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Univariate statistics

In this chapter we review the basics of univariate statistics. For more on this
subject see Mood, Graybill, and Boes (1974) and Casella and Berger (2001).
In Section 1.1 we introduce the definition of random variable and the con-

cept of distribution, as well as four equivalent ways to represent a distribution:
the most intuitive, i.e. the probability density function, and three equivalent
representations, namely the cumulative distribution function, the characteris-
tic function and the quantile. Depending on the applications, all of the above
representations prove useful.
In Section 1.2 we discuss the parameters that summarize the main features

of a distribution, such as the location, the dispersion, the degree of symmetry
and the thickness of the tails. Then we present the graphical representation
of these properties.
In Section 1.3 we introduce a few distributions that are useful to model

and solve asset allocation problems.

1.1 Building blocks

A random variable X is the number that corresponds to a measurement that
has yet to take place. The measurement can assume a range of values on the
real axis R, each with a specific probability.

For example, consider a stock that trades today on the exchange at the
following price (e.g. in dollars):

ex ≡ 100. (1.1)

Tomorrow’s price X for this stock is a random variable. Something about
this measurement is known: for example we might argue that tomorrow’s
measurement is more likely to be in the neighborhood of today’s value (1.1)
than in the neighborhood of, say, x ≡ 10.
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4 1 Univariate statistics

The stochastic features of the different possible measurements of a ran-
dom variable X can be described in terms of a distribution. A distribution is
characterized by a space of events E and a probability P.
The unknown outcome x of the measurement of X corresponds to one

specific event e among many that can take place in the space of events E.
Therefore, a random variable is a function from the space of events to the
range of measurements on the real line R: if a specific event e takes place,
the measurement will take on the value x ≡ X (e). In a different universe, a
different event e0 might have taken place and thus the measurement would
have been a different value x0 ≡ X (e0).
The likelihood of different possible events is described by a probability P,

which is a measure on the space of events. The following notation stands for
the probability of all the events e in the space of events E that give rise to a
measurement of X in a given interval [x, x]:

P {X ∈ [x, x]} ≡ P {e ∈ E such that X (e) ∈ [x, x]} . (1.2)

A distribution can be represented in three equivalent ways.

{ },X x x ∈  P

xx values of X

Xf

Fig. 1.1. Probability density function

The most intuitive way to represent the distribution of the random variable
X is by means of the probability density function (pdf) fX . Intuitively, the pdf
shows a peak where the outcome of the measurement of X is more likely to
occur. More formally, the probability density function is defined in such a way
that the probability P that a measurement takes place in a generic interval
[x, x] is the area comprised the interval and the density, see Figure 1.1:
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1.1 Building blocks 5

P {X ∈ [x, x]} ≡
Z x

x

fX (x) dx. (1.3)

In particular, we notice that, since a probability is non-negative, the proba-
bility density function is non-negative:

fX (x) ≥ 0. (1.4)

Furthermore, since the measurement of X must assume a value on the real
axis, the following normalization must hold:Z +∞

−∞
fX (x) dx = 1. (1.5)

For example the function

fX (x) ≡
1√
π
e−(x−ex)2 , (1.6)

which we plot in Figure 1.1, has a bell shape which is peaked around the
current price (1.1). We show in a more general context in Section 1.3.2 that
(1.6) satisfies (1.4) and (1.5). Therefore it is a probability density function
which could model tomorrow’s price for the stock.

To introduce the second equivalent way to describe a distribution we notice
from (1.3) that, in order to compute probabilities, we always need to integrate
the probability density function fX over some interval. The cumulative distri-
bution function (cdf) FX is defined as the probability that the measurement
be less than a generic value x, see Figure 1.2. In formulas:

FX (x) ≡ P {X ≤ x} =
Z x

−∞
fX (u) du. (1.7)

In other words, the cumulative distribution function is obtained from the
probability density function by applying (B.27), the integration operator:

FX = I [fX ] . (1.8)

This means that the probability density function can be recovered from the
cumulative distribution function by applying the derivative operator (B.25),
which is the inverse of the integration operator:

fX = D [FX ] . (1.9)

Therefore the two representations are equivalent.
Given the properties (1.4) and (1.5) of the probability density function, it

is easy to check that the cumulative distribution function is non-decreasing
and satisfies the following normalization conditions:
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6 1 Univariate statistics

FX (−∞) = 0, FX (+∞) = 1. (1.10)

On the other hand, any function with the above properties defines a cumula-
tive distribution function.

We plot in Figure 1.2 the cumulative distribution function that corresponds
to the density (1.6). This cumulative distribution function can be expressed
in terms of the error function (B.75) as follows:

FX (x) =
1

2
(1 + erf (x− ex)) , (1.11)

where ex = 100 is today’s price (1.1) of the stock. This is a specific instance of
a more general result, see Section 1.3.2.
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Fig. 1.2. Cumulative distribution function and quantile

A third way to describe the properties of a distribution is through the
characteristic function (cf) φX , defined in terms of the expectation operator
(B.56) as follows:

φX (ω) ≡ E
©
eiωX

ª
, (1.12)

where i ≡
√
−1 is the imaginary unit. The characteristic function can assume

values in the complex plane.
It is not straightforward to determine the properties of a generic charac-

teristic function implied by the properties (1.4) and (1.5) of the probability
density function. Nevertheless, a set of sufficient conditions is provided by
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1.1 Building blocks 7

Polya’s theorem, which states that function φ is a characteristic function of a
distribution if it is real-valued, even, convex on the positive real axis, and if
it satisfies:

φ (0) ≡ 1, lim
ω→∞φ (ω) ≡ 0, (1.13)

see Cuppens (1975).
A comparison of (1.12) with (B.34) and (B.56) shows that the character-

istic function is the Fourier transform of the probability density function:

φX = F [fX ] . (1.14)

Therefore the probability density function can be recovered from the charac-
teristic function by means of (B.40), i.e. the inverse Fourier transform:

fX = F−1 [φX ] . (1.15)

At times, the characteristic function proves to be the easiest way to describe
a distribution.

The characteristic function of the distribution in the example (1.6) reads:

φX (ω) = eiexω− 1
4ω

2

, (1.16)

where ex = 100 is today’s price (1.1) of the stock. This is a specific instance of
a more general result, see Section 1.3.2.

We stress that the probability density function fX , the cumulative distri-
bution function FX and the characteristic function φX are three equivalent
ways to represent the distribution of the random variable X. We summarize
in Figure 1.3 the mutual relationships among these representations.
We also discuss a fourth, fully equivalent way to describe all the properties

of a random variable which is very important in financial applications, see
Section 5.5. The quantile QX of the random variable X is the inverse of the
cumulative distribution function:

QX (p) ≡ F−1X (p) , (1.17)

where p ∈ [0, 1] denotes a specific value of cumulative probability, see Figure
1.2. By definition, the quantile associates with a cumulative probability p the
number x such that the probability that X be less than x is p. In other words,
the quantile is defined implicitly by the following equation:

P {X ≤ QX (p)} = p. (1.18)

Since the quantile is equivalent to the cumulative distribution function, it is
equivalent to any of the above representations of the distribution of X.
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8 1 Univariate statistics
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Fig. 1.3. Equivalent representations of a univariate distribution

The quantile of the distribution of our example (1.6) reads in terms of the
inverse of the error function (B.75) as follows:

QX (p) = ex+ erf−1 (2p− 1) , (1.19)

where ex = 100 is today’s price (1.1) of the stock. This is a specific instance of
a more general result, see Section 1.3.2.

In the above discussion we have made the implicit assumption that the
probability density function fX is smooth and positive. This is not always the
case.

For instance, the definition of quantile provided in (1.17) only makes sense
if the cumulative distribution function is strictly increasing, because only in
this case with each point on the vertical axis of the cumulative function is
associated one and only one point on the horizontal axis, see Figure 1.2. In
order for the cumulative distribution function to be strictly increasing, the
probability density function must be strictly positive. Indeed, the cumulative
distribution function is flat in those regions where the probability density
function is null.

To handle situations such as the above example we have two options: either
we build a more sophisticated mathematical framework that does not rely on
the assumptions of smoothness and positivity for probability density function,
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1.2 Summary statistics 9

or we make the above hypotheses legitimate by regularizing the probability
density function as in Appendix B.4. We choose throughout the book the
second approach, for practical as well as "philosophical" reasons, see (B.54)
and comments thereafter.

To handle the above example, Since the regularized probability density
function fX;� obtained with (B.54) is strictly positive, the respective regu-
larized cumulative distribution function FX;� is strictly increasing and thus
invertible. Therefore we can properly define the regularized quantile as in
(1.17) as the inverse of the cumulative distribution function:

QX;� ≡ F−1X;�. (1.20)

The exact quantile is recovered as the limit of the regularized quantile when
the bandwidth � tends to zero, if this limit exists. Otherwise, we simply work
with the approximate quantile.

1.2 Summary statistics

In this section we discuss a few parameters that summarize the most infor-
mation about the properties of a distribution.

1.2.1 Location

Suppose that we need to summarize all the information regarding the random
variable X in only one number, the one value that best represents the whole
range of possible outcomes. We are looking for a location parameter Loc {X}
that provides a fair indication of where on the real axis the random variable
X will end up taking its value.
A location parameter should enjoy a few intuitive features. In the first

place, if the distribution is peaked around a specific value, the location para-
meter should be close to that peak. In particular, a constant a can be seen
as an infinitely peaked random variable, see (B.22) and comments thereafter.
Thus the location of a constant should be the constant itself:

Loc {a} = a. (1.21)

More in general, the location parameter should track any affine transformation
of the random variable:

Loc {a+ bX} = a+ bLoc {X} , (1.22)

where a and b > 0 are the constants that define the affine transformation.
Property (1.22) is called the affine equivariance of the location parameter.
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10 1 Univariate statistics

To understand this property, imagine that the variable X is the price of a
stock in cents and that we are interested in the value of our portfolio, which
consists of that stock and an extra dollar in cash. Assume that we believe
that tomorrow the stock price will be located in a neighborhood of, say, the
following value in cents:

Loc {X} = 298c. (1.23)

Then the whole portfolio should be located around the following value in
dollars:

Loc

½
1 +

X

100

¾
= 3.98$ = 1 +

Loc {X}
100

. (1.24)

An immediate choice for the location parameter is the center of mass of
the distribution, i.e. the weighted average of each possible outcome, where
the weight of each outcome is provided by its respective probability. This
corresponds to computing the expected value (B.56) of the random variable:

E {X} ≡
Z +∞

−∞
xfX (x) dx. (1.25)

As we prove in Appendix www.1.4, the expected value is affine equivariant,
i.e. it satisfies (1.22). Therefore the expected value of a random variable is a
sensible parameter of location, when the integral that defines it converges.
Whenever the characteristic function (1.12) of X is known and analytical,

i.e. it can be recovered entirely from its Taylor series expansion, computing
the expected value is easy, as we show in Appendix www.1.6.
An alternative choice for the location parameter is the median, which is

the quantile (1.17) relative to the specific cumulative probability p ≡ 1/2:

Med {X} ≡ QX

µ
1

2

¶
. (1.26)

From (1.18), the median is defined equivalently by the following implicit equa-
tion: Z Med{X}

−∞
fX (x) dx =

1

2
. (1.27)

As we prove in Appendix www.1.4, the median is affine equivariant, i.e. it
satisfies (1.22). Therefore the median of a random variable is also a sensible
parameter of location.
Consider a distribution that is symmetrical around some value ex, i.e. a

distribution such that the probability density function fX satisfies:

(Refl ◦Shiftex) [fX ] = Shiftex [fX ] , (1.28)

where the reflection and shift operators are defined in (B.32) and (B.33)
respectively. In this case it is intuitive to assume that the symmetry point is a
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1.2 Summary statistics 11

good parameter of location. Indeed, we prove in Appendix www.1.5 that the
symmetry point coincides with both the median and the expected value:

Med {X} = E {X} = ex. (1.29)

A third parameter of location is the mode, which refers to the shape of
the probability density function fX . Indeed, the mode is defined as the point
that corresponds to the highest peak of the density function:

Mod {X} ≡ argmax
x∈R

{fX (x)} . (1.30)

By construction, the mode is peaked around the most likely outcomes. In
Appendix www.1.4 we show that the mode is affine equivariant, i.e. it satisfies
(1.22): therefore the mode of a random variable is also a sensible parameter
of location. Nevertheless, there might exist two or more equally high global
maxima, in which case the mode is not defined.

In the example (1.6) it is easy to see that the above three parameters of
location, namely expected value, median and mode, coincide:

E {X} = Med {X} = Mod {X} = ex, (1.31)

where ex = 100 is today’s price (1.1) of the stock. This is a specific instance of
a more general result, see Section 1.3.2.

We remark that the expected value summarizes "global" features of the
distribution, in that the whole density fX contributes to the result, see (1.25);
the median only involves "half" of the distribution, see (1.27); the mode pro-
vides a "local" picture, in that only a specific value matters, see (1.30).

1.2.2 Dispersion

In this section we summarize in one number the degree of dispersion of the
random variable X. In other words, we are looking for a dispersion parameter
Dis {X} that yields an indication of the extent to which the location parameter
might be wrong in guessing the outcome of X.
As in the case of the location parameter, we require that the dispersion

parameter display an intuitive property:

Dis {a+ bX} = |b|Dis {X} , (1.32)

where a and b are constants. Property (1.32) is called the affine equivariance
of the dispersion parameter.
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12 1 Univariate statistics

To understand the affine equivariance property of the dispersion parame-
ter, imagine that the variable X is tomorrow’s price of a stock in cents and
that we assess a dispersion of, say 10 cents. Then the dispersion in dollars of
the stock price should be 0.1 dollars:

Dis

½
X

100

¾
= 0.10$ =

Dis {X}
100

. (1.33)

Furthermore, the dispersion of a portfolio made of that stock and a given
amount m of cents in cash should be the same as the dispersion of the stock
alone:

Dis {X} = 10c = Dis {X +m} . (1.34)

In view of multivariate generalizations it is useful to reformulate (1.32) the
affine equivariance property in a different way. First we define the z-score of
the random variable X, which is a normalized version of X located in zero
and with unitary dispersion:

ZX ≡
X − Loc {X}
Dis {X} . (1.35)

The affine equivariance property of the location parameter (1.22) and of the
dispersion parameter (1.32) are equivalent to the condition that the squared
z-score remain unaffected by affine transformations:

Z2a+bX = Z2X . (1.36)

A popular dispersion parameter is the interquantile range, defined as the
difference of two arbitrary quantiles

Ran {X} ≡ QX (p)−QX

¡
p
¢
, (1.37)

where p > p. The standard choice is p ≡ 3/4, which corresponds to the upper
quartile, and p ≡ 1/4, which corresponds to the lower quartile. We prove in
Appendix www.1.4 that the range is affine equivariant, i.e. it satisfies (1.32).
To introduce another dispersion parameter, consider the modal dispersion:

MDis {X} ≡ − 1
d2 ln fX
dx2

¯̄̄̄
¯
x=Mod{X}

, (1.38)

see O’Hagan (1994). As we prove in a more general multivariate setting in
Appendix www.2.5, the square root of the modal dispersion is affine equivari-
ant and thus it is a suitable dispersion parameter. To see the rationale of this
definition, consider a second-order Taylor approximation of the probability
density function of X in a neighborhood of the mode:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



1.2 Summary statistics 13

fX (x) ≈ fX (Mod {X}) +
d2fX
dx2

¯̄̄̄
x=Mod{X}

(x−Mod {X})2 . (1.39)

The larger in absolute value the second derivative, which is negative around a
maximum, the thinner the the probability density function around the mode,
and thus the less the dispersion of X. Considering the logarithm of the pdf
in the definition (1.38) and taking the square root of the result makes the
ensuing parameter affine equivariant.
To define more dispersion parameters we notice that intuitively the dis-

persion of X is a sort of distance between X and its location parameter. We
recall that the space LpX of functions of X is a vector space with the norm
k·kX;p, see (B.57) and (B.58). Therefore we can define a dispersion parameter
in a natural way as the distance between the random variable and its location
parameter:

Dis {X} ≡ kX − Loc {X}kX;p . (1.40)

The general properties (A.7) of a norm imply that this definition of dispersion
is affine equivariant, i.e. it satisfies (1.32).
In particular, if we set p ≡ 1 in (1.40) and we define the location parameter

as the expected value (1.25), we obtain the mean absolute deviation (MAD):

MAD {X} ≡ E {|X − E {X}|} (1.41)

=

Z
R
|x− E {X}| fX (x) dx.

On the other hand, if we set p ≡ 2 in (1.40) and again we define the location
parameter as the expected value (1.25) we obtain the standard deviation:

Sd {X} ≡
³
E
n
(X − E {X})2

o´ 1
2

(1.42)

=

sZ
R
(x− E {X})2 fX (x) dx.

When the integral in (1.42) converges, the standard deviation is the bench-
mark dispersion parameter. The square of the standard deviation, which is
very important in applications, is called the variance:

Var {X} ≡ (Sd {X})2 =
Z
R
(x− E {X})2 fX (x) dx. (1.43)

Whenever the characteristic function (1.12) of X is known and it is an-
alytical, i.e. it can be recovered entirely from its Taylor series expansion,
computing the variance is straightforward, see Appendix www.1.6.

In our example (1.6) the range reads:

Ran {X} = erf−1
µ
1

2

¶
− erf−1

µ
−1
2

¶
≈ 0.95; (1.44)
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14 1 Univariate statistics

the mean absolute deviation reads:

MAD {X} = 1√
π
≈ 0.56; (1.45)

and the standard deviation reads:

Sd {X} = 1√
2
≈ 0.71. (1.46)

These are specific instances of more general results, see Section 1.3.2.

We remark that, similarly to the expected value, the standard deviation
and the mean absolute deviation summarize global features of the distribution,
in that the whole density fX contributes to the result. On the other hand,
similarly to the median, the range involves parts of the distribution. Finally,
similarly to the mode, the modal dispersion provides a local picture, in that
only a small neighborhood of a specific value matters.

1.2.3 Higher-order statistics

By means of the expectation operator (B.56) we can introduce the moments,
summary statistics that provide more insight into the features of a distribu-
tion.
The k-th raw moment of a random variable X is the expectation of the

k-th power of the random variable:

RMX
k ≡ E

©
Xk
ª
. (1.47)

The k-th central moment of a random variable is a location-independent
version of the respective raw moment:

CMX
k ≡ E

n
(X − E {X})k

o
. (1.48)

We already discussed the first raw moment of a random variable X, which
is the expected value (1.25); we also discussed the second central moment,
which is the variance (1.43).
The third central moment provides a measure of the degree of symmetry of

the distribution of X. The standard measure of symmetry of a distribution is
the skewness, which is the third central moment normalized by the standard
deviation, in such a way to make it scale-independent:

Sk {X} ≡ CMX
3

(Sd {X})3
. (1.49)

In particular, a distribution whose probability density function is symmetric
around its expected value has null skewness. If the skewness is positive (neg-
ative), occurrences larger than the expected value are more (less) likely than
occurrences smaller than the expected value.
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1.2 Summary statistics 15

In our example (1.6) we have:

Sk {X} = 0. (1.50)

This is a specific instance of a more general result, see Section 1.3.2. The result
(1.50) is consistent with the symmetry of the probability density function
(1.6).

