use Monte Carlo simulations.
We simulate a large number J of Monte Carlo market scenarios as follows:

jPT+τ ≡ diag (pT ) ejC, (6.224)

where the exponential acts component-wise and where each vector jC is an
independent drawing from the multivariate normal distribution (6.212) for all
j = 1, . . . , J . In our example we perform J ≡ 105 simulations.
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{ }Sd Ψα

{ }E Ψ α

optimal 
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risk/reward profile

relative composition

w

1

0

Fig. 6.23. MV approach: two-step allocation optimization

We evaluate numerically the satisfaction drawn from each of the mean-
variance efficient allocations. In other words, we compute the following ap-
proximation to (6.203) for all the mean-variance efficient portfolios (6.221) in
the grid:

eS ³α(i)´ ≡
γ

J

JX
j=1

¡
jP

0
T+τα

(i)
¢γ

γ

 1
γ

. (6.225)

In the bottom plot in Figure 6.23 we display the satisfaction (6.225) ensuing
from each of the allocations in the grid.
We rank the levels of satisfaction provided by the mean-variance efficient

portfolios:

i∗ ≡ argmax
i

n eS ³α(i)´o . (6.226)

Finally, we determine the optimal allocation:

α∗ ≡ α(i
∗), (6.227)

see Figure 6.23.
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z∗ ≡ argmin
z

½°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°°2¾ (T6.15)

s.t.

(
Az = a°°°Λ1/2(j) E

0
(j)z+Λ

−1/2
(j) E0(j)u(j)

°°°2 ≤ u(j)S−1(j)u(j) − v(j),

for j = 1, . . . , J . Introducing a new variable t this problem is equivalent to:

(z∗, t∗) ≡ argmin
(z,t)

{t} (T6.16)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Az = a°°°Λ1/2(0) E
0
(0)z+Λ

−1/2
(0) E0(0)u(0)

°°° ≤ t°°°Λ1/2(1) E
0
(1)z+Λ

−1/2
(1) E0(1)u(1)

°°° ≤qu(1)S−1(1)u(1) − v(1)
...°°°Λ1/2(J)E

0
(J)z+Λ

−1/2
(J) E

0
(J)u(J)

°°° ≤qu(J)S−1(J)u(J) − v(J)

6.3 Feasible set and MV efficient frontier

To solve
α (v) ≡ argmax

α0d=c,Var{Ψα}=v
E {Ψα} , (T6.17)

we first compute the feasible set in the space of moments of the objective
function (v, e) = (Var {Ψα} ,E {Ψα}).
We consider the general case where E {M} and d are not collinear. First

we prove that any level of expected value e ∈ R is attainable. This is true if
for any value e there exists an α such that:

e = E {Ψα} = α0 E {M} (T6.18)

c = α0d. (T6.19)

In turn, this is true if we can solve the following system for an arbitrary value
of e: µ

E {Mj} E {Mk}
bj bk

¶µ
αj
αk

¶
=

µ
e−

P
n6=j,k αn E {Mk}

c−
P

n6=j,k αnbn

¶
. (T6.20)

Since E {M} and d are not collinear we can always find two indices (j, k) such
that the matrix on the left-hand side of (T6.20) is invertible. Therefore, we
can fix arbitrarily e and all the entries of α that appear on the right hand
side of (T6.20) and solve for the remaining two entries on the left-hand side
of (T6.20).
Now we prove that if a point (v, e) is feasible, so is any point (v + γ, e),

where γ is any positive number. Indeed, if we make any of the entries on

Attilio
Cross-Out



Technical Appendix to Chapter 6 T-115

the right hand side of (T6.20) go to infinity and solve for the remaining two
entries on the left-hand side of (T6.20) the variance of the ensuing allocations
satisfies the constraints and tends to infinity. For continuity, all the points
between (v, e) and (+∞, e) are covered.
Therefore the feasible set can only be bounded on the left of the (v, e)

plane. To find out if that boundary exists, we fix a generic expected value e and
compute the minimum variance achievable that satisfies the affine constraint.
Therefore, we minimize the following unconstrained Lagrangian:

L (α, λ, µ) ≡ Var {Ψα}− λ (α0d− c)− µ (E {Ψα}− e) . (T6.21)

= α0Cov {M}α− λ (α0d− c)− µ (α0 E {M}− e) .

The first-order conditions yield:

0 =
∂L
∂α

= 2Cov {M}α− λd− µE {M} (T6.22)

in addition to the two constraints

0 =
∂L
∂λ

= α0d− c (T6.23)

0 =
∂L
∂µ

= α0 E {M}− e,

From (T6.22) the solution reads

α =
λ

2
Cov {M}−1 d+ µ

2
Cov {M}−1 E {M} . (T6.24)

The Lagrange multipliers can be obtained as follows: First, we define four
scalar constants:

A ≡ d0Cov {M}−1 d B ≡ d0Cov {M}−1 E {M}
C ≡ E {M}0Cov {M}−1 E {M} D ≡ AC −B2 (T6.25)

Left-multiplying the solution (T6.24) by d0 and using the first constraint in
(T6.23) we obtain:

c = d0α =
λ

2
d0Cov {M}−1 d (T6.26)

+
µ

2
d0Cov {M}−1 E {M}

=
λ

2
A+

µ

2
B.

Similarly, left-multiplying the solution (T6.24) by E {M}0 and using the sec-
ond constraint in (T6.23) we obtain:
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e = E {M}0α =
λ

2
E {M}0Cov {M}−1 d (T6.27)

+
µ

2
E {M}0 Cov {M}−1 E {M}

=
λ

2
B +

µ

2
C

Now we can invert (T6.27) and (T6.26) obtaining:

λ =
2cC − 2eB

D
, µ =

2eA− 2cB
D

(T6.28)

Finally, left-multiplying (T6.22) by α0 we obtain:

0 = 2α0Cov {M}α− λα0d− µα0 E {M}
= 2Var {Ψα}− λc− µe (T6.29)

= 2

µ
Var {Ψα}−

cC − eB

D
c− eA− cB

D
e

¶
.