The fourth moment provides a measure of the relative weight of the tails
with respect to the central body of a distribution. The standard quantity to
evaluate this balance is the kurtosis, defined as the normalized fourth central
moment:

Ku {X} ≡ CMX
4

(Sd {X})4
. (1.51)

The kurtosis gives an indication of how likely it is to observe a measurement
far in the tails of the distribution: a large kurtosis implies that the distribution
displays "fat tails".

In our example (1.6) we have:

Ku {X} = 3. (1.52)

This is a specific instance of a more general result, see Section 1.3.2.

We remark that all the above moments and summary statistics involve
in general integrations. If the integral that defines the expectation operator
(B.56) does not converge, the respective moment is not defined. Nevertheless,
whenever the characteristic function of the distribution is known and analyt-
ical, i.e. it can be recovered entirely from its Taylor series expansion, we can
compute these quantities by means of simple differentiation and some algebra,
as we show in Appendix www.1.6.

1.2.4 Graphical representations

To obtain an immediate idea of the properties of location and dispersion of a
random variable X it is useful to represent them graphically.
One way to do this is by means of a box plot , which is the plot of the

first, second and third quartile: the box plot summarizes the location of the
given distribution, in this case the median, and its dispersion, in this case the
interquartile range. More in general, the plot of a few key quantiles gives an
idea of the main features of the probability density function fX , and thus of
the distribution of X, see Figure 1.4. Furthermore, the box plot gives an idea
of the degree of symmetry of the distribution: if the distance between lower
quartile and median exceeds the distance between median and upper quartile
the distribution is more spread below the median than it is above the median.
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16 1 Univariate statistics
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Fig. 1.4. Summary statistics of univariate distributions

Another way to summarize the main features of a distribution is by means
of the location-dispersion bar, namely the set of points x which are not any
farther from the location parameter of X than one dispersion:

Loc {X}−Dis {X} ≤ x ≤ Loc {X}+Dis {X} . (1.53)

The location-dispersion bar is an interval centered on the location parameter
and wide twice the dispersion parameter, see Figure 1.4. The dispersion bar
becomes particularly useful in its generalization to a multivariate setting, see
Section 2.4.3.

1.3 Taxonomy of distributions

In this section we discuss a few distributions that are useful in asset allocation
applications. All the distribution introduced are special univariate cases of the
more general distributions introduced in Section 2.6.

1.3.1 Uniform distribution

The uniform distribution models the situation where the realization of the
random variable X is bound to take place on an interval [a, b] and all the
values within that interval are equally likely outcomes of the measurement of
X.
We use the following notation to indicate that X is uniformly distributed

on the interval [a, b]:
X ∼ U([a, b]) . (1.54)
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1.3 Taxonomy of distributions 17

Equivalent representations
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Fig. 1.5. Uniform distribution: pdf and cdf

The probability density function of the uniform distribution reads:

fUa,b (x) =
1

b− a
I[a,b] (x) , (1.55)

where I is the indicator function (B.72), see Figure 1.5.
The cumulative distribution function of the uniform distribution reads:

FUa,b (x) =
x− a

b− a
I[a,b] (x) +H(b) (x) , (1.56)

where H is the Heaviside step function (B.73), see Figure 1.5.
The characteristic function of the uniform distribution reads:

φUa,b (ω) =
1

ω

2

b− a
sin

µ
b− a

2
ω

¶
ei

a+b
2 ω, (1.57)

see Abramowitz and Stegun (1974).
Inverting (1.56) we obtain the quantile of the uniform distribution:

QUa,b (p) = a+ (b− a) p. (1.58)

Summary statistics

The standard parameters that summarize the properties of the uniform dis-
tribution, namely expected value, standard deviation, skewness and kurtosis,
read respectively:
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18 1 Univariate statistics

E {X} = a+
1

2
(b− a) (1.59)

Sd {X} = 1√
12
(b− a) (1.60)

Sk {X} = 0 (1.61)

Ku {X} = 9

5
, (1.62)

see Abramowitz and Stegun (1974).
It is possible to compute explicitly also other parameters of location and

dispersion. Since the uniform distribution is symmetrical, from (1.29) the me-
dian is equal to the expected value:

Med {X} = a+
1

2
(b− a) . (1.63)

The mode is not defined. An integration yields the mean absolute deviation:

MAD {X} = 1

8
(b− a) . (1.64)

The interquartile range is easily obtained from (1.58) and reads:

Ran {X} = 1

2
(b− a) . (1.65)

1.3.2 Normal distribution

The normal distribution is by far the most used and studied distribution.
Its bell-shaped profile and its analytical tractability make it the benchmark
choice to describe random variables that are peaked around a given value but
can take on values on the whole real axis. The normal distribution depends on
two parameters µ and σ2. The parameter µ is a location parameter that turns
out to be the expected value and the parameter |σ| is a dispersion parameter
that turns out to be the standard deviation.
We use the following notation to indicate that X is normally distributed

according to those parameters:

X ∼ N
¡
µ, σ2

¢
. (1.66)

The case µ ≡ 0 and σ2 ≡ 1 defines the standard normal distribution.

Equivalent representations

The probability density function of the normal distribution is defined as fol-
lows:

fNµ,σ2 (x) ≡
1√
2πσ2

e−
(x−µ)2
2σ2 , (1.67)
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Fig. 1.6. Normal distribution: pdf and cdf

see Figure 1.6.
The cumulative distribution function of the normal distribution can be

expressed in terms of the error function (B.75) as follows:

FNµ,σ2 (x) =
1

2

·
1 + erf

µ
x− µ√
2σ2

¶¸
, (1.68)

see Figure 1.6.
The characteristic function of the normal distribution reads:

φNµ,σ (ω) = eiµω−
σ2

2 ω2 , (1.69)

see Abramowitz and Stegun (1974).
Inverting (1.68) we obtain the quantile of the normal distribution:

QNµ,σ2 (p) = µ+
√
2σ2 erf−1 (2p− 1) . (1.70)

Summary statistics

The standard parameters that summarize the properties of the normal dis-
tribution, namely expected value, standard deviation, skewness and kurtosis,
can be computed from the characteristic function (1.69) with the technique
described in Appendix www.1.6, and read respectively:

E {X} = µ (1.71)

Sd {X} =
√
σ2 (1.72)

Sk {X} = 0 (1.73)

Ku {X} = 3. (1.74)
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20 1 Univariate statistics

It is possible to compute explicitly also other parameters of location
and dispersion. Since the normal distribution is symmetrical, from Appen-
dix www.1.5 we know that the median is equal to the expected value, which
in this case is also equal to the mode:

Med {X} = Mod {X} = µ. (1.75)

The mean absolute deviation reads:

MAD {X} =
r
2σ2

π
. (1.76)

The interquartile range can be easily derived from the expression of the quan-
tile (1.70) and reads:

Ran {X} =
√
2σ2

·
erf−1

µ
1

2

¶
− erf−1

µ
−1
2

¶¸
. (1.77)

1.3.3 Cauchy distribution

Like the normal distribution, the Cauchy distribution is bell-shaped and de-
pends on two parameters µ and σ2. The parameter µ is a location parameter
that can take on any value and the parameter σ2 is the square of a dispersion
parameter |σ|.
We use the following notation to indicate that X is Cauchy distributed

with the above parameters:

X ∼ Ca
¡
µ, σ2

¢
. (1.78)

The case µ ≡ 0 and σ2 ≡ 1 is called the standard Cauchy distribution.
The Cauchy distribution is used instead of the normal distribution when

extreme events are comparatively speaking more likely to occur than in the
case of a normal distribution. This phenomenon is also known as fat tails
behavior.

Equivalent representations

The probability density function of the Cauchy distribution, which we plot in
Figure 1.7, is defined as follows:

fCaµ,σ2 (x) ≡
1

π
√
σ2

Ã
1 +

(x− µ)2

σ2

!−1
, (1.79)

see Abramowitz and Stegun (1974) and mathworld.com.
The cumulative distribution function of the Cauchy distribution, which we

plot in Figure 1.7, reads:
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Fig. 1.7. Cauchy distribution: pdf and cdf

FCaµ,σ2 (x) =
1

2
+
1

π
arctan

µ
x− µ√
σ2

¶
, (1.80)

see e.g. mathworld.com.
The characteristic function of the Cauchy distribution reads:

φCaµ,σ2 (ω) = eiµω−
√
σ2|ω|, (1.81)

see e.g. Abramowitz and Stegun (1974) and mathworld.com.
The quantile of the Cauchy distribution is obtained inverting (1.80) and

reads:
QCaµ,σ2 (p) = µ+

√
σ2 tan

³
πp− π

2

´
. (1.82)

Summary statistics

The moments of the Cauchy distribution are not defined. This happens be-
cause the probability density function (1.79) decays proportionally to x−2 in
the tails. Therefore the computation of the generic moment of order k in-
volves integrating a function of the order of xk−2 as |x|→∞, which does not
converge for any positive integer k.
The fact that the moments are not defined is reflected also in the expres-

sion of the characteristic function (1.81), which is not differentiable in zero.
Therefore in particular it cannot be expressed as a Taylor series in terms of
the moments as in Appendix www.1.6.
Nevertheless, from the expression of the quantile (1.82) we obtain the

median, which is also equal to the mode:
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22 1 Univariate statistics

Med {X} = Mod {X} = µ. (1.83)

Similarly, from the expression of the quantile (1.82) we obtain the interquartile
range:

Ran {X} = 2
√
σ2. (1.84)

1.3.4 Student t distribution

Like the normal and the Cauchy distributions, the Student t distribution,
is bell-shaped. It depends on three parameters

¡
ν, µ, σ2

¢
. The parameter ν,

which takes on integer values, is called the degrees of freedom of the Student
t distribution and determines the thickness of the tails. The parameter µ is
a location parameter that can take on any value and σ2 is the square of a
dispersion parameter |σ|.
We use the following notation to indicate that X is Student t distributed

with the above parameters:

X ∼ St
¡
ν, µ, σ2

¢
. (1.85)

The case µ = 0 and σ2 = 1 is called the standard Student t distribution.

Equivalent representations

On mathworld.com we find the standard Student t probability density func-
tion. By applying formula (T.14) in Appendix www.1.2 we obtain the proba-
bility density function of the general Student t distribution, which reads:

fStν,µ,σ (x) =
Γ
¡
ν+1
2

¢
Γ
¡
ν
2

¢ 1√
νπσ2

Ã
1 +

1

ν

(x− µ)2

σ2

!− ν+1
2

, (1.86)

where Γ is the gamma function (B.80). See in Figure 1.8 the bell-shaped
profile of this function.
Similarly, we find on mathworld.com the standard Student t cumulative

distribution function. By applying formula (T.15) in Appendix www.1.2 we
obtain the cumulative distribution function of the general Student t distribu-
tion. In Figure 1.8 we plot this function, which reads explicitly:

F Stν,µ,σ (x) = 1−
1

2
I

Ã1 + 1

ν

(x− µ)2

σ2

!−1
;
ν

2
, ν

 , (1.87)

where I is the regularized beta function (B.91).
The quantile of the Student t distribution cannot be expressed analytically.
On p. 948 of Abramowitz and Stegun (1974) we find the characteristic

function of the standard Student t distribution. By applying formula (T.18)
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Fig. 1.8. Student t distribution: pdf and cdf

in Appendix www.1.2 we obtain the cumulative distribution function of the
general Student t distribution:

φStν,µ,σ2 =
eiωµ

πΓ (ν/2)

µ
σ2ω2

4ν

¶ ν
4

Y ν
2

Ãr
σ2ω2

ν

!
, (1.88)

where Γ denotes the gamma function (B.80) and Yν is the Bessel function of
the second kind (B.93).

Summary statistics

The standard parameters that summarize the properties of the Student t dis-
tribution, namely expected value, standard deviation, skewness and kurtosis,
are computed in Abramowitz and Stegun (1974) and read:

E {X} = µ (1.89)

Sd {X} = ν

ν − 2
√
σ2 (1.90)

Sk {X} = 0 (1.91)

Ku {X} = 3 + 6

ν − 4 . (1.92)

These parameters are defined for ν > 1, 2, 3 and 4 respectively.
The Student t distribution includes the normal distribution and the

Cauchy distribution as special cases. Indeed we show in Appendix www.2.14
in a more general context that the limit ν →∞ of the Student t probability
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Fig. 1.9. Relations among Cauchy, normal, and Student t distributions

density function (1.86) yields the normal probability density function (1.67).
On the other hand, if we set ν ≡ 1 in (1.86) and recall (B.81) and (B.82), we
obtain the Cauchy probability density function (1.79).
As we see in Figure 1.9, the lower the degrees of freedom, the "fatter" the

tails of the probability density function and the flatter the cumulative distri-
bution function. This is consistent with the above discussion of the Cauchy
distribution and with the expression (1.92) of the kurtosis.

1.3.5 Lognormal distribution

The price of a security is a positive random variable. Furthermore, the random
changes from the current price are better stated in percentage terms than
in absolute terms. In other words, if the price now is, say, 1$, the chance
that the price will double, which corresponds to an absolute change of 1$
is approximately equal to the chance that the price will become half, which
corresponds to an absolute change of 0.5$.
To model this feature, consider a random variable (the "percentage change")

that is normally distributed:

Y ∼ N
¡
µ, σ2

¢
. (1.93)

The lognormal distribution is defined as the distribution of the variable X ≡
eY . The rationale behind this name is obviously the fact that by definition X
is lognormally distributed if and only if its logarithm is normally distributed.
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We use the following notation to indicate thatX is lognormally distributed
with the above parameters:

X ∼ LogN
¡
µ, σ2

¢
. (1.94)

Equivalent representations
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Fig. 1.10. Lognormal distribution: pdf and cdf

The probability density function of the lognormal distribution reads from
(T.21) in Appendix www.1.1 as follows:

fLogNµ,σ2 (x) =
1

x
√
2πσ2

e−
1
2
(ln(x)−µ)2

σ2 . (1.95)

We notice in Figure 1.10 that the lognormal pdf is not symmetrical.
Applying formula (T.22) in Appendix www.1.3 to the normal cumulative

distribution function (1.68), we obtain the cumulative distribution function
of the lognormal distribution, which we plot in Figure 1.10:

FLogNµ,σ2 (x) =
1

2

µ
1 + erf

µ
ln (x)− µ√

2σ2

¶¶
. (1.96)

The characteristic function is not known in analytic form.
Applying formula (T.23) in Appendix www.1.3 to the normal quantile

(1.70), we obtain the quantile of the lognormal distribution:

QLogNµ,σ2 (p) = eµ+
√
2σ2 erf−1(2p−1). (1.97)
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Summary statistics

The standard parameters that summarize the properties of the lognormal dis-
tribution, namely expected value, standard deviation, skewness and kurtosis
read respectively:

E {X} = eµ+
σ2

2 (1.98)

Sd {X} = eµ+
σ2

2

p
eσ2 − 1 (1.99)

Sk {X} =
p
eσ2 − 1

³
eσ

2

+ 2
´

(1.100)

Ku {X} = e4σ
2

+ 2e3σ
2

+ 3e2σ
2 − 3. (1.101)

The above parameters can be computed with a technique which we discuss in
a general multivariate environment in Appendix www.2.16. In particular, we
notice that the lognormal distribution is positively skewed, as we see in the
profile of the probability density function in Figure 1.10.
It is possible to compute explicitly also other parameters of location and

dispersion. The median follows from (T.9) in Appendix www.1.1:

Med {X} = eµ. (1.102)

The first-order condition on the density (1.95) yields the mode:

Mod {X} = eµ−σ
2

. (1.103)

Notice that the three location parameters (1.98), (1.102) and (1.102) yield
different results.
The expression of the interquartile range follows from the quantile (1.97)

and reads:

Ran {X} = eµ
³
e
√
2σ2 erf−1( 12 ) − e

√
2σ2 erf−1(− 1

2 )
´
. (1.104)

1.3.6 Gamma distribution

We introduce here a distribution that is useful in Bayesian analysis, where the
parameters of a distribution are considered as random variables. In particular,
we will need a distribution to describe the variance, which is always non-
negative. The gamma distribution proves particularly suitable in this respect.
Consider a set of ν random variables (Y1, . . . , Yν) that are normally iden-

tically distributed:
Yt ∼ N

¡
µ, σ2

¢
, (1.105)

for all t = 1, . . . , ν. Furthermore, assume that these random variables are
independent1.

1 Refer to Section 2.3 for a formal definition of dependence.
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The non-central gamma distribution with ν degrees of freedom is defined
as the distribution of the following variable:

X ≡ Y 2
1 + · · ·+ Y 2

ν . (1.106)

As such, the non-central gamma distribution depends on three parameters¡
ν, µ, σ2

¢
. The parameter ν is an integer and is called the degrees of freedom

of the gamma distribution; the parameter µ can assume any value and is
called the non-centrality parameter ; the parameter σ2 is a positive scalar and
is called the scale parameter.
We use the following notation to indicate that X is distributed as a non-

central gamma with the above parameters:

X ∼ Ga
¡
ν, µ, σ2

¢
. (1.107)

The special case where the non-centrality parameter is µ ≡ 0 gives rise to
the central gamma distribution with ν degrees of freedom. We use the follow-
ing notation to indicate that X is central-gamma distributed with the above
parameters:

X ∼ Ga
¡
ν, σ2

¢
. (1.108)

The special case where the scale parameter is σ2 ≡ 1 gives rise to the
(non-central) chi-square distribution with ν degrees of freedom.
In particular, when µ ≡ 0 and σ2 ≡ 1 we obtain the chi-square distribution

with ν degrees of freedom, which is denoted as follows:

X ∼ χ2ν . (1.109)

In view of generalizations to a multivariate setting and applications later
on in the book, we focus below on the central gamma distribution, which
includes the chi-square distribution as a special case.