This shows that the boundary v (e) ≡ Var {Ψα} exists. Collecting the terms
in e we obtain its equation:

v =
A

D
e2 − 2cB

D
e+

c2C

D
, (T6.30)

which shows that the feasible set is bounded on the left by a parabola. In
the space of the coordinates (d, e) = (Sd {Ψα} ,E {Ψα}) the parabola (T6.30)
becomes a hyperbola:

d2 =
A

D
e2 − 2cB

D
e+

c2C

D
, (T6.31)

The allocations α that give rise to the boundary parabola (T6.30) are obtained
from (T6.24) by substituting the Lagrange multipliers (T6.28):

α =
cC − eB

D
Cov {M}−1 d+ eA− cB

D
Cov {M}−1 E {M}

=
(cC − eB)A

D

Cov {M}−1 d
d0 Cov {M}−1 d

(T6.32)

+
(eA− cB)B

D

Cov {M}−1 E {M}
d0Cov {M}−1 E {M}

If c 6= 0 we can write (T6.32) as:

α = (1− γ (α))αMV + γ (α)αSR, (T6.33)

where the scalar γ is defined as:
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γ (α) ≡ (E {Ψα}A− cB)B

cD
(T6.34)

and (αMV ,αSR) are two specific portfolios defined as follows:

αMV ≡
cCov {M}−1 d
d0Cov {M}−1 d

(T6.35)

αSR ≡
cCov {M}−1 E {M}
d0Cov {M}−1 E {M}

. (T6.36)

Portfolio (T6.35) corresponds to the case γ = 0. From the expression for
γ in (T6.34) and from the expression for the Lagrange multipliers in (T6.28)
we see that αMV is the allocation that corresponds to the case where the La-
grange multiplier µ is zero in (T6.24). From the original Lagrangian (T6.21), if
µ = 0 the ensuing allocation is the minimum-variance portfolio. From (T6.30),
or by direct computation we derive the coordinates of αMV in the space of
moments:

vMV ≡ Var {ΨαMV } =
c2

A
, eMV ≡ E {ΨαMV } =

cB

A
. (T6.37)

Portfolio (T6.36) corresponds to the case γ = 1. This is the allocation on
the feasible boundary that corresponds to the highest Sharpe ratio. Indeed, by
direct computation we derive the coordinates of αSR in the space of moments:

vSR ≡ Var {ΨαSR} =
c2C

B2
, eSR ≡ E {ΨαSR} =

cC

B
, (T6.38)

On the other hand the highest Sharpe ratio is the steepness of the straight
line tangent to the hyperbola (T6.31), which we obtain by maximizing its
analytical expression as a function of the expected value:

SR (e) ≡ e

d (e)
=

eq
A
De2 − 2cB

D e+ c2C
D

. (T6.39)

The first-order conditions with respect to e show that the maximum of the
Sharpe ratio is reached at (T6.38).
It is immediate to check that the ratio e/v is the same for both portfolio

(T6.37) and portfolio (T6.38), and thus the two allocations lie on the same
radius from the origin in the (v, e) plane.
As for the expression of the scalar γ in (T6.34), since

E {ΨαSR}− E {ΨαMV } =
cC

B
− cB

A
=

cD

AB
(T6.40)

we can simplify it as follows:
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γ ≡ (E {Ψα}A− cB)B

cD
=
E {Ψα}AB

cD
− B2

D

=
E {Ψα}

E {ΨαSR}− E {ΨαMV }
−
¡
cB
A

¢¡
cD
AB

¢ (T6.41)

=
E {Ψα}− E {ΨαMV }
E {ΨαSR}− E {ΨαMV }

,

which shows that the upper (lower) branch of the boundary parabola is
spanned by the positive (negative) values of γ.
To consider the case c = 0 we take the limit c → 0 in the above re-

sults. The boundary (T6.30) of the feasible set in the coordinates (v, e) =
(Var {Ψα} ,E {Ψα}) is still a parabola:

v =
A

D
e2; (T6.42)

whereas in the space of coordinates (s, e) = (Sd {Ψα} ,E {Ψα}) the boundary
degenerates from the hyperbola (T6.31) into two straight lines:

d (e) = ±
r

A

D
e. (T6.43)

As for the allocations that generate this boundary, taking the limit c → 0 in
(T6.33) and recalling the definitions (T6.34), (T6.35) and (T6.36) we obtain:

α = lim
c→0

[αMV + γ (α) (αSR −αMV )] (T6.44)

= lim
c→0

[γ (α) (αSR −αMV )]

= E {Ψα}
Cov {M}−1

D
(AE {M}−Bd)

= ζ (α)Cov {M}−1 (AE {M}−Bd) ,

where the scalar ζ is defined as follows

ζ (α) ≡ E {Ψα}
D

. (T6.45)

The upper (lower) branch of the boundary parabola is spanned by the positive
(negative) values of ζ.
With the geometry of the feasible set at hand, we can move on to compute

the mean-variance curve (T6.17): fixing a level of variance v and maximizing
the expected value in the feasible set means hitting the upper branch of the
parabola (T6.30). Therefore if c 6= 0 the mean-variance curve reads:

α ≡ (1− γ)αMV + γαSR, γ > 0. (T6.46)

if c = 0 the mean-variance curve reads:

α ≡ ζ
Cov {M}−1 (E {M}− d)
d0Cov {M}−1 E {M}

, ζ sign (B) > 0. (T6.47)