Equivalent representations

The results and expressions that follow can be found on mathworld.com.
The probability density function of the central gamma distribution reads:

fGaν,σ2 (x) =
1

(2σ2)
ν
2 Γ

¡
ν
2

¢x ν
2−1e−

1
2
x
σ2 , (1.110)

where Γ is the gamma function (B.80). We plot in Figure 1.11 the profile of
this density.
The cumulative distribution function of the central gamma distribution

reads:
FGaν,σ2 (x) = P

³ν
2
;
x

2σ2

´
, (1.111)

where P is the lower regularized gamma function (B.85), see Figure 1.11 for
a plot.
The characteristic function of the central gamma distribution reads:

φGaν,σ2 (ω) =
¡
1− 2iσ2ω

¢− ν
2 . (1.112)
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Fig. 1.11. Gamma distribution: pdf and cdf

Summary statistics

The standard parameters that summarize the properties of the gamma dis-
tribution, namely expected value, standard deviation, skewness and kurtosis
read respectively:

E {X} = νσ2 (1.113)

Sd {X} =
√
2νσ2 (1.114)

Sk {X} =
r
8

ν
(1.115)

Ku {X} = 3 + 12
ν
. (1.116)

The first-order condition on the probability density function yields the mode:

Mod {X} = (ν − 2)σ2. (1.117)

1.3.7 Empirical distribution

Suppose that our information iT regarding the random variable X consists of
T past measurements of this variable:

iT ≡ {x1, . . . , xT } . (1.118)

Notice the lower-case notation in (1.118), since the measurements have already
taken place, and therefore the outcomes are no longer random variables.
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The empirical distribution provides a straightforward model for the basic
assumption of statistics that we can learn about the future from the past:
under the empirical distribution any of the past outcomes is assumed equally
likely to occur again in future measurements of X, whereas any other value
cannot occur.
We use the following notation to indicate that X is distributed according

to an empirical distribution with the above observations:

X ∼ Em(iT ) . (1.119)

Equivalent representations

pdf

cdf

values of X

( );Ti
f xε

( );Ti
F xε

Fig. 1.12. Empirical distribution (regularized): pdf and cdf

The empirical distribution is discrete. Therefore its probability density
function is a generalized function. As in (B.22), we can express the empirical
pdf as follows:

fiT (x) =
1

T

TX
t=1

δ(xt) (x) , (1.120)

where δ is the Dirac delta (B.16).
It is impossible to represent graphically this probability density function,

unless we regularize it by means of the convolution as in (B.54). The regular-
ized probability density function of the empirical distribution reads in terms
of the smooth approximation (B.18) of the Dirac delta as follows:
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fiT ;� ≡ fiT ∗ δ(0)� =
1

T

TX
t=1

δ(xt)� , (1.121)

where � is a small bandwidth. We plot in Figure 1.12 the regularized version
of the empirical probability density function.
From (B.53) the empirical cumulative distribution function reads:

FiT (x) =
1

T

TX
t=1

H(xt) (x) , (1.122)

where H is the Heaviside step function (B.73). In Figure 1.12 we plot the
regularized cumulative distribution function ensuing from (1.121).
From the definition of the characteristic function (1.12) in terms of the

expectation operator (B.56), and from the property (B.17) of the Dirac delta
we obtain:

φiT (ω) =
1

T

TX
t=1

eiωxt . (1.123)

The quantile (1.17) is not defined because the cumulative distribution func-
tion (1.122) is not invertible. Nevertheless, using the regularization technique
(1.20) and then considering the limit where the bandwidth � tends to zero we
can easily obtain the result. Indeed, a comparison of Figure 1.12 with Figure
1.2 shows that the quantile of the empirical distribution reads:

QiT (p) = x[pT ]:T , (1.124)

where [·] denotes the integer part and where we denote as follows the ordered
set of observations:

x1:T ≡ min {x1, . . . , xT }
... (1.125)

xT :T ≡ max {x1, . . . , xT } .

Summary statistics

The standard parameters that summarize the properties of the empirical dis-
tribution, namely expected value, standard deviation, skewness and kurtosis,
follow from the definition of the expectation operator (B.56), and the prop-
erty (B.17) of the Dirac delta. We denote these parameters respectively as
follows:
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bEiT = 1

T

TX
t=1

xt (1.126)

cSdiT = 1

T

TX
t=1

¡
xt − bEiT ¢2 (1.127)

cSkiT = 1

T

TX
t=1

Ã
xt − bEiTcSdiT

!3
(1.128)

cKuiT = 1

T

TX
t=1

Ã
xt − bEiTcSdiT

!4
. (1.129)

These parameters are also called sample mean, sample standard deviation,
sample skewness and sample kurtosis respectively.
The mode is not defined. From the expression for the quantile (1.124) we

obtain the sample median:

Med {X} = x[T2 ]:T
. (1.130)

Similarly, from the expression for the quantile we obtain the sample interquar-
tile range:

Med {X} = x[ 34T ]:T
− x[ 14T ]:T

. (1.131)
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2

Multivariate statistics

The financial markets contain many sources of risk. When dealing with several
sources of risk at a time we cannot treat them separately: the joint structure
of multi-dimensional randomness contains a wealth of information that goes
beyond the juxtaposition of the information contained in each single variable.
In this chapter we discuss multivariate statistics. The structure of this

chapter reflects that of Chapter 1: to ease the comprehension of the multi-
variate case refer to the respective section in that chapter. For more on this
subject see also references such as Mardia, Kent, and Bibby (1979), Press
(1982) and Morrison (2002).
In Section 2.1 we introduce the building blocks of multivariate distributions

which are direct generalizations of the one-dimensional case. These include the
three equivalent representations of a distribution in terms of the probability
density function, the characteristic function and the cumulative distribution
function.
In Section 2.2 we discuss the factorization of a distribution into its purely

univariate components, namely the marginal distributions, and its purely joint
component, namely the copula. To present copulas we use the leading example
of vanilla options.
In Section 2.3 we introduce the concept of independence among random

variables and the related concept of conditional distribution.
In Section 2.4 we discuss the location summary statistics of a distribution

such as its expected value and its mode, and the dispersion summary statistics
such as the covariance matrix and the modal dispersion. We detail the geo-
metrical representations of these statistics in terms of the location-dispersion
ellipsoid, and their probabilistic interpretations in terms of a multivariate
version of Chebyshev’s inequality. We conclude introducing more summary
statistics such as the multivariate moments, which provide a deeper insight
into the shape of a multivariate distribution.
In Section 2.5 we discuss summary statistics for the level of interdepen-

dence among the marginal components of a multivariate distribution. We in-
troduce copula-driven measures of dependence such as the Schweizer-Wolff
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34 2 Multivariate statistics

measure and copula-driven measures of concordance, such as Spearman’s rho
and Kendall’s tau. We also analyze the advantages and potential pitfalls of
using the correlation as a measure of interdependence.
In Section 2.6 we present a taxonomy of parametric distributions that

represent the multivariate generalization of those introduced in Chapter 1.
In particular, in view of their applications to estimation theory, we introduce
matrix-variate distributions, such as the Wishart distribution, the matrix-
variate normal, Cauchy and Student t distributions. In view of their applica-
tions to modeling prices, we introduce generic log-distributions, of which the
lognormal is an example, along with a general technique to compute all the
moments of these distributions.
In Section 2.7 we discuss a few broad classes of distributions that are very

useful in applications, namely elliptical and symmetric stable distributions,
which are symmetric and analytically tractable, and infinitely divisible distri-
bution, that allow to model the financial markets at any investment horizon.

2.1 Building blocks

In this section we introduce the multivariate extension of the building blocks
of univariate statistics discussed in Section 1.1, namely the concept of mul-
tivariate distribution and its equivalent representations in terms of the joint
probability density function, the joint cumulative distribution function and
the joint characteristic function.
A random variable X of dimension N is a vector that corresponds to a

joint measurement of N variables that has yet to take place:

X ≡ (X1, . . . ,XN )
0 . (2.1)

A joint measurement corresponds to one point in the space RN . Therefore the
joint measurements of X can assume a range of values in various regions of
RN , and each of these values has a specific probability to occur.

For example, consider two stocks that trade today on the exchange at the
following prices (e.g. in dollars):

ex1 ≡ 100, ex2 ≡ 50. (2.2)

Tomorrow’s prices X ≡ (X1,X2)
0 for these stocks are a bivariate random

variable. A joint measurement is a point in the plane R2 and with each point
on the plane is associated a different probability.

The stochastic features of the different possible measurements of a ran-
dom variable X can be described in terms of a multivariate distribution. A
distribution is characterized by a space of events E and a probability P.
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2.1 Building blocks 35

The unknown outcome x of the joint measurement of the entries of X
corresponds to one specific event e among many that can take place in a
space of events E. Therefore, a multivariate random variable is a function
from the space of events to the range of measurements in RN : if a specific
event e takes place, the measurement will take on the value x ≡ X (e). In
a different universe a different event e0 might have taken place and thus the
measurement would have assumed a different value x0 ≡ X (e0).
The likelihood of different possible events is described by a probability P,

which is a measure on the space of events. The following notation stands for
the probability of all the events e in the space of events E that give rise to a
joint measurement of X in the region R of the space RN :

P {X ∈ R} ≡ P
©
e ∈ E such that X (e) ∈ R ⊂ RN

ª
. (2.3)

This expression generalizes (1.2).
As in the one-dimensional case, a distribution can be represented in three

equivalent ways.

R

{ }∈P RX
f X

x1
xN

Fig. 2.1. Multivariate probability density function

The most intuitive way to represent the distribution of the random variable
X is through the probability density function (pdf) fX. Intuitively, the pdf
shows a peak where the outcome of the measurement of X is more likely to
occur. More formally, the probability density function is defined in such a way
that the probability that a measurement takes place in a generic region R is
the volume comprised between the region and the density, see Figure 2.1:

P {X ∈ R} ≡
Z
R
fX (x) dx. (2.4)
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36 2 Multivariate statistics

In particular, since a probability is non-negative, the probability density func-
tion is non-negative:

fX (x) ≥ 0. (2.5)

Furthermore, since the joint measurement of X must assume a value in RN ,
the following normalization condition must hold:Z

RN
fX (x) dx = 1. (2.6)

For instance, consider the following function:

fX (x1, x2) ≡
√
5√
8π

e−
1
2u(x1,x2), (2.7)

where u is the following quadratic form:

u (x1, x2) ≡
µ
x1 − ex1
x2 − ex2

¶0µ 10
3 −23

√
10

−23
√
10 10

3

¶µ
x1 − ex1
x2 − ex2

¶
; (2.8)

and where (ex1, ex2) are the current prices (2.2) of the two stocks in our example.
This function has a bell shape which is peaked around the current prices, see
Figure 2.1. The function (2.7) satisfies (2.5) and (2.6), as we show in a more
general context in Section 2.6.2. Therefore it defines a probability density
function, which we can use to model tomorrow’s prices X ≡ (X1,X2)

0 for the
two stocks in the example.

The second equivalent way to describe the distribution of a random vari-
able X is the cumulative distribution function (cdf) FX, which is defined as
the probability that the joint measurement of the entries of X be less than a
given generic value:

FX (x) ≡ P {X ≤ x} (2.9)

=

Z x1

−∞
· · ·
Z xN

−∞
fX (u1, . . . , uN ) du1 · · · duN .

The cumulative distribution function is obtained from the probability density
function by applying the combined integration operators (B.27) as follows:

FX = (I1 ◦ · · · ◦ IN ) [fX] . (2.10)

In turn, the probability density function can be recovered from the cumula-
tive distribution function by applying the combined differentiation operators
(B.25) as follows:

fX = (D1 ◦ · · · ◦DN ) [FX] . (2.11)

Therefore the two representations in terms of pdf and cdf are equivalent. The
positivity condition (2.5) and the normalization condition (2.6) on the pdf
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2.1 Building blocks 37

transfer to the cdf in a way similar to the one-dimensional case (1.10). Indeed
FX is an increasing function of each coordinate and satisfies the following
normalization conditions:

FX (x1, . . . ,−∞, . . . , xN ) = 0, FX (+∞, . . . ,+∞) = 1. (2.12)

characteristic 
function

cumulative distribution  
function

probability density  
function

FX

fXφX

1
1 N

−D"D DI I F

X1 ND D"DF D D 1 ND"DD D

1 ND"DI I

1−F

F

Fig. 2.2. Equivalent representations of a multivariate distribution

The third way to describe the properties of a distribution is by means
of the characteristic function (cf) φX, defined in terms of the expectation
operator (B.56) as follows:

φX (ω) ≡ E
n
eiω

0X
o
, (2.13)

where i ≡
√
−1 is the imaginary unit. The characteristic function assumes

values in the complex plane.
A comparison of (2.13) with (B.34) and (B.56) shows that the character-

istic function is the Fourier transform of the probability density function:

φX = F [fX] . (2.14)

Therefore the probability density function can be recovered by means of the
inverse Fourier transform (B.40) from the characteristic function:

fX = F−1 [φX] . (2.15)
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38 2 Multivariate statistics

At times the characteristic function proves to be the easiest way to represent
a distribution.

The characteristic function of the distribution of the example (2.7) reads:

φX (ω1, ω2) = ei(ω1ex1+ω2ex2)e− 1
2w(ω1,ω2), (2.16)

where (ex1, ex2) are the current prices (2.2) of the stocks and where w is the
following quadratic form:

w (ω1, ω2) =

µ
ω1
ω2

¶0µ
1/2 1/

√
10

1/
√
10 1/2

¶µ
ω1
ω2

¶
. (2.17)

This is a specific instance of the more general result (2.157).

We stress that the probability density function fX, the cumulative distrib-
ution function FX and the characteristic function φX are three fully equivalent
ways to represent the distribution of the random variable X. We summarize
in Figure 2.2 the mutual relationships among these representations.
As in the one-dimensional case discussed in Chapter 1, in the sequel we

make the implicit assumption that the probability density function fX is a
smooth and strictly positive function. In general, this is not the case. To make
our hypothesis legitimate we regularize whenever necessary the probability
density function as discussed in Appendix B.4:

fX 7→ fX;� ≡
1

(2π)
N
2 �N

Z
RN

e−
(y−x)0(y−x)

2�2 f (y) dy. (2.18)

For the practical as well as "philosophical" motivations behind the regular-
ization, see (B.54) and comments thereafter.

2.2 Factorization of a distribution

The distribution of a multivariate random variable X can be factored into
two separate components. On the one hand the marginal distributions of each
entry of the vector X, which represent the purely univariate features of X.
On the other hand the copula, a standardized distribution which summarizes
the purely "joint" component of the distribution of X. We summarize this
schematically as follows:

multivariate = "1-dim" (marginals) + "joint"(copula) (2.19)

2.2.1 Marginal distribution

Consider an N -dimensional random variable X. We split X in two sub-sets:
the K-dimensional random variable XA made of the first K entries and the
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2.2 Factorization of a distribution 39

(N −K)-dimensional random variable XB made of the remaining entries:

X ≡
µ
XA

XB

¶
. (2.20)

The marginal distribution of the variable XB is the distribution of XB ob-
tained disregarding the existence of XA. In particular, we obtain the marginal
distribution of the generic entry Xn by disregarding the remaining N − 1 en-
tries.

Consider the bivariate example (2.7), which describes the joint stochastic
behavior of two stock prices. The marginal distribution of the first stock must
be the univariate example (1.6) of Chapter 1, which describes the stochastic
behavior of the first stock only. Otherwise, the two models are in contradiction
with each other and one of them must be wrong.

We can represent the marginal distribution of XB by means of its cumu-
lative distribution function:

FXB (xB) ≡ P {XB ≤ xB} = P {XA ≤ +∞,XB ≤ xB} (2.21)

≡ FX (+∞,xB) .

In words, the marginal cumulative distribution function is the joint cumulative
distribution function, where the variables we intend to disregard are set to
infinity.
Equivalently, we can represent the marginal distribution of XB by means

of its probability density function. Applying the differentiation operator to
the cumulative distribution function (2.21) as in (2.11) we obtain:

fXB (xB) ≡
Z
RK

fX (xA,xB) dxA. (2.22)

In words, the marginal pdf averages out of the joint pdf the variables that we
intend to disregard.

In our example, the integration of the joint pdf (2.7) yields:

fX1 (x1) =

Z +∞

−∞
fX (x1, x2) dx2 =

1√
π
e−(x−ex1)2 . (2.23)

This computation is a specific instance of the more general result (2.162). Not
surprisingly (2.23) is the one-dimensional pdf (1.6) of the first stock price.

Finally, we can represent the marginal distribution of XB by means of its
characteristic function:

φXB
(ω) ≡ E

n
eiω

0XB

o
= E

n
eiψ

0XA+ω
0XB

o¯̄̄
ψ=0

(2.24)

≡ φX (0,ω) .
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40 2 Multivariate statistics

In words, the marginal characteristic function is the joint characteristic func-
tion, where the variables we intend to disregard are set to zero.

2.2.2 Copulas

In this section we introduce copulas. For more on this subject consult refer-
ences such as Nelsen (1999).

Definition

The copula represents the true interdependence structure of a random vari-
able, which in our applications is the market. Intuitively, the copula is a stan-
dardized version of the purely joint features of a multivariate distribution,
which is obtained by filtering out all the purely one-dimensional features,
namely the marginal distribution of each entry Xn.
In order to factor out the marginal components, we simply transform de-

terministically each entryXn in a new random variable Un, whose distribution
is the same for each entry. Since the distribution of each Un is normalized this
way, we lose track of the specific marginal distribution of Xn.
In order to map a generic one-dimensional random variable X into a ran-

dom variable U which has a distribution of our choice, consider the cumulative
distribution function FX defined in (1.7). By means of the function FX we
can define a new random variable, called the grade of X:

U ≡ FX (X) . (2.25)

The grade of X is a deterministic transformation of the random variable X
that assumes values in the interval [0, 1]. We prove in we Appendix www.2.1
that the grade is uniformly distributed on this interval:

U ∼ U([0, 1]) . (2.26)

To obtain a random variable Z with a distribution of our choice, we prove
in Appendix www.2.1 that it suffices to compute the quantile function QZ of
that distribution as in (1.17), and then to define Z as the quantile applied to
the grade U :

Z ≡ QZ (U) . (2.27)

In Figure 2.3 we display the graphical interpretation of the above operations.1

In particular, we can standardize each marginal component Xn of the
original random variable X by means of the uniform distribution. Therefore,
we consider the vector of the grades:

1 This technique also allows us to simulate univariate distributions of any kind
starting with a uniform random number generator.
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XF

XQ

U

X

Fig. 2.3. Distribution of the grades: relation with cdf and quantile

U ≡

 U1
...

UN

 ≡
 FX1 (X1)

...
FXN (XN )

 . (2.28)

This random variable assumes values on the unit hypercube:

[0, 1]N ≡ [0, 1]× · · · × [0, 1] . (2.29)

The copula of the multivariate random variable X is the joint distribution
of its grades (2.28).

Representations

Since the copula is a distribution, namely the distribution of the grades U, we
can represent it in terms of the probability density function or the cumulative
distribution function, or the characteristic function.
In Appendix www.2.3 we prove that the pdf of the copula reads:

fU (u1, . . . , uN ) =
fX (QX1 (u1) , . . . , QXN (uN ))

fX1 (QX1 (u1)) · · · fXN (QXN (uN ))
, (2.30)

where QXn is the quantile (1.17) of the generic n-th marginal entry of X.

In Figure 2.4 we plot the probability density function of the copula of the
leading example (2.7), which we compute explicitly in a more general setting
in (2.176).
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1u2u

fU

Fig. 2.4. Copula: probability density function

We can also represent the copula of the random variable X equivalently in
terms of its cumulative distribution function. We prove in Appendix www.2.3
that the cdf of the copula of X reads:

FU (u1, . . . , uN ) = FX (QX1 (u1) , . . . , QXN (uN )) . (2.31)

In particular, since the marginal distribution of the generic n-th entry is uni-
form, from (2.21) and (1.56) we obtain:

FU (1, . . . , un, . . . , 1) = un, (2.32)

see Figure 2.10 for a few examples.

Properties

We can write (2.30) as follows:

fX (x1, . . . , xN ) = fU (FX1 (x1) , . . . , FXN (xN ))
NY
n=1

fXn (xn) . (2.33)

This expression formalizes the loose expression (2.19): the joint pdf of a generic
variable X is the product of the pdf of its copula and the pdf of the marginal
densities of its entries. In other words, the copula factors out the purely mar-
ginal features of a distribution.
The copula contains all the information about the joint features of a dis-

tribution in a standardized form. Indeed, given the copula of X, i.e. the dis-
tribution of the grades U, from (2.28) we can reconstruct the distribution of
X with a deterministic transformation of each grade separately:

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



2.2 Factorization of a distribution 43

X
d
=

 QX1 (U1)
...

QXN (UN )

 . (2.34)

Therefore, the copula is a standardized distribution that summarizes the
purely joint features behind a multivariate random variable.
The purely joint features of a distribution characterize the true structure

of randomness of a multivariate random variable. In other words, the copula
allows to detect the true interdependence structure behind a generic multi-
variate random variableX. In practical terms, the copula provides an effective
tool to monitor and hedge the risks in the markets.

( )1C Xε

1X
ε

Fig. 2.5. Regularization of call option payoff

To see this, consider two co-monotonic random variablesX andY, namely
random variables such that: Y1

...
YN

 =

 g1 (X1)
...

gN (XN )

 , (2.35)

where each gn is an increasing invertible function of its argument.

For instance, in our example (2.7) of two stock prices X ≡ (X1,X2)
0,

consider the payoff of a call option on the first stock with strike K, i.e. the
following random variable:
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44 2 Multivariate statistics

C1 ≡ max (X1 −K, 0) , (2.36)

where the strike price is, say, K ≡ 100.
The function C1 is not strictly increasing in its argument X1, but it be-

comes so if we replace it with a regularized version by means of (B.49). In
Appendix www.2.7 we show that the regularized call option payoff reads:

C1;� ≡
(X1 −K)

2

µ
1 + erf

µ
X1 −K√
2�2

¶¶
+

�√
2π

e−
(X1−K)2

2�2 . (2.37)

This profile is smooth, strictly increasing in X1, and tends to the exact profile
(2.36) as the bandwidth � tends to zero, see Figure 2.5. Therefore the stock
price X1 and the regularized call option payoff C1 are co-monotonic and so
are the pairs (X1,X2) and (C1,X2).

99
100

101

49

50

51

0
0 .5

1
1.5

49

50

51

1 2X Xf ,

1X2X

1 2C Xf ,

1C2X

Fig. 2.6. Co-monotonic transformations: effects on the joint distribution

The joint distributions of co-monotonic variables are not equal, see Figure
2.6. Yet, the sources of randomness behind two co-monotonic random variables
are the same. The common feature of these variables is their copula, as we
show in Appendix www.2.3:

(X,Y) co-monotonic ⇔ copula of X = copula of Y. (2.38)
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In our example the joint distribution of the first stock price and the second
stock price (X1,X2) is different than the joint distribution of the call option on
the first stock and the second stock price (C1,X2). We see this in Figure 2.6,
where we plot the two different probability density functions. Nevertheless, the
copula of (X1,X2) is the same as the copula of (C1,X2) and is represented
by the probability density function in Figure 2.4.

2.3 Dependence

Loosely speaking, two random variables are independent if any information on
either variable does not affect the distribution of the other random variable.
To introduce formally the concept of dependence, it is more intuitive to first
define conditional distributions.
Consider an N -dimensional random variable X. We split X in two sub-

sets: the K-dimensional random variable XA of the first K entries and the
(N −K)-dimensional random variable XB of the remaining entries:

X ≡
µ
XA

XB

¶
. (2.39)

The conditional distribution of the variable XB given xA is the distribution
of XB knowing that the realization of XA is the specific value xA. We denote
the conditioned random variable equivalently as XB|xA or XB|XA = xA.

Suppose that in our example (2.7) the two stock prices X ≡ (X1,X2)
0

appear almost, but not quite, simultaneously on the screen. Before we look at
the screen, the probability distribution of second stock price X2 is represented
by its marginal distribution. After we see the price of the first stock we have
more information available. The distribution that describes the second stock
priceX2, knowing that the price of the first stock isX1 ≡ x1, is the conditional
distribution X2|x1.

The most intuitive way to represent the conditional distribution is the
probability density function:

fXB|xA (xB) =
fX (xA,xB)R

fX (xA,xB) dxB
=

fX (xA,xB)

fXA (xA)
. (2.40)

In words, the conditional pdf of XB given knowledge of XA is the joint pdf of
XA and XB divided by the marginal pdf of XA evaluated at the known point
xA. Geometrically, the conditional pdf ofXB is a (rescaled) section of the joint
pdf, which passes through the known point xA, see Figure 2.7. Equivalently,
we could represent the conditional distribution with the respective cumulative
density function or characteristic function, but the representation would be
less intuitive.
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BxAx

( )
B A Bf X |x x

( )A Bf X x , x

Fig. 2.7. Conditional probability density function

In our example, dividing the joint pdf of the two stock prices (2.7) by the
marginal pdf of the first stock price (2.23) and simplifying, we obtain:

fX2|x1 (x2) =
1p
2πσ2C

e
− 1

2σ2
C

(x2−µC)2 , (2.41)

where

µC ≡ ex2 +r25 (x1 − ex1) , σ2C ≡
3

10
, (2.42)

and where (ex1, ex2) are the current prices (2.2). This computation is a specific
instance of the more general result (2.173). The conditional pdf of the second
stock price depends explicitly on the value x1 of the first stock price, which is
known by assumption.

From (2.40) we derive Bayes’ rule, which is of the utmost importance in
many financial applications:

fXA|xB (xA) =
fX (xA,xB)R

fX (xA,xB) dxA
(2.43)

=
fXB |xA (xB) fXA (xA)R

fXB|xA (xB) fXA (xA) dxA
.

Bayes’ rule expresses the conditional distribution of XA given xB in terms of
the conditional distribution of XB given xA and the marginal distribution of
XA.
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At this point we have the tools to introduce the concept of (in)dependence
among random variables. Splitting the multivariate random variable X into
two sub-sets (XA,XB) as in (2.39), we say that XB is independent of XA

if the conditional distribution of XB given xA does not contain any more
information than the marginal distribution ofXB. More precisely, the variable
XB is independent of the variable XA if for arbitrary functions g and h the
marginal distribution of g (XB) and the conditional distribution of g (XB)
given h (xA) are the same.

The two stock prices in our example are independent if knowing the price
(or the return, or any other function) of one stock does not add information
regarding the distribution of the other stock and viceversa.

We can check for independence among variables in terms of their probabil-
ity density function. Indeed, it can be proved that the mutual independence
of XA and XB is equivalent to the joint pdf of XA and XB being the product
of the marginal pdf of XA and the marginal pdf of XB:

(XA,XB) independent⇔ fX (xA,xB) = fXA (xA) fXB (xB) , (2.44)

see Shirayaev (1989).
In particular, (2.40) and (2.44) imply the intuitive result that the marginal

distribution of a variable and its conditional distribution given the realization
of an independent variable are the same:

(XA,XB) independent⇒ fXB|xA (xB) = fXB (xB) . (2.45)

In our example the two stock prices are not independent, since the condi-
tional distribution of one stock price (2.41) depends on the other stock price.

Similarly, we can check for independence among variables in terms of their
cumulative distribution function. Indeed, substituting (2.44) in the definition
of the cdf (2.9) and integrating, the mutual independence of XA and XB is
equivalent to the joint cdf of XA and XB being the product of the marginal
cdf of XA and the marginal cdf of XB:

(XA,XB) independent⇔ FX (xA,xB) = FXA (xA)FXB (xB) . (2.46)

Finally, we can check for independence among variables in terms of their
characteristic function. Indeed, from (2.44) for any functions g and h the
expectation operator (B.56) can be factored as follows:

(XA,XB) independent⇒ (2.47)

E {g (XA)h (XB)} = E {g (XA)}E {h (XB)} .

Therefore, from the definition of the characteristic function (2.13) we obtain
that the mutual independence of XA and XB is equivalent to the joint char-
acteristic function of XA and XB being the product of the marginal cf of XA

and the marginal cf of XB:
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(XA,XB) independent⇔ φX (ωA,ωB) = φXA
(ωA)φXB

(ωB) . (2.48)

2.4 Shape summary statistics

In this section we discuss multivariate parameters of location and dispersion
that summarize the main properties of a multivariate distribution. As in the
one-dimensional case, these parameters provide an easy-to-interpret picture
of the main properties of a multivariate distribution. After discussing their
definition and properties we present a geometrical interpretation that recurs
throughout the book. We conclude with a brief introduction to higher-order
summary statistics.

2.4.1 Location

Consider an N -dimensional random variable X. Our purpose is to summarize
the whole distribution of X into one location parameter Loc {X}, similarly to
what we did in Section 1.2.1 for the univariate case.

Theory

As in the one-dimensional case, we require that the location parameter display
some intuitive features. For instance, if the distribution is peaked around a
specific value, the location parameter should be close to that peak. In partic-
ular, a constant m can be seen as an infinitely peaked random variable, see
(B.22) and comments thereafter. Thus the location of a constant should be
the constant itself:

Loc {m} =m. (2.49)

This implies that the location parameter must be an N -dimensional vector.
Furthermore, consider a generic affine transformation:

X 7→ Y ≡ a+BX, (2.50)

where a is a vector and B is a conformable matrix. A sensible parameter
of location should track any invertible affine transformation of the original
variable, i.e. a transformation such as (2.50), where B is an invertible matrix.
In other words, if B is invertible, the location parameters should satisfy the
following property:

Loc {a+BX} = a+BLoc {X} . (2.51)

Property (2.51) is called the affine equivariance of the location parameter.
For the rationale behind this requirement refer to the one dimensional case
(1.24).
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Examples

An example of location parameter is the multivariate mode, defined as the
multivariate generalization of (1.30), namely as the highest peak of the joint
probability density function:

Mod {X} ≡ argmax
x∈RN

{fX (x)} . (2.52)

We prove in Appendix www.2.5 that the mode is affine equivariant, i.e. it
satisfies (2.51).

Consider our leading example (2.7) of two stock prices. From the first-order
conditions on the joint pdf we obtain:

Mod {X} = (ex1, ex2)0 , (2.53)

where (ex1, ex2) are the current prices (2.2). This is a specific instance of the
more general result (2.158).

Another multivariate location parameter is the multivariate expected value,
defined as the juxtaposition of the expected value (1.25) of the marginal dis-
tribution of each entry:

E {X} ≡ (E {X1} , . . . ,E {XN})0 . (2.54)

Indeed, we prove in Appendix www.2.6 that the expected value is affine
equivariant, i.e. it satisfies (2.51).

In our example (2.7) we have:

E {X} = (ex1, ex2)0 , (2.55)

where (ex1, ex2) are the current prices (2.2). This is a specific instance of the
more general result (2.158).

On the other hand, the juxtaposition of the median, or any other quantile,
of each entry of a random variable does not satisfy (2.51) and therefore it does
not define a suitable location parameter.
Mode and expected value might not be defined: the expectation integral

might not converge in the case of the expected value, and the maximum of
the probability density function might not be unique in the case of the mode.
If they are defined, they both represent suitable location parameters.
Nevertheless, the expected value (2.54) is the benchmark multivariate lo-

cation parameter.
In the first place, as in the one-dimensional case the expected value is

a global parameter that includes information from the whole distribution,
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whereas the mode is a local parameter that depends on the value of the
probability density function at one single point.
Secondly, the expected value enjoys a purely multivariate feature: the

affine equivariance property holds for generic, i.e. not necessarily invertible,
affine transformations. In other words the following equality holds for any
conformable matrix eB and vector ea:

E
nea+ eBXo = ea+ eBE {X} , (2.56)

see Appendix www.2.6. This is not true for other parameters of location.

For example the mode of the sum of two variables in general is not the
sum of the modes:

Mod {X + Y } 6= Mod {X}+Mod {Y } . (2.57)

This implies that the affine equivariance for generic affine transformations
(2.56) does not hold for the mode even in the simple case a ≡ 0 andB ≡ (1, 1).

Finally, whenever the characteristic function ofX is known and analytical,
i.e. it can be recovered entirely from its Taylor series expansion, computing
the expected value is straightforward, as we show in Appendix www.2.10.

2.4.2 Dispersion

Consider an N -dimensional random variable X. Here we extend to a multi-
variate environment the concept of dispersion parameter discussed in Section
1.2.2 for the univariate case.

Theory

As in the univariate case discussed in Chapter 1, we require that the dispersion
parameter behaves suitably under invertible affine transformations:

X 7→ Y ≡ a+BX, (2.58)

where a is a vector and B is a conformable invertible matrix.
To determine the nature of the required behavior, we recall the definition

(1.35) of the absolute value of the z-score of the variable X in the univariate
case:

|ZX | ≡
s
(X − Loc {X}) 1

Dis {X}2
(X − Loc {X}). (2.59)

In that context, the dispersion parameter Dis {X} is properly defined if the
absolute value of the z-score is unaffected by affine transformations:

|Za+bX | = |ZX | , (2.60)
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see (1.36).
To generalize the absolute value of the z-score to a multivariate environ-

ment, we introduce the Mahalanobis distance of the point x from the point µ
through the metric Σ, denoted and defined as follows:

Ma(x,µ,Σ) ≡
q
(x− µ)0Σ−1 (x− µ), (2.61)

where the metric Σ is a symmetric and positive matrix. The points x which
share the same Mahalanobis distance from µ lie on the surface of an ellipsoid
centered in µ, see (A.73). The larger (the eigenvalues of) Σ, the smaller the
Mahalanobis distance of the generic point x from the center µ. Therefore the
matrix Σ indeed provides a metric to measure distances.
Comparing (2.59) with (2.61) we see that in a multivariate environment

the absolute value of the z-score is replaced by the Mahalanobis distance from
the location parameter through the metric provided by the yet to be defined
"squared" dispersion parameter:

MaX ≡Ma(X,Loc {X} ,DisSq {X}) . (2.62)

We remark that considering (2.62) is intuitive, since a natural formulation of
the dispersion of the variableX requires the dispersion parameter to represent
a metric, i.e. a distance, between the variable and its location parameter.
In this context the dispersion parameter DisSq {X} is properly defined if

it satisfies two properties.
In the first place DisSq {X} must be a symmetric and positive matrix, in

such a way to define a metric in (2.62).
Secondly, DisSq {X} must be such that the Mahalanobis distance (2.62)

is invariant under invertible affine transformations:

Maa+BX = MaX . (2.63)

Given the affine equivariant properties of the location parameter (2.51), this is
true if and only if for all invertible affine transformations (2.58) the dispersion
parameter satisfies:

DisSq {a+BX} = BDisSq {X}B0. (2.64)

We call this property the affine equivariance of a multivariate dispersion pa-
rameter.
To summarize, a dispersion matrix, or dispersion parameter, or scatter

matrix or scatter parameter is a symmetric and positive matrix DisSq {X}
that is affine equivariant, i.e. it satisfies (2.64).

Examples

An example of scatter matrix is the modal dispersion:
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MDis {X} ≡ −
Ã
∂2 ln fX
∂x∂x0

¯̄̄̄
x=Mod{X}

!−1
, (2.65)

see e.g. O’Hagan (1994). In Appendix www.2.5 we prove that the modal dis-
persion is indeed a scatter matrix, i.e. it is a symmetric and positive matrix
that is affine equivariant. The rationale behind the modal dispersion follows
from a second-order Taylor expansion of the pdf fX around its mode, see
(1.39) for the univariate case: the larger in absolute value the (always nega-
tive) second derivative in (2.65), the thinner the probability density function
of X around its mode and thus the less disperse the distribution.

Consider our leading example (2.7). From a direct computation of the
second derivatives of the log-pdf at the mode (2.53) we obtain:

MDis {X} =
µ

1/2 1/
√
10

1/
√
10 1/2

¶
. (2.66)

Another example of scatter parameter is the covariance matrix, defined as
follows:

Cov {X} ≡ E
©
(X− E {X}) (X− E {X})0

ª
, (2.67)

or component-wise:

Cov {Xm,Xn} ≡ [Cov {X}]mn (2.68)

≡ E {(Xm − E {Xm}) (Xn − E {Xn})} .

In Appendix www.2.6 we prove that the covariance is a scatter matrix, i.e. it
is symmetric, positive and affine equivariant.

In our leading example (2.7) we obtain:

Cov {X} =
µ

1/2 1/
√
10

1/
√
10 1/2

¶
. (2.69)

This is a specific instance of a more general result, see Section 2.6.2.

Modal dispersion and covariance matrix might not be defined: the ex-
pectation integral might not converge in the case of the covariance, and the
mode might not be unique in the case of the modal dispersion. When they
are defined, they both represent suitable dispersion parameters.
Nevertheless, the covariance is the benchmark multivariate scatter para-

meter.
In the first place, like the variance in the one-dimensional case, the covari-

ance is a global parameter that includes information from the whole distri-
bution, whereas the modal dispersion is a local parameter that depends on
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the shape of the probability density function around one single point, i.e. the
mode.
Secondly, from the factorization of the expectation operator in the pres-

ence of independent variables (2.47) and the component-wise definition of the
covariance matrix (2.68) we obtain that the covariance of independent vari-
ables is null:

(Xm,Xn) independent⇒ Cov {Xn,Xn} = 0. (2.70)

This result motivates the name "covariance", as independent variables do not
"co-vary".
In the third place, whenever the characteristic function of X is known and

analytical, i.e. it can be recovered entirely from its Taylor series expansion,
computing the covariance matrix is straightforward, as we show in Appendix
www.2.10.
Finally, the affine equivariance property (2.64) holds in the case of the

covariance even for generic, i.e. not necessarily invertible, affine transforma-
tions. In other words, the following identity holds for any conformable matrixeB and vector ea:

Cov
nea+ eBXo = eBCov {X} eB0, (2.71)

see Appendix www.2.6. This is not true for other dispersion parameters.

For example, since from (2.57) the mode is not affine equivariant for non-
invertible transformations, neither can be the modal dispersion.

The generic affine equivariance (2.56) and (2.71) of the expected value and
covariance matrix respectively also allows us to build a dispersion parameter
with a more intuitive "bottom up" approach.
Indeed, consider a specific type of non-invertible affine transformations, i.e.

a linear combinations α0X, where α is an N -dimensional vector of constants.
A linear combination of random variables is a univariate random variable.
Therefore we can compute the dispersion parameter (1.40) defined in terms
of the expectation operator:

Dis {α0X} ≡
¡
E
©
|α0 (X− E {X})|p

ª¢ 1
p . (2.72)

For a general value of p, there exists no result concerning linear combinations
that involve equalities. Nevertheless, in the case p ≡ 2 the dispersion in (2.72)
becomes the standard deviation and a few algebraic manipulations show that
there exists a matrix S such that

Sd {α0X} =
√
α0Sα. (2.73)

From (B.65) and (B.68) the matrix S coincides with the covariance (2.67). In
particular, from (2.73) we obtain that the diagonal elements of the covariance
matrix are the variances of the marginal distributions of each entry:

Cov {Xn,Xn} = (Sd {Xn})2 = Var {Xn} . (2.74)
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2.4.3 Location-dispersion ellipsoid

Consider an N -dimensional random variable X. In this section we propose a
graphical interpretation of the parameters of location and dispersion of X. In
particular, we will develop our discussion around the benchmark parameters,
i.e. the expected value E {X} defined in (2.54) and the covariance matrix
Cov {X} defined in (2.67), which we denote here as E and Cov respectively
to ease the notation.

{ }1Sd X

{ }E X

( )1
1eλ

( )
N

Neλ

{ }Sd NX

{ }1Sd Z

1x

2x

Nx

Fig. 2.8. Location-dispersion ellipsoid

A generic representation of expected value and covariance must convey all
the information contained in these parameters. On the other hand, a geomet-
rical representation must also provide support to intuition.
We state here and motivate in the sequel that we can effectively represent

geometrically E and Cov by means of the location-dispersion ellipsoid, defined
as follows:

EE,Cov ≡
©
x such that (x− E)0Cov−1 (x− E) ≤ 1

ª
, (2.75)

see Figure 2.8.
First of all, we remark that this is indeed the implicit equation of an ellip-

soid. The expected value is a vector and the covariance matrix is symmetric
and positive definite. Therefore, from (A.73) the locus EE,Cov is an ellipsoid
centered in the location parameter E.
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The fact that the location-dispersion ellipsoid EE,Cov is centered in the
expected value E shows that on the one hand the ellipsoid conveys all the
information about E, and on the other hand the ellipsoid supports intuition
regarding the meaning of E, which is the average location of the random
variable X.
As far as the dispersion parameter Cov is concerned, we already know

from the discussion in Appendix A.5 that the ellipsoid EE,Cov conveys all the
information contained in the covariance matrix Cov.
To show that it also support intuition regarding the dispersion properties

of the random variableX we rephrase in this context the analysis of Appendix
A.5. Consider the spectral decomposition (A.70) of the covariance matrix:

Cov {X} = EΛE0. (2.76)

In this expression Λ is the diagonal matrix of the eigenvalues of the covariance
sorted in decreasing order:

Λ ≡ diag (λ1, . . . , λN ) ; (2.77)

and E is the juxtaposition of the respective eigenvectors:

E ≡
³
e(1), . . . , e(N)

´
, (2.78)

which satisfies EE0 = IN , the identity matrix.
We know from Appendix A.5 that the principal axes of the location-

dispersion ellipsoid EE,Cov are parallel to the the eigenvectors
©
e(1), . . . , e(N)

ª
of the covariance. On the other hand, in this context the eigenvectors define
very special directions, namely the directions along which the randomness in
X displays zero covariance. In other words, consider the following random
variable:

Z ≡ E0X =


£
e(1)

¤0
X

...£
e(N)

¤0
X

 . (2.79)

Each entry of the vector Z is the projection of the random variable X on one
eigenvector. From EE0 = IN , for any n 6= m we have:

Cov {Zm, Zn} =
h
e(m)

i0
EΛE0

h
e(n)

i
= [Λ]mn = 0. (2.80)

Thus the principal axes of the location-dispersion ellipsoid EE,Cov define the
directions along which the randomness in X displays zero covariance.
Furthermore from Appendix A.5 the length of the principal axes of the

location-dispersion ellipsoid EE,Cov are the square root of the eigenvalues of
the covariance. On the other hand, in this context the eigenvalues have a very
special meaning, namely they represent the variance of X along the direction
of the eigenvectors:
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Var {Zn} =
h
e(n)

i0
EΛE0

h
e(n)

i
= λn. (2.81)

Thus from (2.74) the length of the principal axes of the location-dispersion
ellipsoid EE,Cov represent the standard deviation of X along the direction of
the principal axes.
In particular, from (A.68) the first eigenvalue corresponds the maximum

variance achievable with a projection:

λ1 = max
kek=1

{Var {e0X}} ; (2.82)

and the first eigenvector e(1) is the direction of maximal variation, i.e. it
satisfies:

e(1) = argmax
kek=1

{Var {e0X}} . (2.83)

Similarly, from (A.69) the last eigenvalue corresponds the minimum variance
achievable with a projection:

λN = min
kek=1

{Var {e0X}} ; (2.84)

and the last eigenvector e(N) is the direction of minimal variation, i.e. it
satisfies:

e(N) = argmin
kek=1

{Var {e0X}} . (2.85)

Moreover, the location-dispersion ellipsoid EE,Cov is a suitable generaliza-
tion of the one-dimensional location-dispersion bar defined in (1.53). Indeed,
consider the rectangle with sides parallel to the reference axes of RN which en-
shrouds the ellipsoid, see Figure 2.8. We prove in Appendix www.2.8 that the
generic n-th side of this rectangle is centered on the expected value E {Xn}
of the n-th marginal component and is long twice the standard deviation
Sd {Xn} of the n-th marginal component. In other words, the enshrouding
rectangle is defined by the following set of N equations:

E {Xn}− Sd {Xn} ≤ xn ≤ E {Xn}+ Sd {Xn} . (2.86)

Each of these equations represents the location-dispersion bar (1.53) of the
respective marginal distribution.
Finally, the location-dispersion ellipsoid EE,Cov is, among all the ellipsoids

of equal volume, the one that contains the highest probability of occurrence of
the random variable X within its boundaries. To make this statement precise,
we consider the locus:

Eq
E,Cov

≡
©
x such that (x− E)0Cov−1 (x− E) ≤ q2

ª
. (2.87)

This locus represents a rescaled version of the location-dispersion ellipsoid
(2.75), where all the principal axis are multiplied by a factor q, see Figure 2.9.
In Appendix www.2.9 we prove the following results.
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random sample

E,Cov
qE

1x
2x

Nx

E,Cov
qE

Fig. 2.9. Multivariate Chebyshev inequality

By the Chebyshev inequality for any vector v and any symmetric and
positive matrixU the probability that observations occur outside the ellipsoid
Eqv,U with principal axes proportional to q decays as the square of q:

P
n
X /∈ Eqv,U

o
≤ av,U

q2
, (2.88)

where the constant a is the expected squared Mahalanobis distance (2.61) of
the random variable X from the point v through the metric U:

av,U ≡ E
©
Ma2 (X,v,U)

ª
. (2.89)

Nevertheless, if we set v equal to the expected value and U equal to the
covariance matrix in (2.88), the function a reaches a minimum, and is equal
to the dimension the random variable X. Therefore the probability of X not
occurring in the ellipsoid is uniformly the minimum possible and reads:

P
n
X /∈ Eq

E,Cov

o
≤ N

q2
. (2.90)

In other words, the location-dispersion ellipsoid EE,Cov is the one ellipsoid
among those of equal volume that enshrouds the most probability.

2.4.4 Higher-order statistics

Similarly to the one-dimensional case discussed in Section 1.2.3, we can gain
more insight into the statistical features of a multivariate distribution from
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the moments of that distribution of order higher than the expected value and
the covariance matrix.
To introduce the higher moments, we recall that the expected value is

a vector, namely the vector of expectations of each entry of a multivariate
random variable. On the other hand the covariance is a matrix, namely the
matrix of (a simple function of) expectations of all the cross products of two
entries.
The expectation operator (B.56) applied to the cross products of three,

four, etc. entries can be organized in tensors, a straightforward generalization
of the concept of vector and matrix, see (A.92) and comments thereafter for
a quick review.
The k-th raw moment of a multivariate random variable X is a tensor of

order k, defined as follows:

RMX
n1···nk ≡ E {Xn1 · · ·Xnk} . (2.91)

This definition generalizes the one-dimensional raw-moment (1.47). In partic-
ular, the expected value (2.54) is the first raw moment.
The k-th central moment of a random variable is a location-independent

version of the respective raw moment:

CMX
n1···nk ≡ E {(Xn1 − E {Xn1}) · · · (Xnk − E {Xnk})} . (2.92)

This definition generalizes the one-dimensional central-moment (1.48). In par-
ticular, the covariance matrix (2.68) is the second central moment.
The central moments of a distribution are tensors that enjoy special

transformation properties. For instance, from (2.71) the covariance matrix is
equivariant under any, not necessarily invertible, affine transformation. From
the linearity of the expectation operator (B.56) and the definition of the cen-
tral moments (2.92), it follows that all the central moments are affine equivari-
ant, in that for any M-dimensional vector a and any M × N matrix B the
following relation holds:

CMa+BX
m1···mk

=
NX

n1,...,nk=1

Bm1,n1 · · ·Bmk,nk CM
X
n1···nk . (2.93)

For example, consider a ≡ 0 and B0 ≡ b, an N -dimensional vector. In
this case the affine-equivariance property (2.93) yields the expression for the
central moments (1.48) of the one-dimensional variable b0X. For instance, the
third central moment reads:

CMb0X
3 =

NX
l,m,n=1

blbmbnCM
X
lmn . (2.94)
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Similarly to the univariate case, it is possible to define normalized version
of the higher central moments.
The co-skewness is the following three-dimensional tensor:

Sk {Xl,Xm,Xn} ≡ [Sk {X}]lmn (2.95)

≡ CMX
lmn

Sd {Xl}Sd {Xm}Sd {Xn}
,

which generalizes the univariate skewness (1.49). The co-skewness provides
information on the symmetry of the distribution of X. It is also possible to
summarize the information provided by the co-skewness in one overall index
of symmetry, see Mardia (1970).
The co-kurtosis is the following four-dimensional tensor:

Ku {Xl,Xm,Xn,Xp} ≡ [Ku {X}]lmnp (2.96)

≡
CMX

lmnp

Sd {Xl}Sd {Xm}Sd {Xn}Sd {Xp}
,

which generalizes the univariate kurtosis (1.51). The co-kurtosis provides in-
formation on the thickness of the tails of the distribution of X. It is also
possible to summarize the information provided by the co-kurtosis in one
overall index of tail thickness, see Mardia (1970).
Computing the above summary statistics involves in general integrations.

Nevertheless, whenever the characteristic function of X is known and analyt-
ical, i.e. it can be recovered entirely from its Taylor series expansion, we can
compute these quantities by means of simple differentiation and some algebra,
as we show Appendix www.2.10.
Nevertheless, the number of parameters in the higher moments grows as

Nk, where N is the dimension of the multivariate distribution of X and k is
the order of the moment. This number becomes intractable for k > 2 in any
practical application.

2.5 Dependence summary statistics

TheN entries of a random variableX display in general a complex dependence
structure that it is important to monitor in view of hedging and managing risk.
In this section we describe how to summarize in one number the dependence
between two generic entries Xm and Xn. We refer the reader to references
such as Nelsen (1999) for more results on this subject.

2.5.1 Measures of dependence

A measure of dependence Dep {Xm,Xn} between two random variables Xm

and Xn should be a function of the distribution of the variables, normalized
in such a way to make it easy to interpret, for instance as follows:
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0 ≤ Dep {Xm,Xn} ≤ 1. (2.97)

Furthermore, it should display a minimal set of intuitive features, such as the
following:

1. Total independence represents one extreme of the spectrum of possible
values:

(Xm,Xn) independent⇔ Dep {Xm,Xn} ≡ 0. (2.98)

2. Total dependence represents the other extreme of the spectrum of possible
values:

(Xm,Xn) co-monotonic⇔ Dep {Xm,Xn} ≡ 1, (2.99)

where co-monotonicity is defined in (2.35).
3. The measure of dependence spots the core interdependence structure. In
other words, assume that the random variable Xm is a deterministic in-
vertible function of a random variable Ym, i.e. they are in one-to-one
correspondence, and that an analogous relation holds between Xn and
another random variable Yn. The dependence between the first set of
variables should be the same as the dependence between the second set
of variables:

(Xm, Ym) one-to-one
(Xn, Yn) one-to-one

¾
⇒ Dep {Xm,Xn} = Dep {Ym, Yn} . (2.100)

In Section 2.2.2 we determined that the core interdependence structure
between two generic variables Xm and Xn is driven by their copula. We recall
that the copula is the joint distribution of the grades:µ

Um
Un

¶
≡
µ
FXm (Xm)
FXn

(Xn)

¶
, (2.101)

where FXm is the cumulative distribution function of Xm, see (2.28). There-
fore in order to define a measure of dependence between (Xm,Xn)

0 it is nat-
ural to turn to their copula, which we represent in terms of the cumulative
distribution function FUm,Un .
As far as the property on independence (2.98) is concerned, since the

marginal distribution of each of the grades (2.101) is uniform, from (1.56)
and (2.46) we see that Xm and Xn are independent if and only if their copula
is uniformly distributed on the unit square, in which case the cumulative
distribution function of the copula reads:

Π (um, un) ≡ umun, (2.102)

see Figure 2.10.
Intuitively, the measure of dependence between Xm and Xn should be a

distance between their copula, as represented by FUm,Un , and the copula of
two independent variables, as represented by (2.102): the larger the distance,
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co-monotonic anti-monotonic 

independent
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Fig. 2.10. Cumulative distribution function of special bivariate copulas

the higher the level of dependence. We can introduce a distance between these
two functions by means of the Lp-norm (B.12), defined in this case on the unit
square Q ≡ [0, 1]× [0, 1]. This way we obtain the following family of measures
of dependence, called the Schweizer-Wolff measures of dependence:

SW {Xm,Xn} ≡ kp kFUm,Un −Πkp (2.103)

≡ kp

µZ
Q
|FUm,Un (um, un)−Π (um, un)|p dumdun

¶ 1
p

,

where p ≥ 1 and kp is a constant yet to be defined. By construction, this
measure satisfies (2.98), which is the first property required of a measure of
dependence.
To determine the constant in (2.103) we turn to (2.99), the property of

a generic measure of dependence which regards total dependence. It can be
proved that the Frechet-Hoeffding bounds hold on the cumulative distribution
function of a generic copula:

B (um, un) ≤ FUm,Un (um, un) ≤ T (um, un) , (2.104)

where the "bottom" bound is defined as follows:

B (um, un) ≡ max (um + un − 1, 0) ; (2.105)

and the "top" bound is defined as follows:
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T (um, un) ≡ min (um, un) . (2.106)

The lower bound (2.105) is the cumulative distribution function of an "ex-
treme" copula, namely the copula of (X,−X), which does not depend on the
distribution of X. On the other hand, the upper bound (2.106) is the cumula-
tive distribution function of the another "extreme" copula, namely the copula
of (X,X), which does not depend on the distribution of X. We plot in Figure
2.10 the cumulative distribution functions (2.105) and (2.106): notice how all
the copulas in the figure satisfy (2.32).
In order for the Schweizer and Wolff measure of dependence (2.103) to

satisfy (2.99) we need to normalize the constant kp in its definition as follows:

kp ≡
1

kB −Πkp
=

1

kT −Πkp
. (2.107)

To make sure that the Schweizer and Wolff measure of dependence nor-
malized this way is a proper measure of dependence, we now turn to the
last property (2.100). The copula is almost invariant under one-to-one trans-
formations such as those that appear in (2.100). Indeed, consider two new
variables: µ

Ym
Yn

¶
≡
µ
g (Xm)
h (Xn)

¶
, (2.108)

where g and h are increasing invertible functions. In other, words (Xm,Xn)
and (Ym, Yn) are co-monotonic, see (2.35). Now consider the copula of (Ym, Yn),
which is the distribution of the grades:µ

Vm
Vn

¶
≡
µ
FYm (Ym)
FYn (Yn)

¶
. (2.109)

Since from (2.38) the copula of (Xm,Xn) is the same as the copula of (Ym, Yn),
the following relation holds:

FVm,Vn = FUm,Un . (2.110)

Therefore the Schweizer and Wolff measure of dependence automatically sat-
isfies (2.100) for increasing one-to-one correspondences among the variables. If
on the other hand one of the two variables, say Yn, is an invertible decreasing
function of Xn then (2.110) must be replaced by the following expression:

FVm,Vn = um − FUm,Un (um, 1− un) . (2.111)

Nevertheless, the integral in (2.103) is not affected by this change. Therefore
the Schweizer and Wolff measure of dependence also satisfies (2.100).

Consider our leading example (2.7) of two stock prices (X1,X2). As in
(2.36) consider a call option on the first stock price with strike K, i.e. the
following random variable:
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( )1P Xε
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ε

Fig. 2.11. Regularization of put option payoff

C1 ≡ max (X1 −K, 0) . (2.112)

The call option payoff is a strictly increasing function of the underlying X1,
once we replace it by its regularized version as in (2.37), see also Figure 2.5.
Consider the payoff of a put option on the first stock with strike K, i.e. the
new random variable:

P1 ≡ −min (X1 −K, 0) . (2.113)

The put option payoff is a strictly decreasing function of the underlying X1,
once we replace it by its regularized version by means of (B.49):

P� ≡ −
(X1 −K)

2

µ
1− erf

µ
X1 −K√
2�2

¶¶
+

�√
2π

e−
1
2�2

(X1−K)2 , (2.114)

see Figure 2.11 for the plot and Appendix www.2.7 for the proof.
We summarize the Schweizer and Wolff measure of dependence (2.103)

between any two of the above securities in the following table:

SW X1 C1 P1 X2

X1 1 1 1 γp
C1 1 1 γp
P1 1 γp
X2 1

(2.115)

The first stock price X1 and the (regularized) call option payoff C1 are
co-monotonic functions: from (2.99) their measure of dependence is one. The
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(regularized) put option payoff P1 is an invertible function of the first stock
price X1: from (2.100) it is completely equivalent to X1 and C1. Therefore,
the dependence of any of them with the second stock price X2 is the same
constant γp, which depends on the choice of p ≥ 1 in the definition of the
Schweizer and Wolff measure of dependence.

2.5.2 Measures of concordance

Due to (2.100), a measure of dependence does not distinguish between a ran-
dom variable and any invertible function of that random variable. Nonetheless,
in many applications it becomes important to separate increasing invertible
functions from decreasing invertible functions.
We recall from (2.35) that two random variablesX and Y are co-monotonic

if
Y = g (X) , g invertible, increasing. (2.116)

Similarly, we define two random variables X and Y as anti-monotonic if

Y = g (X) , g invertible, decreasing. (2.117)

In our example, the (regularized) call option payoff (2.112) and the price
of the underlying stock are co-monotonic; the (regularized) put option payoff
(2.113) and the price of the underlying stock are anti-monotonic; the (regu-
larized) call option payoff and the (regularized) put option payoff are anti-
monotonic. The interests of an investor who owns the call option are very
different than the interests of an investor who owns the put option. A depen-
dence parameter such as the Schweizer andWolff measure does not distinguish
between calls and puts, as we see in (2.115).

Therefore, we are led to consider measures of concordance, that convey
more information than measures of dependence. Ideally, a measure of concor-
dance Con {Xm,Xn} between two random variables Xm and Xn should be
a function of their distribution, normalized in such a way to make it easy to
interpret, for instance as follows:

−1 ≤ Con {Xm,Xn} ≤ 1. (2.118)

Furthermore, it should displays a set of intuitive features:

1’. Independence represents the middle of the spectrum of possible values:

(Xm,Xn) independent⇔ Con {Xm,Xn} = 0. (2.119)

2a’. Total concordance represents one extreme of the spectrum of possible
values:

(Xm,Xn) co-monotonic⇔ Con {Xm,Xn} = 1. (2.120)
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2.5 Dependence summary statistics 65

2b’. Total discordance represents the other extreme of the spectrum of possible
values:

(Xm,Xn) anti-monotonic⇔ Con {Xm,Xn} = −1. (2.121)

3. The measure of concordance spots the core interdependence structure:

(Xm, Ym) co-monotonic
(Xn, Yn) co-monotonic

¾
⇒ Con {Xm,Xn} = Con {Ym, Yn} . (2.122)

4. Concordance and discordance play a symmetric role:

Con {Xm,−Xn} = −Con {Xm,Xn} . (2.123)

A comparison with the properties of the measures of dependence shows
that a measure of concordance satisfying Properties 1’-4 would indeed convey
all the information contained in a measure of dependence, and more.
Unfortunately, (2.119) cannot be satisfied together with the other prop-

erties. Intuitively, if we want to measure the "direction" of the dependence
between two variables with a single number, variables that in some scenar-
ios are concordant and in some other scenarios are discordant display the
same amount of concordance as independent variables, although they are not.
Therefore, (2.119) must be weakened as follows:

1. Independence implies the middle of the spectrum of possible values:

(Xm,Xn) independent⇒ Con {Xm,Xn} = 0. (2.124)

For similar reasons (2.120) and (2.121) must be weakened as follows:

2a. Total concordance implies one extreme of the spectrum of possible values:

(Xm,Xn) co-monotonic⇒ Con {Xm,Xn} = 1. (2.125)

2b. Total discordance implies the other extreme of the spectrum of possible
values:

(Xm,Xn) anti-monotonic⇒ Con {Xm,Xn} = −1. (2.126)

Just like in the case of measures of dependence, to define measures of
concordance between Xm and Xn we turn to their copula, i.e. the joint dis-
tribution of the grades: µ

Um
Un

¶
≡
µ
FXm (Xm)
FXn

(Xn)

¶
, (2.127)

which we represent in terms of its cumulative distribution function FUm,Un ,
or its probability density function fUm,Un .

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer
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A popular measure of concordance is Kendall’s tau. Kendall’s tau is a
normalized weighed average of the distance with sign of the cdf of the copula
of (Xm,Xn) from the cdf (2.102) of the copula of two independent variables:

τ {Xm,Xn} ≡ 4
Z
Q
(FUm,Un (um, un)−Π (um, un)) (2.128)

fUm,Un (um, un) dumdun,

where Q ≡ [0, 1]× [0, 1] is the unit square.
This definition reminds us of the Schweizer and Wolff measure of depen-

dence (2.103), but it is different in two respects. One difference is minor:
Kendall’s tau is a weighted average of the difference of the two functions, the
weights being provided by the pdf of the copula. The second difference is con-
ceptually more relevant: Kendall’s tau evaluates the difference with sign, not
in absolute value. It can be checked that due to this last feature, Kendall’s
tau satisfies Properties 1-4 above and thus it defines a suitable measure of
concordance.

Consider our leading example (2.7) of two stock prices (X1,X2), together
with a call option (2.112) and a put option (2.113) on the first stock. We
summarize Kendall’s τ between any two of the above securities in the following
table:

τ X1 C1 P1 X2

X1 1 1 −1 2
π arcsin

³q
2
5

´
C1 1 −1 2

π arcsin
³q

2
5

´
P1 1 − 2

π arcsin
³q

2
5

´
X2 1

(2.129)

The first stock price X1, and the (regularized) call option payoff C1 are
co-monotonic, and therefore due to (2.125) their concordance is 1. The (regu-
larized) put option payoff P1 and the first stock price X1 are anti-monotonic,
and therefore due to (2.126) their concordance is −1. Similarly, the (regu-
larized) put option payoff P1 and the (regularized) call option payoff C1 are
anti-monotonic, and therefore their concordance is −1. The value of Kendall’s
τ between the first stock price X1 and the second stock price X2 is a specific
instance of the more general result (2.178). Since the (regularized) call option
payoff C1 and the first stock price X1 are co-monotonic, due to (2.122) the
concordance of the second stock price X2 with C1 is the same as the concor-
dance of X2 with X1. On the other hand, since the (regularized) put option
payoff P1 and the first stock price X1 are anti-monotonic, due to (2.123)
the concordance of the second stock price X2 with P1 is the opposite of the
concordance of X2 with X1.

We mention another popular measure of concordance, Spearman’s rho,
which is the correlation of the grades:
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ρ {Xm,Xn} ≡
Cov {Um, Un}
Sd {Um}Sd {Un}

, (2.130)

see Section 2.5.3 below for a discussion of the correlation. It is possible to check
that Spearman’s rho satisfies Properties 1-4 above and therefore it defines a
suitable measure of concordance.
Spearman’s rho and Kendall’s tau evaluation of the concordance between

two variables is in general different, although this difference is bounded as
follows:

3τ − 1
2

≤ ρ ≤ 1 + 2τ − τ2

2
, (2.131)

whenever τ ≥ 0; and

τ2 + 2τ − 1
2

≤ ρ ≤ 1 + 3τ
2

, (2.132)

whenever τ ≤ 0.

2.5.3 Correlation

In this section we draw a bridge between the concordance summary statistics
of a generic multivariate random variableX discussed above and the location-
dispersion summary statistics of X introduced in Section 2.4, in particular the
expected value (2.54) and the covariance matrix (2.67).
In defining the concordance summary statistics we relied on copulas, be-

cause copulas capture the core interdependence among variables: indeed the
copula of one random variable with any of a set of co-monotonic variables
is the same, although the co-monotonic variables might have very different
marginal distributions.
The expected value is a purely "marginal" parameter, since it is the jux-

taposition of the expected values of the single marginal entries Xn. Therefore,
we cannot find any relation between expected value and parameters of con-
cordance.
On the other hand, the covariance matrix displays both "marginal" and

"joint" features.
From (2.74) the diagonal entries of the covariance matrix are the square of

the standard deviation of the marginal entries. We can get rid of these purely
"marginal" features by normalizing the covariance matrix into what is called
the correlation matrix :

Cor {Xm,Xn} ≡ [Cor {X}]mn ≡
Cov {Xm,Xn}
Sd {Xm}Sd {Xn}

. (2.133)

The correlation is an extremely popular parameter among finance practition-
ers.
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In our leading example of two stock prices (X1,X2) we derive from (2.69)
their correlation:

Cor {X1,X2} =
r
2

5
. (2.134)

The correlation displays some features that remind us of the properties of
the measures of concordance.
Indeed the correlation is a normalized parameter:

−1 ≤ Cor {Xm,Xn} ≤ 1. (2.135)

This follows from the Cauchy-Schwartz inequality (B.69). Furthermore, the
following holds.

1. Independence implies the middle of the spectrum of possible correlation
values:

(Xm,Xn) independent⇒ Cor {Xm,Xn} = 0. (2.136)

This is true since the covariance of independent variables is zero, see (2.70).
2a. Positive affine concordance represents one extreme of the spectrum of

possible correlation values:

Xm = a+ bXn ⇔ Cor {Xm,Xn} = 1, (2.137)

where a is a scalar and b is a positive scalar. This follows from (B.70).
2b. Negative affine concordance represents the other extreme of the spectrum

of possible correlation values:

Xm = a− bXn ⇔ Cor {Xm,Xn} = −1, (2.138)

where a is a scalar and b is a positive scalar. This follows from (B.71).
3. Correlations are unaffected by positive affine transformations:

Ym ≡ a+ bXm

Yn ≡ c+ dXn

¾
⇒ Cor {Xm,Xn} = Cor {Ym, Yn} , (2.139)

where (a, c) are scalars and (b, d) are positive scalars. This follows from
the affine equivariance property (2.71) of the covariance matrix.

4. Correlation and anti-correlation play a symmetric role:

Cor {Xm,−Xn} = −Cor {Xm,Xn} . (2.140)

This follows from the affine equivariance property (2.71) of the covariance
matrix.
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A comparison of these properties with the respective properties of the
measures of concordance shows that the correlation fails to be a suitable mea-
sure of concordance because it only covers affine transformations, whereas the
measures of concordance cover more general invertible transformations.

Consider again our leading example (2.7) of two stock prices (X1,X2),
along with the call option (2.112) and the put option (2.113) on the first
stock. We summarize in the following table the correlation between any two
of the above securities, which we computed by means of simulations:

Cor X1 C1 P1 X2

X1 1 .86 −.86 .63
C1 1 −.47 .54
P1 1 −.54
X2 1

(2.141)

Although the first stock price X1, and the (regularized) call option payoff
C1 are co-monotonic, their correlation is not 1. Although the (regularized) put
option payoff P1 and the first stock price X1 are anti-monotonic, their correla-
tion is not −1. Similarly, although the (regularized) put option payoff P1 and
the (regularized) call option payoff C1 are anti-monotonic, their correlation is
not −1. As far as the second stock is concerned, although the (regularized)
call option payoff C1 and the first stock price X1 are co-monotonic, the corre-
lation of the second stock price X2 with C1 is not the same as the correlation
of X2 with X1. Similarly, although the (regularized) put option payoff P1 and
the first stock price X1 are anti-monotonic, the correlation of the second stock
price X2 with P1 is not the opposite of the correlation of X2 with X1.

Furthermore, a measure of concordance is defined in terms of the copula,
and as such is not influenced by the marginal distribution of the variables
involved. On the other hand, the set of possible values of the correlation does
depend on the marginal distributions between the variables involved.

For example, consider two normally distributed random variables:

X1 ∼ N
¡
µ1, σ

2
1

¢
, X2 ≡ N

¡
µ2, σ

2
2

¢
. (2.142)

It is possible to show that the correlation between these variables can take on
any value in the interval [−1, 1], see (2.169).
On the other hand, consider two lognormal variables:

Y1 ≡ eX1 , Y2 ≡ eX2 . (2.143)

The correlation between these variables is bounded within an interval smaller
than [−1, 1]. For instance, the fact that both variables are positive implies
that the correlation between the variables (2.143) cannot equal −1.
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After the above critiques, one might wonder why correlation is such a
popular tool. In the first place, the correlation indeed draws a bridge between
the location-dispersion parameters and the dependence-concordance summary
statistics. Secondly, for an important class of distribution the correlation com-
pletely defines the dependence structure, see Section 2.7.1.

2.6 Taxonomy of distributions

In this section we provide a taxonomy of multivariate distributions, stressing
only the features that are needed in the sequel to tackle financial applications.
Except for the order statistics, all the distribution introduced are generaliza-
tions of the one-dimensional distributions introduced in Section 1.3, to which
the reader is referred to support intuition.

2.6.1 Uniform distribution

The simplest multivariate distribution is the uniform distribution. The uni-
form distribution models the situation where the only information available
about the N -dimensional random variable X is that its realization is bound
to take place on a given range in RN , and that all points in that range are
equally likely outcomes for the realization.
In particular, consider an ellipsoid Eµ,Σ centered in µ with shape defined

by the symmetric and positive matrix Σ as in (A.73). We use the following
notation to indicate that X is uniformly distributed on the ellipsoid Eµ,Σ:

X ∼ U(Eµ,Σ) . (2.144)

In Appendix www.2.11 we follow Fang, Kotz, and Ng (1990) to prove the
results in the sequel.
The probability density function of the uniform distribution on the ellip-

soid reads:

fUµ,Σ (x) =
Γ
¡
N
2 + 1

¢
π
N
2 |Σ|

1
2

IEµ ,Σ (x) , (2.145)

where Γ is the gamma function (B.80) and I is the indicator function (B.72).
The characteristic function of the uniform distribution on the ellipsoid

reads:
φUµ,Σ (ω) = eiω

0µψ (ω0Σω) , (2.146)

where the function ψ is defined in terms of the beta function (B.88) as follows2:

ψ (γ) ≡ 2

B
¡
1
2 ,

N+1
2

¢ Z 1

0

cos (
√
γz)

¡
1− z2

¢N−1
2 dz. (2.147)

2 There are two minor typos in Fang, Kotz, and Ng (1990)
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The mode is not defined, but the standard location parameter, i.e. the
expected value, is defined and reads:

E {X} = µ. (2.148)

The modal dispersion is not defined, but the standard scatter parameter, i.e.
the covariance matrix, is defined and reads:

Cov {X} = 1

N + 2
Σ. (2.149)

Now we split X in two sub-sets: the K-dimensional random variable XA

made of the first K entries and the (N −K)-dimensional random variableXB

made of the remaining entries. The marginal distribution ofXA is not uniform.
The conditional distribution ofXB givenXA is uniform on an ellipsoid of lower
dimension.

Bivariate standard uniform distribution

To gain more insight in the properties of the multivariate uniform distribution,
we consider more in detail the bivariate uniform distribution on the unit circle.

x1
x2

pdf U
,f 0 Ι

Fig. 2.12. Uniform distribution on the unit circle

The probability density function (2.145) is zero outside the unit circle and
constant on the circle:

fX1,X2 (x1, x2) =
1

π
I{x21+x22≤1} (x1, x2) , (2.150)
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see Figure 2.12.
We compute explicitly the marginal density of X1. From Figure 2.12 we

see that if |x1| > 1 the marginal pdf is zero. When |x1| ≤ 1 the marginal
density in x1 is proportional to the area of the intersection of the vertical
plane through x1 with the density pie in Figure 2.12. This area is zero in
x1 ≡ ±1 and it reaches its maximum in x1 ≡ 0. Indeed:

fX1 (x1) ≡
Z +
√
1−x21

−
√
1−x21

1

π
dx2 =

2

π

q
1− x21. (2.151)

This formula shows that the marginal distribution of a uniform distribution
is not uniform.
As for the conditional density of X2 given x1, we see in Figure 2.12 that

the conditional pdf is non-zero only in the following domain:

−
q
1− x21 ≤ x2 ≤

q
1− x21. (2.152)

In this region the conditional pdf of X2 given x1 reads:

fX2|x1 (x2) =
fX1,X2 (x1, x2)

fX1 (x1)
=

1

2
p
1− x21

. (2.153)

Since it does not depend on its argument x2, this function describes a plateau.
A rescaled version of this plateau is represented in Figure 2.12 by the profile
of the intersection of the vertical plane through x1 with the density pie. When
suitably rescaled, this plateau becomes taller and thinner as the known vari-
able x1 approaches the extremes x1 ≡ ±1: indeed, if we know that x1 ≡ ±1,
thenX2 must be zero with certainty and thus the respective conditional proba-
bility density function must becomes a Dirac delta centered in zero, see (B.22).
From (2.149) the two variables X1 and X2 are uncorrelated:

Cor {X1,X2} = 0. (2.154)

Nevertheless, the conditional pdf of X2 explicitly depends on X1 and thus X1

and X2 are not independent.

2.6.2 Normal distribution

The normal distribution is the most widely used model to describe the statis-
tical properties of a random variable X that can take on values in the whole
space RN in a symmetrical way around a peak.
The normal distribution depends on two parameters: an N -dimensional

location vector µ that determines the peak of the distribution, and an N ×N
symmetric and positive scatter matrix Σ that determines the shape of the
distribution around its peak.
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We use the following notation to indicate that X is normally distributed
with the above parameters:

X ∼ N(µ,Σ) . (2.155)

The standard normal distribution corresponds to the specific case µ ≡ 0 and
Σ ≡ I, the identity matrix.
The following results and more on the normal distribution can be found

e.g. in Mardia, Kent, and Bibby (1979), Press (1982) and Morrison (2002).

iso-probability 
contours

location-dispersion 
ellipsoidpdf N

,f Σµ

µ

x1
xN

xN

x1

Fig. 2.13. Normal distribution

The multivariate normal probability density function reads:

fNµ,Σ (x) = (2π)
−N

2 |Σ|−
1
2 e−

1
2 (x−µ)0Σ−1(x−µ), (2.156)

see the left portion of Figure 2.13 for a plot in the bivariate case, and the
right portion of that figure for the projection on the plane of the points that
share the same values of the pdf.
The characteristic function of the normal distribution reads:

φNµ,Σ (ω) = eiµ
0ω− 1

2ω
0Σω , (2.157)

see also Appendix www.2.12. The expected value and the mode coincide and
read:

E {X} = Mod {X} = µ. (2.158)

The covariance matrix and the modal dispersion are both defined. They co-
incide and read:
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Cov {X} = MDis {X} = Σ. (2.159)

In the right portion of Figure 2.13 we plot for the bivariate case the location-
dispersion ellipsoid EE,Cov defined in (2.75), see the discussion in Section 2.4.3.
Now we split X in two sub-sets: the K-dimensional random variable XA

made of the first K entries and the (N −K)-dimensional random variableXB

made of the remaining entries:

X ≡
µ
XA

XB

¶
. (2.160)

We split accordingly the location and the scatter parameters:

µ ≡
µ
µA
µB

¶
, Σ ≡

µ
ΣAA ΣAB

ΣBA ΣBB

¶
. (2.161)

The marginal distribution ofXA is a normal distribution with the following
parameters:

XA ∼ N(µA,ΣAA) . (2.162)

This is a specific case of a more general result. Indeed, any affine transforma-
tion of X is normally distributed as follows:

a+BX ∼ N
¡
a+Bµ,BΣB0

¢
. (2.163)

The conditional distribution of XB given xA is normal:

XB|xA ∼ N(µB|xA,ΣB|xA) , (2.164)

where

µB|xA ≡ µB +ΣBAΣ
−1
AA (xA − µA) (2.165)

ΣB|xA ≡ ΣBB −ΣBAΣ
−1
AAΣAB. (2.166)

Notice that the expression of the conditional covariance does not depend on
the known variable xA.
As for independence, two jointly normal random variables are independent

if and only if their covariance, or equivalently their correlation, is null:

(Xm,Xn) independent⇔ Cov {Xn,Xn} = 0. (2.167)

This is another very special feature of the normal distribution. In general the
much weaker relation (2.70) holds.

Bivariate normal distribution

To better understand the properties of the multivariate normal distribution,
we consider the bivariate case.
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We write the scatter parameter component-wise as follows:

Σ ≡
µ

σ21 ρσ1σ2
ρσ1σ2 σ22

¶
, (2.168)

where |ρ| ≤ 1. This is the most general parametrization of a symmetric and
positive 2× 2 matrix. Also, it is convenient for notational purposes to assume
σ1, σ2 ≥ 0.
Since from (2.159) the matrix Σ is the covariance, it follows immediately

that
Cor {X1,X2} = ρ, (2.169)

which shows that the correlation of two jointly normal variables can assume
any value in the interval [−1, 1].
In this notation, the expression of the normal probability density function

(2.156) reads

fNµ,Σ (x1, x2) =
1

2π
p
σ21σ

2
2 (1− ρ2)

e
− 1
2

z21−2ρz1z2+z22
(1−ρ2) (2.170)

where (z1, z2) are the z-scores, i.e. the standardized variables:

zi ≡
xi − µi
σi

, i = 1, 2. (2.171)

From (2.162) the marginal distribution of X1 is normal:

X1 ∼ N
¡
µ1, σ

2
1

¢
. (2.172)

From Figure 2.13, this result is intuitive. Indeed, the marginal density in x1
is proportional to the area underneath the joint probability density function
cut by the vertical plane through x1: this area decreases at infinity and has a
peak at the point x1 ≡ µ1.
From (2.164) the conditional distribution of X2 given x1 is also normal:

X2|x1 ∼ N
³
µ2|x1, (σ2|x1)

2
´
. (2.173)

The above parameters read explicitly:

µ2|x1 ≡ µ2 + ρ
σ2
σ1
(x1 − µ1) (2.174)

σ2|x1 ≡ σ2
p
1− ρ2. (2.175)

From Figure 2.13, this result is intuitive. Indeed, the (rescaled) profile of the
conditional density of X2 given x1 is given by the intersection of the vertical
plane through x1 with the joint probability density function: this intersection
has a bell shape peaked in µ2|x1.
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We now consider independence. If in (2.170) we set ρ ≡ 0, the pdf can
be factored into the product of the pdf of the two marginal distributions
of X1 and X2. In other words, from (2.169) we see that the two variables
are independent if and only if their correlation is zero, which is stated more
generally in (2.167).
To gain further insight in the dependence structure of the bivariate normal

distribution, we consider the copula. In Appendix www.2.12 we prove that the
probability density function of the copula reads in terms of the inverse of the
error function (B.75) as follows:

fNU1,U2 (u1, u2) =
1p
1− ρ2

egρ(erf
−1(2u1−1),erf−1(2u2−1)), (2.176)

where g is defined as follows:

gρ (v1, v2) ≡ −
ρ

1− ρ2

µ
v1
v2

¶0µ
ρ −1
−1 ρ

¶µ
v1
v2

¶
. (2.177)

From this expression we see that the copula of two jointly normal variables is
completely determined by their correlation.
Therefore it is not surprising that Kendall’s tau, the measure of concor-

dance defined in (2.128), reads:

τ {X1,X2} =
2

π
arcsin (ρ) . (2.178)

In other words, the concordance of two jointly normal variables is completely
determined by their correlation.

Matrix-variate normal distribution

Consider an (N ×K)-matrix-valued random variable:

X ≡
³
X(1), . . . ,X(K)

´
≡

 X(1)

...
X(N)

 , (2.179)

where each column X(k) is an N -dimensional random variable and each row
X(n) is aK-dimensional random variable. The random matrixX has amatrix-
variate normal distribution if

vec (X) ∼ N(vec (M) ,S⊗Σ) , (2.180)

where vec is the operator (A.104) that stacks the columns of a matrix into a
vector; S is a K ×K symmetric and positive definite matrix; Σ is an N ×N
symmetric and positive definite matrix; and ⊗ denotes the Kronecker prod-
uct (A.96). We denote a matrix-variate normal distribution with the above
parameters as follows:
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X ∼ N(M,Σ,S) . (2.181)

The following results are proved in Appendix www.2.13.
The probability density function of the matrix-valued random variable

(2.181) can be conveniently expressed as follows:

fNµ,Σ,S (X) ≡ (2π)
−NK

2 |Σ|−
K
2 |S|−

N
2 (2.182)

e−
1
2 tr{S−1(X−M)0Σ−1(X−M)}.

Notice that this density generalizes the vector-variate normal probability den-
sity function (2.156). Therefore the multivariate normal distribution (2.155)
can be seen as the following special case of the matrix-variate normal distri-
bution:

N(µ,Σ) = N(µ,Σ, 1) . (2.183)

From the definition (2.180) we see immediately that the matrix M is the
expected value of X:

E {X} =M. (2.184)

The matrix Σ defines the overall covariance structure between any two N -
dimensional columns X(j),X(k) among the K that constitute the random
matrix X:

Cov
n
X(j),X(k)

o
= SjkΣ. (2.185)

Similarly, the matrix S defines the overall covariance structure between any
two K-dimensional rows X(m),X(n) among the N that constitute the random
matrix X:

Cov
©
X(m),X(n)

ª
= ΣmnS. (2.186)

2.6.3 Student t distribution

The Student t distribution is another model that describes the statistical prop-
erties of a random variable X which can assume values on the whole space
RN in a symmetrical way around a peak.
Similarly to the normal distribution, the Student t distribution depends

on an N -dimensional location parameter µ that determines the peak of the
distribution, and an N × N symmetric and positive scatter matrix Σ that
determines the shape of the distribution around its peak. It also depends on an
additional parameter ν, the degrees of freedom of the Student t distribution,
whose integer value determines the relative importance of the peak of the
distribution with respect to its tails.
We use the following notation to indicate that X has a Student t-

distribution with the above parameters:

X ∼ St (ν,µ,Σ) . (2.187)

symmys.com

copyrighted material: Attilio Meucci - Risk and Asset Allocation - Springer



78 2 Multivariate statistics

iso-probability 
contours

location-dispersion 
ellipsoidpdf S t

,f ν Σ, µ

µ

x1
xN

xN

x1

Fig. 2.14. Student t distribution

The standard Student t distribution corresponds to the specific case µ ≡ 0
and Σ ≡ I, the identity matrix.
The multivariate Student t probability density function reads:

fStν,µ,Σ (x) = (νπ)
−N

2
Γ
¡
ν+N
2

¢
Γ
¡
ν
2

¢ |Σ|−
1
2 (2.188)

µ
1 +

1

ν
(x− µ)0Σ−1 (x− µ)

¶− ν+N
2

,

where Γ denotes the gamma function (B.80), see Kotz and Nadarajah (2004)
and Fang, Kotz, and Ng (1990). In the left portion of Figure 2.14 we plot the
bivariate case, and in the right portion we plot the projection on the plane of
the points that share the same values of the pdf.
The characteristic function of the Student t distribution is computed in

Sutradhar (1986) and Sutradhar (1988). The characteristic function of the
Student t distribution assumes a different form depending on whether the
degrees of freedom ν are odd or even. We report here the expression for odd
degrees of freedom:

φStν,µ,Σ (x) =

√
πΓ

¡
ν+1
2

¢
2ν−1Γ

¡
ν
2

¢ e(iµ0ω−√νω 0Σω) (2.189)

ν+1
2X

r=1

µ
ν − r

ν+1
2 − r

¶³2√νω0Σω´r−1
(r − 1)! ,

where Γ is the gamma function (B.80).
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The expected value and the mode coincide and read:

E {X} = Mod {X} = µ. (2.190)

The covariance matrix is defined if ν > 0 and reads:

Cov {X} = ν

ν − 2Σ. (2.191)

In the right portion of Figure 2.14 we plot for the bivariate case the location-
dispersion ellipsoid Eµ,Σ defined in (2.75), see the discussion in Section 2.4.3.
Now we split X in two sub-sets: the K-dimensional random variable XA

made of the first K entries and the (N −K)-dimensional random variableXB

made of the remaining entries:

X ≡
µ
XA

XB

¶
. (2.192)

We split accordingly the location and the scatter parameters:

µ ≡
µ
µA
µB

¶
, Σ ≡

µ
ΣAA ΣAB

ΣBA ΣBB

¶
. (2.193)

The marginal distribution of XA is a Student t distribution with the following
parameters:

XA ∼ St (ν,µA,ΣAA) . (2.194)

This is a specific case of a more general result. Indeed, any affine transforma-
tion of X is Student t distributed as follows:

a+BX ∼ St
¡
ν,a+Bµ,BΣB0

¢
. (2.195)

On the other hand, unlike in the normal case, the conditional distribution
of a Student t distribution is in general not a Student t distribution. Indeed,
from the expression of the joint pdf (2.188) and the fact that from (2.194)
the marginal pdf is in the form (2.188) it is immediate to compute the pdf of
the conditional distribution as the ratio of the joint pdf and the marginal pdf.
Nevertheless, the conditional pdf is not of the form (2.188).
As far as independence is concerned, since the generic conditional distri-

bution is not a Student t distribution and the generic marginal distribution
is a Student t distribution it follows that marginal and conditional distribu-
tion cannot coincide. Therefore random variables that are jointly Student t
distributed are not independent.
Just like in the one-dimensional case, the Student t distribution encom-

passes the normal distribution as a special case. Indeed, as we show more in
general in Appendix www.2.14, in the limit ν →∞ the Student t probability
density function (2.188) yields the normal probability density function (2.156)
and thus:
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St (∞,µ,Σ) = N(µ,Σ) . (2.196)

As the degrees of freedom ν decrease, the tails in the pdf (2.188) of the dis-
tribution become thicker and thicker. We can see this by comparing Figure
2.14 with Figure 2.13, see also Section 2.6.4 and refer to Figure 1.9 for the
univariate case.

Matrix-variate Student t distribution

The matrix-variate Student t distribution was introduced by Dickey (1967),
see Appendix www.2.14 for the relation with the notation in the original
paper.
Consider an (N ×K)-matrix-valued random variable

X ≡
³
X(1), . . . ,X(K)

´
≡

 X(1)

...
X(N)

 , (2.197)

where each column X(k) is an N -dimensional random variable and each row
X(n) is a K-dimensional random variable.
The random matrix X is distributed according to a matrix-valued Student

t distribution with the following parameters

X ∼ St (ν,M,Σ,S) , (2.198)

if its probability density function reads:

fStν,µ,Σ,S (X) ≡ γ |Σ|−
K
2 |S|−

N
2 (2.199)¯̄̄̄

IK + S
−1 (X−M)0 Σ

−1

ν
(X−M)

¯̄̄̄− ν+N
2

.

In this expression M is an N × K matrix; Σ is an N × N symmetric and
positive definite matrix; S is a K×K symmetric and positive definite matrix;
ν is a positive integer; and γ is a normalization constant defined in terms of
the gamma function (B.80) as follows:

γ ≡ (νπ)−
NK
2

Γ
¡
ν+N
2

¢
Γ
¡
ν
2

¢ Γ
¡
ν+N−1

2

¢
Γ
¡
ν−1
2

¢ · · ·
Γ
¡
ν+N−K+1

2

¢
Γ
¡
ν−K+1

2

¢ . (2.200)

Notice that the density (2.199) generalizes the vector-variate Student t prob-
ability density function (2.188). Therefore the multivariate Student t distrib-
ution (2.187) can be seen as the following special case of the matrix-variate
Student t distribution:

St (ν,µ,Σ) = St (ν,µ,Σ, 1) . (2.201)
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Unlike in the normal case (2.180), by stacking the columns of the matrix
X in (2.198) with the vec operator (A.104) we do not obtain a Student t-
distributed variable:

vec (X) ¿ St (ν, vec (M) ,S⊗Σ) . (2.202)

Nevertheless the following results hold:

E {X} =M, (2.203)

which generalizes (2.190); and

Cov {vec (X)} = ν

ν − 2S⊗Σ, (2.204)

which generalizes (2.191). Therefore the matrix Σ defines the overall covari-
ance structure between any two N -dimensional columns X(j),X(k) among the
K that constitute the random matrix X:

Cov
n
X(j),X(k)

o
=

ν

ν − 2SjkΣ. (2.205)

Similarly, the matrix S defines the overall covariance structure between any
two K-dimensional rows X(m),X(n) among the N that constitute the random
matrix X:

Cov
©
X(m),X(n)

ª
=

ν

ν − 2ΣmnS. (2.206)

These result parallel (2.184)-(2.186) for the normal distribution. Indeed, in
the limit ν → ∞ the matrix-variate Student t distribution (2.198) becomes
the matrix-variate normal distribution (2.181):

St (∞,M,Σ,S) = N(M,Σ,S) , (2.207)

see the proof in Appendix www.2.14.

2.6.4 Cauchy distribution

As in the univariate setting, the special case of the Student t distribution with
ν ≡ 1 degrees of freedom is called the Cauchy distribution, which we denote
as follows:

Ca (µ,Σ) ≡ St (1,µ,Σ) . (2.208)

The standard Cauchy distribution corresponds to the specific case µ ≡ 0 and
Σ ≡ I, the identity matrix.
From (2.188), the probability density function of the Cauchy distribution

reads:

fCaµ,Σ (x) =
Γ
¡
1+N
2

¢
π
N
2 Γ

¡
1
2

¢ |Σ|− 1
2
¡
1 + (x− µ)0Σ−1 (x− µ)

¢−N+1
2 , (2.209)
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Fig. 2.15. Cauchy distribution

see the left portion of Figure 2.15 for a plot in the bivariate case, and the
right portion of that figure for the projection on the plane of the points that
share the same values of the pdf.
From (2.189), the characteristic function of the Cauchy distribution reads:

φCaµ,Σ (ω) = eiµ
0ω−√ω 0Σω . (2.210)

The tails in the density (2.209) are so thick that the moments are not
defined. Nevertheless, the mode is defined and reads:

Mod {X} = µ. (2.211)

Similarly, the modal dispersion (2.65) is defined and reads:

MDis {X} = 1

N + 1
Σ, (2.212)

see Appendix www.2.15. In the right portion of Figure 2.15 we plot for the
bivariate case the location-dispersion ellipsoid Eµ,Σ defined in (2.75), see the
discussion in Section 2.4.3.

2.6.5 Log-distributions

Log-distributions are defined as the exponential of other parametric distribu-
tions. As such, they are suitable to model positive quantities such as prices of
limited-liability securities.
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More precisely, consider a random variable Y, whose distribution is rep-
resented by its pdf fY, or its cdf FY, or its characteristic function φY. The
variable X ≡ eY, where the exponential acts component-wise, is log-Y dis-
tributed , because by definition the logarithm of X has the same distribution
as Y.
The following results are discussed in Appendix www.2.16.
The probability density function of a log-Y distribution reads:

fX (x) =
fY (ln (x))QN

n=1 xn
. (2.213)

The raw moments of a log-Y distribution read:

E {Xn1 · · ·Xnk} = φY (ωn1···nk) , (2.214)

where the vector ω is defined in terms of the canonical basis (A.15) as follows:

ωn1···nk ≡
1

i

³
δ(n1) + · · ·+ δ(nk)

´
. (2.215)

iso-probability 
contours

location-dispersion 
ellipsoid

pdf L o g N
,f Σµ

x1
xN

xN

x1

Fig. 2.16. Lognormal distribution

In particular, consider a random variable Y that is normally distributed
with expected value µ and covariance matrix Σ:

Y ∼ N(µ,Σ) . (2.216)
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We use the following notation to indicate that X ≡ eY has a lognormal dis-
tribution with the above parameters:

X ∼ LogN (µ,Σ) . (2.217)

The probability density function of the lognormal distribution follows from
(2.213) and the pdf (2.156) of the normal distribution:

fLogNµ,Σ (x) =
(2π)−

N
2 |Σ|−

1
2QN

n=1 xn
e−

1
2 (ln(x)−µ)0Σ−1(ln(x)−µ), (2.218)

see the left portion of Figure 2.16 for a plot in the bivariate case, and the
right portion of that figure for the projection on the plane of the points that
share the same values of the pdf.
Expected values and covariances of the lognormal distribution follow from

(2.214) and the characteristic function (2.157) of the normal distribution:

E {Xn} = eµn+
Σnn
2 (2.219)

Cov {Xm,Xn} = eµm+µn+
Σmm
2 +Σnn

2

¡
eΣmn − 1

¢
. (2.220)

In the right portion of Figure 2.16 we plot for the bivariate case the location-
dispersion ellipsoid EE,Cov defined in (2.75), see the discussion in Section 2.4.3.

2.6.6 Wishart distribution

Consider a set of random variables {X1, . . . ,Xν} that are independent and
normally distributed with zero expected value and with the same scatter pa-
rameter:

Xt ∼ N(0,Σ) , t = 1, . . . , ν. (2.221)

The Wishart distribution with ν degrees of freedom is the distribution of the
random matrixW defined as follows:

W ≡ X1X
0
1 + · · ·+XνX

0
ν . (2.222)

Therefore the Wishart distribution depends on two parameters: the degrees
of freedom ν, which takes on integer values, and the scale parameter Σ, which
is a symmetric and positive matrix. We use the following notation to indicate
thatW is a Wishart-distributed matrix with the above parameters:

W ∼W(ν,Σ) . (2.223)

Notice that by construction W is a symmetric and positive matrix-valued
random variable. This distribution plays a major role in the analysis of the
estimation of covariance matrices.
The following results on the Wishart distribution can be found in Anderson

(1984) and Mardia, Kent, and Bibby (1979).
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The probability density function of the Wishart distribution reads:

fWν,Σ (W) =
1

κ
|Σ|−

ν
2 |W|

ν−N−1
2 e−

1
2 tr(Σ

−1W), (2.224)

where κ is a normalization constant defined in terms of the the gamma func-
tion (B.80) as follows:

κ ≡ 2 νN2 π
N(N−1)

4 Γ
³ν
2

´
Γ

µ
ν − 1
2

¶
· · ·Γ

µ
ν −N + 1

2

¶
. (2.225)

The characteristic function of the Wishart distribution reads:

φWν,Σ (Ω) ≡ E
n
ei tr(WΩ)

o
= |I− 2iΣΩ|−

ν
2 . (2.226)

The expected value, which is the standard parameter of location, reads
component-wise as follows:

E {Wmn} = νΣmn. (2.227)

The cross-covariances, which determine the dispersion ofW, read:

Cov {Wmn,Wpq} = ν (ΣmpΣnq +ΣmqΣnp) . (2.228)

As in Magnus and Neudecker (1979), we can express this in compact notation
as follows:

Cov {vec [W]} = ν (IN2 +KNN ) (Σ⊗Σ) , (2.229)

where vec is the operator (A.104) that stacks the columns ofW into a vector,
I is the identity matrix, K is the commutation matrix (A.108) and ⊗ is the
Kronecker product (A.96).
A comparison of (2.224) with (1.110) shows that the Wishart distribution

is the multivariate generalization of the gamma distribution (1.108). Further-
more, for a generic vector a we obtain:

W ∼W(ν,Σ)⇒ a0Wa ∼ Ga (ν,a0Σa) , (2.230)

see Appendix www.2.17.
Since the inverse of a symmetric and positive matrix is a symmetric and

positive matrix, the Wishart distribution can be used to model a symmetric
and positive matrix also through its inverse. In other words, assume that the
inverse of a random matrix Z is Wishart-distributed:

Z−1 ∼W
¡
ν,Ψ−1

¢
. (2.231)

Then the distribution of Z is called inverse-Wishart , and is denoted as follows:

Z ∼ IW (ν,Ψ) . (2.232)
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We stress that Z is, like Z−1, a matrix-valued random variable that is sym-
metric and positive.
In Appendix www.2.17 we prove that the probability density function of

the inverse-Wishart distribution reads:

f IWν,Ψ (Z) =
1

κ
|Ψ|

ν
2 |Z|−

ν+N+1
2 e−

1
2 tr(ΨZ

−1), (2.233)

where κ is the normalization constant (2.225).

The 2× 2 Wishart distribution

To better understand the Wishart distribution we consider the case of 2 × 2
matrices:

W ≡
µ
W11 W12

W21 W22

¶
∼W

µ
ν;

µ
σ21 ρσ1σ2

ρσ1σ2 σ22

¶¶
, (2.234)

where |ρ| ≤ 1.
The symmetry ofW implies W12 ≡W21. Therefore this random matrix is

completely determined by the three entries (W11,W12,W22).

w11
w12

w22

2
11 22 12 0w w w− =

Fig. 2.17. Wishart distribution

Furthermore a symmetric matrix is positive if and only if its eigenvalues
are positive. In the 2 × 2 case, denoting as λ1 and λ2 the two eigenvalues,
these are positive if and only if the following inequalities are satisfied:

λ1λ2 > 0, λ1 + λ2 > 0. (2.235)
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On the other hand, the product of the eigenvalues is the determinant of W
and the sum of the eigenvalues is the trace ofW, which are both invariants,
see Appendix A.4. Therefore the positivity condition is equivalent to the two
conditions below:

|W| ≡ W11W22 −W 2
12 ≥ 0 (2.236)

tr (W) ≡ W11 +W22 ≥ 0, (2.237)

where the first expression follows from (A.41).
In Figure 2.17 we plot a few outcomes of a simulation of (2.234). No-

tice that all the outcomes lie above the surface w11w22 − w212 = 0: therefore
(2.236) is satisfied. Furthermore, all the outcomes satisfy w22 ≥ −w11: there-
fore (2.237) is also satisfied. In other words, each outcome corresponds to a
symmetric and positive 2× 2 matrix.

2.6.7 Empirical distribution

The generalization to the multivariate case of the empirical distribution is
immediate. Suppose that we can access T past measurements of the N -
dimensional random variable X:

iT ≡ {x1, . . . ,xT } , (2.238)

where we use the lower-case notation because these measurements have al-
ready taken place and thus they no longer represent random variables.
The empirical distribution models in the most simplistic way the basic

assumption of statistics that we can learn from past experience. More pre-
cisely, under this distribution any of the past occurrences is an equally likely
potential outcome of future measurements of X, whereas different realizations
cannot occur.
We use the following notation to indicate that X is distributed according

to an empirical distribution stemming from the above observations:

X ∼ Em(iT ) . (2.239)

The empirical distribution is discrete. Therefore its probability density func-
tion is a generalized function. As in (B.22), we can express the empirical pdf
as follows:

fiT (x) =
1

T

TX
t=1

δ(xt) (x) , (2.240)

where δ is the Dirac delta (B.16).
To visualize this probability density function we regularize it by means of

the convolution as in (B.54). The regularized probability density function of
the empirical distribution reads in terms of the smooth approximation (B.18)
of the Dirac delta as follows:
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iT
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Fig. 2.18. Empirical distribution (regularized)

fiT ;� ≡ fiT ∗ δ(0)� =
1

T

TX
t=1

δ(xt)� , (2.241)

where � is a small bandwidth, see Figure 2.18.
From (B.53) the empirical cumulative distribution function reads:

FiT =
1

T

TX
t=1

H(xt), (2.242)

where H is the Heaviside step function (B.73).
From the definition of the characteristic function (2.13) in terms of the

expectation operator (B.56), and from the property (B.17) of the Dirac delta
we obtain the characteristic function of the empirical distribution:

φiT (ω) =
1

T

TX
t=1

eiω
0xt . (2.243)

From the same rationale we also obtain the moments of any order of the
empirical distribution. In particular, the expected value is called the sample
mean, which we denote as follows:

bEiT ≡ 1

T

TX
t=1

xt. (2.244)

Similarly, the covariance matrix of the empirical distribution is called the
sample covariance, which we denote as follows:
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dCoviT ≡ 1

T

TX
t=1

¡
xt − bEiT ¢2 . (2.245)

2.6.8 Order statistics

The order statistics are useful in the context of nonparametric estimation.
The following results and more can be found in David (1981).
Consider T independent and identically distributed univariate random

variables and their respective realizations:

{X1, . . . ,XT } , {x1, . . . , xT } , (2.246)

where as usual the upper-case notation indicates the random variable, and
the lower-case notation indicates the respective realization.
Consider the smallest among the realized variables: this is, say, the realiza-

tion of the second variable x2. In a different scenario, the smallest realization
might have been the realization of a different random variable, say x4. In
general, the value x2 in the first scenario is different than the value x4 in the
second scenario. In other words, the minimum among the random variables
(2.246) is a random variable.
Similarly, the maximum among the random variables (2.246) is a random

variable. More in general, consider the whole set of ordered random variables:

X1:T ≡ min {X1, . . . ,XT }
... (2.247)

XT :T ≡ max {X1, . . . ,XT } .

The generic r-th element Xr:T , i.e. the r-th smallest random variable, is called
the r-th order statistic.
The probability density function of the order statistics reads:

fXr:T (x) =
T !

(r − 1)! (T − r)!
F r−1
X (x) (1− FX (x))

T−r fX (x) , (2.248)

where fX and FX denote respectively the common probability density func-
tion and the common cumulative distribution function respectively of all the
variables (2.246).
The cumulative distribution function of the order statistics reads:

FXr:T (x) = I (FX (x) , r, T − r + 1) , (2.249)

where I is the regularized beta function (B.91).
When defined, the expected value of the generic r-th order statistic can

be expressed in terms of the common quantile function QX of the variables
(2.246) as follows:
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Fig. 2.19. Probability density function of order statistics

E {Xr:T } =
Z
R
QX (u)eδr,T (u) du, (2.250)

where the function δ is defined in terms of the indicator function (B.72) and
reads:

eδr,T (u) ≡ T !

(r − 1)! (T − r)!
ur−1 (1− u)T−r I[0,1] (u) . (2.251)

In the limit of a large sample T this function is a smooth approximation to
the Dirac delta (B.16): eδr,T T→∞−→ δ(r/T ). (2.252)

Therefore, when it is defined, the expected value of the r-th order statistic
can be approximated by the quantile of any of the variables (2.246) as follows:

E {Xr:T } ≈ QX

³ r
T

´
, (2.253)

see Figure 2.19 and compare with Figure 1.2.
The concentration of the distribution of the order statistics around its

expected value and the accuracy of the approximation (2.253) increases with
the size T of the sample according to (2.252).
An important case of order statistics are those of the uniform distribution.

Consider a set of T random variables that are independent and identically
uniformly distributed on the unit interval:

Ut ∼ U([0, 1]) , t = 1, . . . , T . (2.254)
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The order statistics of the uniform distribution are important because they
represent the grade of any order statistics. In other words, the order statistic
from a generic distribution (2.247) has the same distribution as the quantile
of the respective order statistics from the uniform distribution:

(X1:T , . . . ,XT :T )
d
= (QX (U1:T ) , . . . , QX (UT :T )) . (2.255)

This result is a straightforward consequence of the definition of quantile, see
(2.27) and Figure 2.3.

2.7 Special classes of distributions

In this section we put the distributions presented in Section 2.6 in a more gen-
eral perspective in view of their applications. Refer to Figure 2.20 throughout
the discussion.

elliptical

stable

infinitely 
divisible

additive

ΓCa
N

St
U

LogN

W

Fig. 2.20. Special classes of distributions

2.7.1 Elliptical distributions

Elliptical distributions are highly symmetrical distributions that are analyt-
ically tractable and yet flexible enough to model a wide range of situations.
Refer to Fang, Kotz, and Ng (1990) and Fang and Zhang (1990) for more
details.
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Consider an N -dimensional random variable X, whose distribution we
represent by means of its probability density function fX. Consider the iso-
probability contours:

CL ≡ {x such that fX (x) = L} . (2.256)

The random variable X is elliptically distributed with location parameter µ
and scatter matrix Σ if for all levels L ∈ (0,∞) the iso-probability contour is
the surface of the following ellipsoid:

Eq(L)µ,Σ ≡
n
x such that (x− µ)0Σ−1 (x− µ) ≤ q (L)2

o
, (2.257)

for a suitable function q (L), see (A.73) for the details of the geometrical
interpretation of this locus.
Examples of such distributions are the normal, Student t and Cauchy

distributions respectively, as we see from the right portion of Figure 2.13,
Figure 2.14 and Figure 2.15 respectively.
An equivalent characterization of an elliptical distribution is the following.

Consider a random variable Y whose distribution is spherically symmetrical ,
i.e. such that for any rotation, as represented by the matrix Γ, the distributions

of the original variable and the rotated variable are the same: Y d
= ΓY.

The probability density function of a spherically symmetrical random variable
must be constant on any sphere centered in zero. Therefore, as we show in
Appendix www.2.4, an elliptical random variable with location parameter µ
and scatter parameter Σ is an invertible affine transformation of a spherically
symmetrical random variable:

X ≡ µ+AY, (2.258)

where AA0 = Σ.
To obtain a final, equivalent characterization of elliptical distributions, we

notice that in general we can write any non-zero random variableY as follows:
Y = RU, where R ≡ kYk is the norm of Y and thus it is a univariate random
variable, and U ≡ Y/ kYk.
It can be proved that if Y is spherically symmetrical, then R and U are

independent and U is uniformly distributed on the surface of the unit ball
E0,I in N dimensions. Therefore a final equivalent definition of an elliptical
distribution with location parameter µ and scatter matrix Σ is the following:

X ≡ µ+RAU. (2.259)

In this expression

AA0 ≡ Σ, R ≡
°°A−1 (X− µ)°° , U ≡ A−1 (X− µ)

kA−1 (X− µ)k , (2.260)

and U is uniformly distributed on the surface of the unit ball and is indepen-
dent of R.
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We show in Appendix www.2.18 that the generic elliptical probability
density function must be of the form:

fµ,Σ (x) = |Σ|−
1
2 gN

¡
Ma2 (x,µ,Σ)

¢
, (2.261)

where gN is a non-negative univariate function that satisfiesZ ∞
0

v
N
2 −1gN (v) dv <∞; (2.262)

the parameter µ is the center of the ellipsoid Eµ,Σ; the parameter Σ is a
symmetric and positive matrix that determines the shape of the ellipsoid
Eµ,Σ; and Ma is the Mahalanobis distance of the point x from µ through the
metric Σ, as defined in (2.61).

For example, for the uniform distribution from (2.145) we obtain:

gUN
¡
Ma2

¢
≡

Γ
¡
N
2 + 1

¢
π
N
2

I[0,1]
¡
Ma2

¢
. (2.263)

For the normal distribution from (2.156) we obtain:

gNN
¡
Ma2

¢
≡ e−

Ma2

2

(2π)
N
2

. (2.264)

For the Student t distribution from (2.188) we obtain:

gStN
¡
Ma2

¢
≡

Γ
¡
ν+N
2

¢
Γ
¡
ν
2

¢
(νπ)

N
2

µ
1 +

Ma2

ν

¶− ν+N
2

, (2.265)

which also covers the Cauchy distribution as the special case ν ≡ 1, see (2.209).
Therefore, all the above are elliptical distributions.

Equivalently, elliptical distributions can be represented in terms of their
characteristic function. The generic elliptical characteristic function has the
following form:

φµ,Σ (ω) ≡ eiω
0µψ (ω0Σω) , (2.266)

where ψ is a suitable real-valued function.

For example, we see from (2.157) that for the normal distribution we have:

ψN (γ) ≡ e−
γ
2 . (2.267)

The expression of ψ for the uniform distribution is given in (2.147). It is
immediate to derive the expression of ψ for the Cauchy distribution from
(2.210) and for the Student t distribution from (2.189).
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94 2 Multivariate statistics

Since an elliptical distribution is fully determined by the location para-
meter µ, the dispersion parameter Σ and the generator g of the probability
density function (or equivalently the generator ψ of the characteristic func-
tion), we use the following notation to denote that a variable X is elliptically
distributed with the above parameters:

X ∼ El (µ,Σ, gN ) , (2.268)

where we emphasized that the generator g depends on the dimension N of
the random variable X.

For example, the normal distribution is elliptical and thus from (2.264)
the following notations are equivalent:

N(µ,Σ) ≡ El
Ã
µ,Σ,

e−
1
2 ·

(2π)
N
2

!
. (2.269)

Among the most remarkable properties of elliptical distributions we men-
tion their behavior under affine transformations. Indeed, affine transforma-
tions of elliptically distributed random variables are elliptical distributed and
the new location-dispersion parameters are easily computed in terms of the
original ones.
More precisely, if X is an N -dimensional elliptical variable as in (2.268),

then for any K-dimensional vector a and any K ×N matrix B the following
relation holds:

a+BX ∼ El
¡
a+Bµ,BΣB0, gK

¢
. (2.270)

Notice nonetheless that the new generator gK has in general a very different
functional form than the original generator gN .

For example, consider a the bivariate uniform distribution on the unit
circle. In the above notation, its distribution reads:

(X1,X2)
0 ∼ El (0, I2, g2) , (2.271)

where I is the identity matrix and from (2.150) the two-dimensional generator
is defined in terms of the indicator function (B.72) as follows:

g2
¡
r2
¢
≡ 1

π
I[0,1]

¡
r2
¢
. (2.272)

Now consider the affine transformation determined by the following choice:

a ≡ 0, B ≡ (1, 0) . (2.273)

The outcome of the transformation is the marginal distribution of the first
variable X1. From (2.270) we obtain:
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X1 ∼ El (0, 1, g1) , (2.274)

where from (2.151) the one-dimensional generator reads:

g1
¡
r2
¢
≡ 2

π

p
1− r2. (2.275)

Therefore the marginal distribution of a uniform random variable is elliptical,
but it is not uniform.

Further remarkable properties of the elliptical distributions regard the mo-
ments, when these are defined. As we show in Appendix www.2.18 the follow-
ing relation holds:

E {X} = µ, Cov {X} = E
©
R2
ª

N
Σ, (2.276)

where R is defined in (2.260).
More in general, for the central moments of any order (2.92) we obtain:

CMX
m1···mk

= E
©
Rk
ª

(2.277)
NX

n1,...,nk=1

Am1n1 · · ·Amknk E {Un1 · · ·Unk} .

In this expressionA andU are defined in (2.260). The moments of the uniform
distribution on the surface of the unit ball are null if any variable appears an
odd number of times; otherwise they read:

E
©
U2s11 · · ·U2sNN

ª
=

QN
n=1

(2sn)!
4snsn!

N
2

¡
N
2 + 1

¢
· · ·
³
N
2 +

³PN
n=1 sn

´
− 1
´ . (2.278)

Since the copula of a distribution does not depend on purely marginal
parameters such as the expected value and the standard deviation, for ellip-
tical random variable the copula is fully determined by the correlations, see
for instance the normal case (2.176). As a consequence, since the measures of
concordance are defined in terms of the copula of a distribution, the measures
of concordance between the entries of an elliptical random variable X are
fully determined by the correlation matrix. For instance, Lindskog, McNeil,
and Schmock (2003) prove that Kendall’s tau (2.128) is the following function
of correlation:

τ {Xm,Xn} =
2

π
arcsin (Cor {Xm,Xn}) , (2.279)

which extends the result for the normal case (2.178) to generic elliptical vari-
ables.
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96 2 Multivariate statistics

2.7.2 Stable distributions

In view of our applications, stable distributions are analytically tractable dis-
tributions that can be projected to specific horizons in the future, see Figure
3.11. For more results on stable distributions see e.g. Embrechts, Klueppel-
berg, and Mikosch (1997) and references therein.
Consider three independent random variables (X,Y,Z) with the same

multivariate distribution. That distribution is stable if for any positive con-
stants α and β there exist constants γ and δ such that the following holds:

αX+ βY
d
= γ + δZ, (2.280)

where " d=" denotes "equal in distribution". In other words, the distribution is
closed under linear combinations.

For example, assume that the three variables are independently normally
distributed:

(X,Y,Z) ∼ N(µ,Σ) . (2.281)

Then
αX+ βY ∼ N((α+ β)µ, (α+ β)Σ) .

Therefore setting γ ≡ 0 and δ ≡ (α+ β) the relation (2.280) is satisfied and
thus the normal distribution is stable.
The Cauchy distribution (2.208) is stable. The lognormal distribution

(2.217) is not stable, as the sum of lognormal variables is not lognormal. Sim-
ilarly, for a generic number ν of degrees of freedom the Student t distribution
(2.187) is not stable.

In view of our applications we are particularly interested in symmetric
stable distributions, such as the normal distribution and the Cauchy distrib-
ution. Symmetric stable distributions are best represented in terms of their
characteristic function. Indeed, a random variable X has a symmetric stable
distribution if and only if its characteristic function has the following form:

φX (ω) ≡ E
n
eiω

0X
o

(2.282)

= eiω
0µ exp

µ
−
Z
RN
|ω0s|αmΣ (s) ds

¶
.

In this expression the parameter µ is a location vector and the parameter
α is a scalar that determines such features as the thickness of the tails of
the distribution. The (generalized) function mΣ defines a symmetric measure
that is non-zero on the surface of the ellipsoid E0,Σ with shape parameter Σ
centered in zero, see (A.73). In formulas:

mΣ (s) = mΣ (−s) , for all s ∈ RN , (2.283)
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and
mΣ (s) ≡ 0 for all s such that s0Σ−1s 6= 1. (2.284)

We use the following notation to indicate that X has a symmetric stable
distribution with the above parameters:

X ∼ SS (α,µ,mΣ) . (2.285)

Symmetric stable distributions are also called symmetric-alpha-stable (sαs)
distributions.

For example, consider a normally distributed random variable:

X ∼ N(µ,Σ) . (2.286)

Consider the spectral decomposition (A.70) of the covariance matrix:

Σ ≡ EΛ 1
2Λ

1
2E0, (2.287)

where Λ is the diagonal matrix of the eigenvalues of S:

Λ ≡ diag (λ1, . . . , λN ) ; (2.288)

and E is the juxtaposition of the respective eigenvectors:

E ≡
³
e(1), . . . , e(N)

´
. (2.289)

Define N vectors
©
v(1), . . .v(N)

ª
as follows:³

v(1), . . . ,v(N)
´
≡ V ≡ EΛ 1

2 . (2.290)

Define the following measure:

mΣ ≡
1

4

NX
n=1

³
δ(vn) + δ(−vn)

´
, (2.291)

where δ(x) is the Dirac delta centered in x as defined in (B.16).
We prove in Appendix www.2.19 the following results. The measure mΣ

satisfies (2.283) and (2.284). In turn, the characteristic function (2.157) of the
normal distribution can be written as follows:

φNµ,Σ (ω) = eiµ
0ω exp

µ
−
Z
RN
|ω0s|2mΣ (s) ds

¶
. (2.292)

Therefore the following notations are equivalent:

N(µ,Σ) ≡ SS
Ã
2,µ,

1

4

NX
n=1

³
δ(vn) + δ(−vn)

´!
. (2.293)
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We remark that one should not confuse stability with additivity: a distrib-
ution is additive if the sum of two variables with that distribution belongs to
the same class of distributions. Indeed, stable distributions are additive, but
the reverse implication is not true.

For example, consider three independent random matrices that are
Wishart-distributed with the same scale factor:

(W,S,Ω) ∼W(ν,Σ) . (2.294)

Then:
W+ S ∼W(2ν,Σ) . (2.295)

This follows easily from the definition (2.222) of the Wishart distribution.
Therefore the Wishart distribution for a given scale parameter is additive.
Nevertheless

W+ S
d

6= γ + δΩ. (2.296)

Therefore the Wishart distribution for a given scale parameter is not stable.

2.7.3 Infinitely divisible distributions

In view of our applications, infinitely divisible distributions can be projected
to a generic investment horizon, see Figure 3.11, although the computation
might not be straightforward.
More formally, the distribution of a random variableX is infinitely divisible

if, for any integer T , the distribution of X is the same as the distribution of
the sum of T suitably chosen independent and identically distributed random
variables:

X
d
= Y1 + · · ·+YT . (2.297)

For example, assume that X is normally distributed:

X ∼ N(µ,Σ) . (2.298)

For an arbitrary integer T consider the following set of independent and iden-
tically distributed normal random variables:

Yt ∼ N
µ
µ

T
,
Σ

T

¶
. (2.299)

It is immediate to check that these variables satisfy (2.297). Therefore the
normal distribution is stable.

Unlike in the normal case, although for a given T the distribution of all
the terms Yν in (2.297) is the same, this distribution need not be the same
for all values of T .
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2.7 Special classes of distributions 99

For instance, the lognormal distribution is infinitely divisible, see Thorin
(1977). Nevertheless, unlike in the normal case (2.299), the distribution of the
divisors depends on T .

Many common distributional models are infinitely divisible. For instance,
the elliptical distributions discussed in this book are infinitely divisible.
On the other hand, not all distributions are infinitely divisible. For exam-

ple, the Wishart distribution is not infinitely divisible, except in the univariate
case. Indeed the gamma distribution, which is the one-dimensional Wishart
distribution, is infinitely divisible, see Cuppens (1975).
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